Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Methods Mol Biol ; 2819: 55-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028502

RESUMEN

DNA-protein interactions occur in biological processes such as genome replication, gene transcription, DNA repair, and chromatin compaction and organization. Mapping the distribution of the DNA-bound proteins on the chromosome is essential for understanding their associated biological process. Chromatin immunoprecipitation (ChIP) involves the antibody-mediated enrichment of DNA fragments bound by a target protein and has become one of the most powerful techniques for exploring the distribution of proteins on the chromosome. By incorporating quantitative polymerase chain reaction (qPCR) downstream of the ChIP assay, ChIP-qPCR was developed to describe binding profiles of DNA-associated proteins at a candidate locus. In this chapter, we describe ChIP-qPCR. We provide a step-by-step protocol for the preparation of a ChIP library of a 3× FLAG-tagged protein in bacteria, describe how downstream qPCR experiments can be performed with the appropriate controls, and explain how the data is analyzed. This chapter provides reliable technical guidance for ChIP-qPCR studies in bacteria.


Asunto(s)
Inmunoprecipitación de Cromatina , Inmunoprecipitación de Cromatina/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Bacterias/genética , Bacterias/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Methods Mol Biol ; 2819: 225-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028509

RESUMEN

Bacterial nucleoid-associated proteins are important factors in regulation of transcription, in nucleoid structuring, and in homeostasis of DNA supercoiling. Vice versa, transcription influences DNA supercoiling and can affect DNA binding of nucleoid-associated proteins (NAPs) such as H-NS in Escherichia coli. Here we describe genetic tools to study the interplay between transcription and nucleoid-associated proteins in E. coli. These methods include construction of genomic and plasmidic transcriptional and translational lacZ reporter gene fusions to study regulation of promoters; insertion of promoter cassettes to drive transcription into a locus of interest in the genome, for example, an H-NS-bound locus; and construction of isogenic hns and stpA mutants and precautions in doing so.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Genes Reporteros , Plásmidos/genética , ADN Bacteriano/genética
3.
Methods Mol Biol ; 2819: 381-419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028516

RESUMEN

Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Elongación de la Transcripción Genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética
4.
Mol Microbiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039769

RESUMEN

Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.

5.
EcoSal Plus ; : eesp00012022, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864557

RESUMEN

Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.

6.
Appl Environ Microbiol ; 90(7): e0010824, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38864629

RESUMEN

The extremophile Deinococcus radiodurans maintains a highly organized and condensed nucleoid as its default state, possibly contributing to its high tolerance to ionizing radiation (IR). Previous studies of the D. radiodurans nucleoid were limited by reliance on manual image annotation and qualitative metrics. Here, we introduce a high-throughput approach to quantify the geometric properties of cells and nucleoids using confocal microscopy, digital reconstructions of cells, and computational modeling. We utilize this novel approach to investigate the dynamic process of nucleoid condensation in response to IR stress. Our quantitative analysis reveals that at the population level, exposure to IR induced nucleoid compaction and decreased the size of D. radiodurans cells. Morphological analysis and clustering identified six distinct sub-populations across all tested experimental conditions. Results indicate that exposure to IR induced fractional redistributions of cells across sub-populations to exhibit morphologies associated with greater nucleoid condensation and decreased the abundance of sub-populations associated with cell division. Nucleoid-associated proteins (NAPs) may link nucleoid compaction and stress tolerance, but their roles in regulating compaction in D. radiodurans are unknown. Imaging of genomic mutants of known and suspected NAPs that contribute to nucleoid condensation found that deletion of nucleic acid-binding proteins, not previously described as NAPs, can remodel the nucleoid by driving condensation or decondensation in the absence of stress and that IR increased the abundance of these morphological states. Thus, our integrated analysis introduces a new methodology for studying environmental influences on bacterial nucleoids and provides an opportunity to further investigate potential regulators of nucleoid condensation.IMPORTANCEDeinococcus radiodurans, an extremophile known for its stress tolerance, constitutively maintains a highly condensed nucleoid. Qualitative studies have described nucleoid behavior under a variety of conditions. However, a lack of quantitative data regarding nucleoid organization and dynamics has limited our understanding of the regulatory mechanisms controlling nucleoid organization in D. radiodurans. Here, we introduce a quantitative approach that enables high-throughput quantitative measurements of subcellular spatial characteristics in bacterial cells. Applying this to wild-type or single-protein-deficient populations of D. radiodurans subjected to ionizing radiation, we identified significant stress-responsive changes in cell shape, nucleoid organization, and morphology. These findings highlight this methodology's adaptability and capacity for quantitatively analyzing the cellular response to stressors for screening cellular proteins involved in bacterial nucleoid organization.


Asunto(s)
Deinococcus , Radiación Ionizante , Deinococcus/efectos de la radiación , Deinococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
7.
Mol Microbiol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922728

RESUMEN

Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.

8.
Mol Microbiol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922783

RESUMEN

In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.

9.
mSphere ; 9(7): e0001124, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920383

RESUMEN

Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches they occupy. H-NS, the histone-like nucleoid structuring protein, is the best-studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. IMPORTANCE: New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. A proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.


Asunto(s)
Proteínas Bacterianas , Cólera , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Vibrio cholerae/metabolismo , Cólera/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Transcripción Genética , Virulencia , Factores de Virulencia/genética , Transferencia de Gen Horizontal
10.
Mol Microbiol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619026

RESUMEN

MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA