Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020084

RESUMEN

Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.

2.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38397791

RESUMEN

Infertility represents a significant global health challenge, affecting more than 12% of couples worldwide, and most cases of infertility are caused by male factors. Several pathological pathways are implicated in male infertility. The main mechanisms involved are driven by the loss of reduction-oxidation (redox) homeostasis and the resulting oxidative damage as well as the chronic inflammatory process. Increased or severe oxidative stress leads to sperm plasma membrane and DNA oxidative damage, dysregulated RNA processing, and telomere destruction. The signaling pathways of these molecular events are also regulated by Nuclear factor-E2-related factor 2 (Nrf2). The causes of male infertility, the role of oxidative stress in male infertility and the Keap1-Nrf2 antioxidant pathway are reviewed. This review highlights the regulatory role of Nrf2 in the balance between oxidants and antioxidants as relevant mechanisms to male fertility. Nrf2 is involved in the regulation of spermatogenesis and sperm quality. Establishing a link between Nrf2 signaling pathways and the regulation of male fertility provides the basis for molecular modulation of inflammatory processes, reactive oxygen species generation, and the antioxidant molecular network, including the Nrf2-regulated antioxidant response, to improve male reproductive outcomes.

3.
Arch Toxicol ; 98(3): 579-615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265475

RESUMEN

This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo
4.
J Zhejiang Univ Sci B ; 24(6): 496-509, 2023 Jun 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37309041

RESUMEN

Engineered probiotics can serve as therapeutics based on their ability of produce recombinant immune-stimulating properties. In this study, we built the recombinant Bacillus subtilis WB800 expressing antimicrobial peptide KR32 (WB800-KR32) using genetic engineering methods and investigated its protective effects of nuclear factor-E2-related factor 2 (Nrf2)|-Kelch-like ECH-associated protein 1 (Keap1) pathway activation in intestinal oxidative disturbance induced by enterotoxigenic Escherichia coli (ETEC) K88 in weaned piglets. Twenty-eight weaned piglets were randomly distributed into four treatment groups with seven replicates fed with a basal diet. The feed of the control group (CON) was infused with normal sterilized saline; meanwhile, the ETEC, ETEC+WB800, and ETEC+WB800-KR32 groups were orally administered normal sterilized saline, 5×1010 CFU (CFU: colony forming units) WB800, and 5×1010 CFU WB800-KR32, respectively, on Days 1|‒|14 and all infused with ETEC K88 1×1010 CFU on Days 15|‒|17. The results showed that pretreatment with WB800-KR32 attenuated ETEC-induced intestinal disturbance, improved the mucosal activity of antioxidant enzyme (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) and decreased the content of malondialdehyde (MDA). More importantly, WB800-KR32 downregulated genes involved in antioxidant defense (GPx and SOD1). Interestingly, WB800-KR32 upregulated the protein expression of Nrf2 and downregulated the protein expression of Keap1 in the ileum. WB800-KR32 markedly changed the richness estimators (Ace and Chao) of gut microbiota and increased the abundance of Eubacterium_rectale_ATCC_33656 in the feces. The results suggested that WB800-KR32 may alleviate ETEC-induced intestinal oxidative injury through the Nrf2-Keap1 pathway, providing a new perspective for WB800-KR32 as potential therapeutics to regulate intestinal oxidative disturbance in ETEC K88 infection.


Asunto(s)
Escherichia coli Enterotoxigénica , Animales , Porcinos , Proteína 1 Asociada A ECH Tipo Kelch , Bacillus subtilis , Factor 2 Relacionado con NF-E2 , Antioxidantes , Estrés Oxidativo
5.
Phytomedicine ; 113: 154729, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36878093

RESUMEN

BACKGROUND: Ischemic stroke (IS) is considered as a serious cerebral vascular disease. Ferroptosis is a novel type of regulated cell death (RCD), that closely related to the occurrence and progress of IS. Loureirin C, a type of dihydrochalcone compound derived from the Chinese Dragon's blood (CDB). The effective components extracted from CDB have shown neuroprotective effects in ischemia reperfusion models. However, the role of Loureirin C in mice after IS is not well understood. Thus, it is worth to identify the effect and mechanism of Loureirin C on IS. PURPOSE: The present research aims to prove the existence of ferroptosis in IS and explore whether Loureirin C can inhibit ferroptosis by regulating nuclear factor E2 related factor 2 (Nrf2) pathway in mice and exert neuroprotective effects on IS models. METHODS: Middle cerebral artery occlusion and reperfusion (MCAO/R) model was established to evaluate the occurrence of ferroptosis and the potential Loureirin C brain-protective effect in vivo. The analysis of free iron, glutamate content, reactive oxygen species (ROS) and lipid peroxidation levels, along with transmission electron microscope (TEM) was applied to prove the existence of ferroptosis. The function of Loureirin C on Nrf2 nuclear translocation was verified by immunofluorescence staining. In vitro, primary neurons and SH-SY5Y cells were processed with Loureirin C after oxygen and glucose deprivation-reperfusion (OGD/R). ELISA kits, western blotting, co-immunoprecipitation (Co-IP) analysis, immunofluorescence, and quantitative real-time PCR were devoted to proving the neuroprotective effects of Loureirin C on IS via regulating ferroptosis and Nrf2 pathways. RESULTS: The results showed that Loureirin C not only dramatically alleviated brain injury and inhibited neurons ferroptosis in mice after MCAO/R, but also dose-dependently reduce ROS accumulation in ferroptosis after OGD/R. Further, Loureirin C inhibits ferroptosis by activating Nrf2 pathway, and promoting nuclear translocation of Nrf2. Besides, Loureirin C increases heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1) and glutathione peroxidase 4 (GPX4) content after IS. Intriguingly, the anti-ferroptosis effect of Loureirin C is weakened by Nrf2 knockdown. CONCLUSION: Our discoveries first revealed that the inhibitory action of Loureirin C on ferroptosis may greatly depend on its adjusting effect on the Nrf2 pathway, suggesting that Loureirin C could act as a novel anti-ferroptosis candidate and play a therapeutic role in IS. These novel discoveries on the role of Loureirin C on IS models reveal an innovative method that may contribute to neuroprotection for the prevention of IS.


Asunto(s)
Isquemia Encefálica , Neuroblastoma , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Neuroblastoma/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/prevención & control , Reperfusión
6.
Ann Transl Med ; 10(6): 285, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35434015

RESUMEN

Background: The NOD-like receptor family pyrin domain-containing 3 (NLRP3) -mediated neuroinflammation is linked to neuronal necroptosis in cerebral ischemia-reperfusion (I/R) injury, especially in cerebral ischemic penumbra. This study was designed to investigate the regulation of nuclear factor E2-related factor-2 (Nrf2) on NLRP3 inflammasome in necroptosis signal pathway induced by I/R injury. Methods: We investigated the mechanisms of Nrf2-negative regulation in necroptosis signaling pathway by using middle cerebral artery occlusion (MCAO) with Q-VD-OPH injected intraperitoneally. The protein level of the NLRP3 inflammasome was detected by western blot with Nrf2 knockdown and overexpression. NLRP3 inflammasome activation was Reactive oxygen species (ROS) dependent, and the protein level was regulated when N-acetylcysteine (NAC) and adenosine triphosphate (ATP) were selected as tools for regulating ROS. Results: We demonstrated the negative regulation of Nrf2 on NLRP3 inflammasome activation in Q-VD-OPH-induced necroptosis in cerebral artery I/R injury through Lentivirus-mediated RNA Interferenc, which mediated knockdown and overexpression of Nrf2. NLRP3 inflammasome activation was sensitive to both ATP-mediated ROS level increases and NAC-mediated ROS inhibition, suggesting that ROS is associated with the activation of NLRP3 inflammasome in necroptosis. In addition, Nrf2-induced NAD(P)H quinone dehydrogenase 1 (NQO1) was involved in the inhibition of NLRP3 inflammasome activation. These results suggest that Nrf2 regulates NQO1 to attenuate ROS, which negatively regulates NLRP3 inflammasome. Conclusions: Nrf2/NQO1 was an inhibitor of ROS-induced NLRP3 inflammasome activation in Q-VD-OPH-induced necroptosis following cerebral I/R injury. Therefore, NLRP3 inflammasome could be a potential therapeutic target for cerebral ischemia.

7.
Cancer Sci ; 113(7): 2368-2377, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35467062

RESUMEN

Adrenocortical carcinoma (ACC) is a rare malignant tumor. Genetic abnormalities that may represent therapeutic targets and prognostic factors in ACC remain unclear. Besides being one of the main cellular defense mechanisms that regulates antioxidant pathways for detoxifying reactive oxygen species (ROS), the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) promotes tumor proliferation by increasing metabolic activity. In surgical specimens from 12 cases of nonmetastatic ACCs and nine cases of benign adrenocortical adenoma (ACA), we investigated gene mutation and protein expressions for Nrf2 and the preoperative maximum standard glucose uptake (SUVmax) on [18 F]fluorodeoxy-glucose positron emission tomography. Three of five ACCs with a Weiss score of 7 to 9 were Nrf2 mutants; these ACCs had higher expression of Nrf2 and higher preoperative SUVmax. The other seven ACCs had a Weiss score of 3 to 6; these seven ACCs and all the ACAs were non-Nrf2 gene mutants. Patients with a Weiss score of 7 to 9 and Nrf2 mutant ACC had shorter overall survival. Based on Helsinki scoring, three ACCs with a Helsinki score greater than 17 had Nrf2 mutants, higher expression of Nrf2, higher preoperative SUVmax, and shorter overall survival. Our findings indicate that Nrf2 activation and the associated increase in metabolism play roles in ACC, in particular in ACC with a Weiss score of 7 to 9 and a Helsinki score of greater than 17.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Adenoma Corticosuprarrenal , Carcinoma Corticosuprarrenal , Factor 2 Relacionado con NF-E2 , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/patología , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/metabolismo , Carcinoma Corticosuprarrenal/patología , Humanos , Mutación , Factor 2 Relacionado con NF-E2/genética , Tomografía de Emisión de Positrones
8.
BMC Cancer ; 22(1): 289, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35300626

RESUMEN

BACKGROUND: Pheochromocytomas (PCC) and paragangliomas (PGL) are catecholamine-producing neuroendocrine tumors. According to the World Health Organization Classification 2017, all PCC/PGL are considered to have malignant potential. There is growing evidence that PCC/PGL represent a metabolic disease that leads to aerobic glycolysis. Cellular energy metabolism involves both transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and succinate dehydrogenase (SDH) subtypes, but the association of these substances with PCC/PGL is largely unknown. METHODS: We investigated SDHB gene mutation and protein expressions for SDHB and Nrf2 in surgical specimens from 29 PCC/PGL. We also assessed preoperative maximum standard glucose uptake (SUVmax) on [18F]fluorodeoxy-glucose positron emission tomography and mRNA levels for Nrf2. RESULTS: Among 5 PCC/PGL with a PASS Score ≥ 4 or with a moderately to poorly differentiated type in the GAPP Score, 4 were metastatic and found to be SDHB mutants with homogeneous deletion of SDHB protein. SDHB mutants showed a higher expression of Nrf2 protein and a higher preoperative SUVmax than non-SDHB mutants with a PASS < 4 or a well-differentiated GAPP type. Furthermore, protein expression of Nrf2 was positively associated with preoperative SUVmax. The Nrf2 mRNA level positively correlated with malignant phenotype, higher expression for Nrf2 protein and SDHB gene mutant, but negatively correlated with expression for SDHB protein. There was also a positive correlation between Nrf2 mRNA level and SUVmax. CONCLUSION: These results suggest that activation of Nrf2 and elevated metabolism play roles in PCC/PGL with malignant potential that have SDHB gene mutation and SDHB deficiency.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/genética , Glucosa/biosíntesis , Factor 2 Relacionado con NF-E2/biosíntesis , Paraganglioma/genética , Feocromocitoma/genética , Succinato Deshidrogenasa/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Adulto , Anciano , Femenino , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Paraganglioma/metabolismo , Paraganglioma/patología , Fenotipo , Feocromocitoma/metabolismo , Feocromocitoma/patología , ARN Mensajero/análisis , Estudios Retrospectivos , Succinato Deshidrogenasa/deficiencia
9.
Virol J ; 19(1): 23, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35101046

RESUMEN

BACKGROUND: Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor which plays a pivotal role in detoxifying reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. However, the role of Nrf2 in Herpes Simplex Virus type 1 (HSV-1) infection is still unclear. In this study, the interaction between the Nrf2 and HSV-1 replication was investigated. METHODS: The levels of oxidative stress was monitored by using 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA kits, and the dynamic changes of Nrf2-antioxidant response element (Nrf2-ARE) pathway were detected by Western Blot. The effect of Nrf2-ARE pathway on the regulation of HSV-1 proliferation was analyzed by Western Blot, Real-Time PCR and TCID50 assay. RESULTS: HSV-1 infection induced oxidative stress. Nrf2 was activated, accompanied by the increase of its down-stream antioxidant enzyme heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1) in the early stage of HSV-1 infection. The proliferation of HSV-1 was inhibited by overexpression of Nrf2 or treatment with its activator tert-Butylhydroquinone (tBHQ). On the contrary, silencing of Nrf2 promotes virus replication. HO-1 is involved in the regulation of IFN response, leading to efficient anti-HSV-1 effects. CONCLUSION: Our observations indicate that the Nrf2-ARE pathway activates a passive defensive response in the early stage of HSV-1 infection. Targeting the Nrf2 pathway demonstrates the potential for combating HSV-1 infection.


Asunto(s)
Herpesvirus Humano 1 , Factor 2 Relacionado con NF-E2 , Antioxidantes , Herpesvirus Humano 1/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Estrés Oxidativo , Regulación hacia Arriba
10.
Toxicol Mech Methods ; 32(3): 224-232, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34651546

RESUMEN

Atopic dermatitis (AD) is characterized by progressive skin inflammation. In addition, sulforaphane is an isothiocyanate organosulfur compound from cruciferous vegetables. Sulforaphane was reported to ameliorate inflammatory responses. Therefore, this study was conducted to evaluate the protective effects of sulforaphane in AD through affecting the balance between pro-inflammatory and anti-inflammatory cytokines and to evaluate its effect on AD-induced activation of the apoptotic pathway. The method of repeated rubbing of 2,4-dinitrochlorobenzene (DNCB) on shaved dorsal skin and ears of mice was used for induction of AD. After the development of AD, part of the mice was injected with 1 mg/kg sulforaphane, subcutaneously three times weekly. Samples of skin were isolated for assessment of gene and protein expression of 8-hydroxy2'-deoxyguanosine, IgE, NFκB, TNF-α, IL-1ß, IL-4, IL-10, Nrf2, and caspase-3. In addition, skin sections from different groups were stained with anti-caspase-3 antibodies. Mice in the AD group were characterized by increased gene and protein expression of 8-hydroxy2'-deoxyguanosine, IgE, NFκB, TNF-α, IL-1ß, and caspase-3 associated with reduced expression of Nrf2, IL-4, and IL-10. Treatment of AD mice with sulforaphane significantly reduced the number of scratches, dermatitis score, and ear thickness. In addition, sulforaphane significantly attenuated the gene and protein expressions produced by AD. Therefore, sulforaphane alleviated AD induced in mice through inhibition of oxidative stress, oxidative DNA damage, inflammation, and apoptosis. HIGHLIGHTSAtopic dermatitis is a chronic relapsing inflammatory disease.Sulforaphane is an isothiocyanate organosulfur compound obtained from cruciferous vegetables.Sulforaphane alleviated AD induced in mice.Sulforaphane inhibits oxidative stress, oxidative DNA damage, inflammation, and apoptosis.


Asunto(s)
Dermatitis Atópica , Animales , Apoptosis , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación/metabolismo , Isotiocianatos/metabolismo , Isotiocianatos/uso terapéutico , Isotiocianatos/toxicidad , Ratones , Ratones Endogámicos BALB C , Piel , Sulfóxidos
11.
Theriogenology ; 177: 183-194, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34715543

RESUMEN

Heat stress is known to negatively impact the reproductive process of livestock, which inevitably leads to a decline in animal fertility. Nuclear factor E2-related factor 2 (Nrf2) is an inducible transcription factor, which is essential for maintaining redox signal transmission against oxidative stress. However, there is no reliable research on the response mechanism of Sertoli Cells (SCs) against heat stress and the activation of Nrf2 when SCs are exposed to heat stress. Here, we used primary mouse SCs and SCs line TM4, along with Nrf2 specific inhibitor to determine the reaction mechanism of SCs to maintain intracellular redox homeostasis and self-survival by activating Nrf2. We found that acute heat stress only affected the vitality of SCs and the expression of functional molecules (tight junction-associated proteins and lactate dehydrogenase A [LDHA]) but did not cause cell apoptosis. When Nrf2 was inhibited, more cell death occurred in TM4 cells post heat stress treatment, along with a greater decrease in cell viability and a significant increase in intracellular ROS levels. Our study clarified for the first time the protective effect of Nrf2 activation on heat stress-induced SCs damage. It explained the possible reasons or mechanisms involved in the survival of SCs, the critical protective cells in the testis, which were not affected by heat stress. This study further improved the response mechanism of SCs in the reproductive injury caused by a high-temperature environment.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Células de Sertoli , Animales , Apoptosis , Respuesta al Choque Térmico , Masculino , Ratones , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Células de Sertoli/metabolismo , Testículo/metabolismo
12.
Biol Pharm Bull ; 44(9): 1254-1262, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34471054

RESUMEN

Betanin, a bioactive ingredient mostly isolated from beetroots, exhibits a protective effect against cardiovascular diseases. However, its effects on abdominal aortic aneurysm (AAA) have not been elucidated. In this study, an AAA model was constructed by infusion of porcine pancreatic elastase in C57BL/6 mice. Mice were then administered with betanin or saline intragastrically once daily for 14 d. Our results showed that treatment with betanin remarkably limited AAA enlargement and mitigated the infiltration of inflammatory cells in the adventitia. The increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) was also significantly alleviated following betanin treatment. Furthermore, betanin suppressed the activation of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling in the aortic wall, and downregulated the levels of tissue-reactive oxygen species as well as circulating 8-isoprostane by stimulating the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Taken together, these data suggest that betanin may attenuate AAA progression and may be used as a therapeutic drug against AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Betacianinas/farmacología , Animales , Aorta Abdominal/efectos de los fármacos , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/patología , Betacianinas/uso terapéutico , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Elastasa Pancreática/administración & dosificación , Elastasa Pancreática/toxicidad , Porcinos , Receptor Toll-Like 4
13.
Biol Pharm Bull ; 44(6): 875-883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34078820

RESUMEN

Inflammation caused by the excessive secretion of inflammatory mediators in abnormally activated macrophages promotes many diseases along with oxidative stress. Loganin, a major iridoid glycoside isolated from Cornus officinalis, has recently been reported to exhibit anti-inflammatory and antioxidant effects, whereas the underlying mechanism has not yet been fully clarified. Therefore, the aim of the present study is to investigate the effect of loganin on inflammation and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results indicated that loganin treatment markedly attenuated the LPS-mediated phagocytic activity and release of nitric oxide (NO) and prostaglandin E2, which was associated with decreased the expression of inducible NO synthase and cyclooxygenase-2. In addition, loganin suppressed the expression and their extracellular secretion of LPS-induced pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-1ß. Furthermore, loganin abolished reactive oxygen species (ROS) generation, and promoted the activation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated macrophages. However, zinc protoporphyrin, a selective HO-1 inhibitor, reversed the loganin-mediated suppression of pro-inflammatory cytokines in LPS-treated macrophages. In conclusion, our findings suggest that the upregulation of the Nrf2/HO-1 signaling pathway is concerned at least in the protective effect of loganin against LPS-mediated inflammatory and oxidative stress, and that loganin can be a potential functional agent to prevent inflammatory and oxidative damage.


Asunto(s)
Antiinflamatorios/farmacología , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo , Iridoides/farmacología , Proteínas de la Membrana/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dinoprostona/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos , Ratones , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Ann Transl Med ; 9(8): 700, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987398

RESUMEN

BACKGROUND: Glioma is the most common and aggressive primary brain tumor in adults. Proteasome 26S subunit, non-ATPase 12 (PSMD12), an important subunit in the 26S proteasome, is known to be involved in the growth and apoptosis of breast cancer cells. However, its exact function and underlying molecular mechanisms in glioma remain unknown. METHODS: PSMD12 expression was detected in glioma tissue specimens by immunohistochemistry (IHC) and TCGA database. Overexpression and down-regulation of PSMD12 and Nrf2 were induced in glioma cell lines, and CCK-8 and Transwell assays were used to detect cell proliferation and invasion evaluation, respectively. Xenograft model was used to observe the effect of knockdown of PSMD12 on tumor growth. Immunohistochemical assays and TCGA database were conducted to reveal the relationships between PSMD12 expression and Nrf2. Finally, Western blot and related biological function experiments were used to explore the mechanism of PSMD12 regulating the glioma progression and Nrf2. RESULTS: We revealed that PSMD12 is upregulated in glioma, especially in high-grade glioma, by analyzing bioinformatics data and clinical specimens. PSMD12 upregulation was associated with poor prognosis in glioma patients. Knockdown of PSMD12 inhibited the growth of glioma cells in vitro and in vivo and decreased their invasion ability, whereas PSMD12 overexpression had the opposite effect. Mechanistic analysis revealed that PSMD12 increased the expression of nuclear factor E2-related factor 2 (Nrf2), which functions as a tumor promoter in the development of glioma. Similar to PSMD12, Nrf2, which exhibited a strong positive correlation with PSMD12, was abnormally elevated in glioma tissues and contributed to worse overall survival (OS). Nrf2 overexpression reversed the inhibitory effects induced by PSMD12 knockdown. Finally, PSMD12 enhanced the proliferation and invasion of glioma cells via Akt signaling-mediated Nrf2 expression. CONCLUSIONS: These results suggest that PSMD12 is considered to be a crucial regulator of the development and progression of glioma and may serve as a potential biomarker or therapeutic target for the treatment of glioma.

15.
Front Pharmacol ; 12: 649820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912060

RESUMEN

Polyherbal formulation combining multiple herbs is suggested to achieve enhanced therapeutic effects and reduce toxicity. Harak herbal formula (HRF) extracts were proposed to regulate skin responses to UVR through their ability to suppress UVA-induced matrix metalloproteinase-1 (MMP-1) and pigmentation via promoting antioxidant defenses in in vitro models. Therefore, natural products targeting Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated antioxidant response might represent promising anti-photoaging candidates. Hesperetin (HSP) was suggested as a putative bioactive compound of the HRF, as previously shown by its chemical profiling using the liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In this study, we explored the anti-photoaging effects of HRF extracts and HSP on normal human dermal fibroblasts (NHDFs) and mouse skin exposed to UVA irradiation. Pretreatment of NHDFs with HRF extracts and HSP protected against UVA (8 J/cm2)-mediated cytotoxicity and reactive oxygen species (ROS) formation. The HRF and HSP pretreatment also attenuated the UVA-induced MMP-1 activity and collagen depletion concomitant with an upregulation of Nrf2 activity and its downstream genes (GST and NQO-1). Moreover, our findings provided the in vivo relevance to the in vitro anti-photoaging effects of HRF as topical application of the extracts (10, 30 and 100 mg/cm2) and HSP (0.3, 1, and 3 mg/cm2) 1 h before UVA exposure 3 times per week for 2 weeks (a total dose of 60 J/cm2) mitigated MMP-1 upregulation, collagen loss in correlation with enhanced Nrf2 nuclear accumulation and its target protein GST and NQO-1 as well as reduced 8-hydroxy-2'-deoxyguanosine (8-OHdG) in irradiated mouse skin. Thus, our findings revealed that HRF extracts and HSP attenuated UVA-induced photoaging via upregulating Nrf2, together with their abilities to reduce ROS formation and oxidative damage. Our study concluded that the HRF and its bioactive ingredient HSP may represent potential candidates for preventing UVA-induced photoaging via restoration of redox balance.

16.
Biol Pharm Bull ; 44(3): 396-403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642547

RESUMEN

Ferulic acid (FA) has potential therapeutic effects in multiple diseases including cardiovascular diseases. However, the effect and molecular basis of FA in heart failure (HF) has not been thoroughly elucidated. Herein, we investigated the roles and mechanisms of FA in HF in isoproterenol (ISO)-induced HF rat model. Results found that FA ameliorated cardiac dysfunction, alleviated oxidative stress, reduced cell/myocardium injury-related enzyme plasma level, inhibited cardiocyte apoptosis in ISO-induced HF rat models. Moreover, FA reduced the co-localization of Keap1 and nuclear factor-E2-related factor 2 (Nrf2) in heart tissues of ISO-induced HF rats, and FA alleviated the inhibitory effects of ISO on expressions of p-Nrf2, heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). Additionally, Nrf2 signaling pathway inhibitor ML385 showed adverse effects. FA weakened the effects of ML385 in ISO-induced HF rat models. Collectively, FA ameliorated HF by decreasing oxidative stress and inhibiting cardiocyte apoptosis via activating Nrf2 pathway in ISO-induced HF rats. Our data elucidated the underling molecular mechanism and provided a novel insight into the cardioprotective function of FA, thus suggested the therapeutic potential of FA in HF treatment.


Asunto(s)
Cardiotónicos/uso terapéutico , Ácidos Cumáricos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Ácidos Cumáricos/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Isoproterenol , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
17.
J Food Biochem ; 45(1): e13556, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152804

RESUMEN

The cellular defense pathway plays a key role in maintaining the homeostasis, tissues and organisms. Nuclear factor E2-related factor 2 (Nrf2), as a key cell signaling pathway, plays an important role in encoding detoxification enzymes and other stress response mediators. Recent studies have shown that it is closely related to the prevention and treatment of acute kidney injury (AKI). Therefore, this article reviews the protective effects of Nrf2-related signaling pathways on acute kidney injury, and summarizes the strategies of natural pharmaceutical ingredients such as flavonoids, alkaloids, terpenes, phenylpropionic acid, polyphenols, and polysaccharides to prevent and treat acute kidney injury. It is of great significance to further study the relationship between Nrf2 regulated signal pathway and kidney disease and the development of new medicines for acute kidney injury treatment. It can also provide new ideas and treatment strategies for clinical treatment of acute kidney injury. PRACTICAL APPLICATIONS: This article reviewed the mechanisms by which the active ingredients of natural medicines slow down acute kidney injury through the Nrf2 pathway. It will help us to understand the regulatory role of the Nrf2 pathway in AKI more comprehensively, and provide a theoretical basis for further exploring the mechanism of more natural drugs to reduce acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Alcaloides , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Flavonoides , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal
18.
Cell Stress Chaperones ; 26(2): 367-375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33245515

RESUMEN

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes. Gambogic acid has been reported to have anti-inflammatory effect. However, the effect of GA on inflammatory response of ARPE-19 cells remains unclear. In our study, ARPE-19 cells were stimulated by palmitic acid (PA) induction in the presence of 30 mM glucose and then treated with 0.5, 1, 2, 5, 10, or 20 µM GA. CCK-8 assay showed that cell viability was increased by GA treatment at doses of 0.5, 1, and 2 µM instead of higher doses. ELISA analysis found that GA dose-dependently reduced the production of pro-inflammatory mediators TNF-α and IL-1ß. Western blot indicated that GA downregulated the expression of NLRP3 inflammasome components including TXNIP, NLRP3, ASC, cleaved-caspase-1, and cleaved-IL-1ß in a dose-dependent manner. In addition, Western blot and immunofluorescence analysis suggested that GA effectively increased the protein level of nuclear factor E2-related factor-2 (Nrf2). RT-qPCR showed that GA significantly increased the mRNA levels of Heme oxygenase-1 (HO-1) and NADPH:quinone oxidoreductase1 (NQO1). Furthermore, Nrf2 siRNA transfection confirmed the above effects of GA. In total, subtoxic doses of GA significantly flattened the inflammatory response induced by HG and PA in ARPE-19 cells via modulating the Nrf2 signaling pathway.


Asunto(s)
Retinopatía Diabética/inmunología , Inflamación/inmunología , Factor 2 Relacionado con NF-E2/inmunología , Ácido Palmítico/farmacología , Xantonas/farmacología , Línea Celular , Humanos
19.
J Food Biochem ; 44(8): e13232, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32497278

RESUMEN

We investigated the effect of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (LD) on ethanol (EtOH)-mediated liver injury and explored the underlying mechanisms. Administration of LD synergistically reduced relative liver weight and decreased the levels of serum biomarkers of hepatic injury. Histopathological and biochemical analyses indicated that LD synergistically attenuated hepatic accumulation of triacylglycerides (TGs) and restored the levels of mRNAs related to fatty acid metabolism. In addition, LD significantly reduced EtOH-induced hepatic oxidative stress by attenuating the reduction in levels of nuclear factor E2-related factor 2 (Nrf2) mRNA and enhancing antioxidant activity. Moreover, LD decreased the EtOH-mediated increase in levels of hepatic tumor necrosis factor-α (TNF-α) mRNA. In vitro, LD significantly scavenged free radicals, increased cell viability against tert-butylhydroperoxide (tBHP), and transactivated Nrf2 target genes in HepG2 cells. Furthermore, LD decreased levels of pro-inflammatory mediators in lipopolysaccharide-stimulated Raw264.7 cells. Therefore, LD shows promise for preventing EtOH-mediated liver injury. PRACTICAL APPLICATIONS: There were no approved therapeutic agents for preventing and/or treating alcoholic liver diseases. In this study, a 2:1 (w/w) mixture of lemon balm and dandelion leaf extract (DL) synergistically ameliorated EtOH-induced hepatic injury by inhibiting lipid accumulation, oxidative stress, and inflammation. Our findings will enable the development of a novel food supplement for the prevention or treatment of alcohol-mediated liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Melissa , Taraxacum , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Etanol/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
20.
Front Neurosci ; 14: 267, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372896

RESUMEN

Ferroptosis is a kind of regulated cell death (RCD) caused by the redox state disorder of intracellular microenvironment controlled by glutathione (GSH) peroxidase 4 (GPX4), which is inhibited by iron chelators and lipophilic antioxidants. In addition to classical regulatory mechanisms, new regulatory factors for ferroptosis have been discovered in recent years, such as the P53 pathway, the activating transcription factor (ATF)3/4 pathway, Beclin 1 (BECN1) pathway, and some non-coding RNA. Ferroptosis is closely related to cancer treatment, neurodegenerative diseases, ischemia-reperfusion of organ, neurotoxicity, and others, in particular, in the field of neurodegenerative diseases treatment has aroused people's interest. The nuclear factor E2 related factor 2 (Nrf2/NFE2L2) has been proved to play a key role in neurodegenerative disease treatment and ferroptosis regulation. Ferroptosis promotes the progression of neurodegenerative diseases, while the expression of Nrf2 and its target genes (Ho-1, Nqo-1, and Trx) has been declined with aging; therefore, there is still insufficient evidence for ferroptosis and Nrf2 regulatory networks in the field of neurodegenerative diseases. In this review, we will provide a brief overview of ferroptosis regulatory mechanisms, as well as an emphasis on the mechanism of Nrf2 regulating ferroptosis. We also highlight the role of ferroptosis and Nrf2 during the process of neurodegenerative diseases and investigate a theoretical basis for further research on the relationship between Nrf2 and ferroptosis in the process of neurodegenerative diseases treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA