Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.646
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biology (Basel) ; 13(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39336119

RESUMEN

Toll-like receptors (TLRs) are pattern recognition receptors expressed in immune cells, including neutrophils, macrophages, and dendritic cells. Microbe-associated molecular patterns, including bacterial components, membranes, nucleic acids, and flagella are recognized by TLRs in inflammatory immune responses. Periodontal disease is an inflammatory disease known to cause local infections associated with gingival inflammation, subsequently leading to alveolar bone resorption. Prostaglandin E2 (PGE2) is a key mediator of TLR-induced inflammatory bone resorption. We previously reported that membrane-bound PGE synthase (mPGES-1)-deficient mice failed to induce bone resorption by lipopolysaccharide (LPS), a major pathogenic factor involved in periodontal bone resorption. Further experiments exploring specific pathogen-promoting osteoclast differentiation revealed that various TLR ligands induced osteoclast differentiation in a co-culture model. The ligands for TLR2/1, TLR2/6, TLR3, and TLR5, as well as TLR4, induce osteoclast differentiation associated with the production of PGE2 and the receptor activator of nuclear factor-kappa B ligand (RANKL), an inevitable inducer of osteoclast differentiation in osteoblasts. In vivo, local injection of TLR ligands, including TLR2/1, TLR2/6, and TLR3, resulted in severe alveolar bone resorption. This review summarizes the latest findings on TLR-mediated osteoclast differentiation and bone resorption in inflammatory diseases, such as periodontal diseases.

2.
BMC Oral Health ; 24(1): 1155, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343917

RESUMEN

BACKGROUND: Shortening retention time and minimizing relapse rates are ongoing challenges in orthodontics. This study investigated the effects of natural fulvic acids (FAs) and low-level laser therapy (LLLT) on orthodontic retention in rats. METHODS: Seventy-two male Sprague-Dawley rats underwent mesial movement of the left maxillary first molar using a 50 g force via a nickel-titanium tension spring. After three weeks of movement, the rats entered the retention phase with retainer wires and were divided into four groups: Control (no intervention), FAs (80 mg/kg orally daily), LLLT (808 nm laser twice weekly), and FAs + LLLT (both treatments). Retainers were removed on days 7, 14, and 21 for a 3-day relapse assessment. Maxillary impressions were analyzed for relapse rates using 3Shape software, alongside histological and immunohistochemical evaluations of bone morphogenetic protein-2 (BMP-2) expression in periodontal tissues, with differences among groups analyzed using an ordinary two-way analysis of variance (ANOVA). RESULTS: The relapse rate decreased over time, particularly at 10, 17, and 24 days (p < 0.001). The FAs group did not significantly affect relapse rates compared to the control group (p = 0.084). In contrast, both the LLLT and FAs + LLLT groups significantly reduced relapse rate (p < 0.001), with no significant difference between these groups (p = 0.555). Histological examination revealed active osteoclasts on day 10, decreasing by days 17 and 24. The LLLT and FAs + LLLT groups showed less local cementum resorption and better periodontal fiber arrangement. All treatment groups significantly increased BMP-2 expression (P < 0.05) compared to controls. with LLLT and FAs + LLLT differing significantly from FAs (P < 0.001), though no difference was observed between LLLT and FAs + LLLT (P = 0.578). CONCLUSIONS: FAs did not significantly reduce relapse rate with retainers, while LLLT effectively reduced relapse rates, showing no additional benefit from combining FAs with LLLT. Both FAs and LLLT increased BMP-2 expression in PDL fibroblasts but with no synergistic effect.


Asunto(s)
Benzopiranos , Proteína Morfogenética Ósea 2 , Terapia por Luz de Baja Intensidad , Ratas Sprague-Dawley , Técnicas de Movimiento Dental , Animales , Ratas , Masculino , Terapia por Luz de Baja Intensidad/métodos , Técnicas de Movimiento Dental/métodos , Benzopiranos/uso terapéutico , Benzopiranos/farmacología , Retenedores Ortodóncicos , Alambres para Ortodoncia , Ligamento Periodontal/efectos de la radiación , Ligamento Periodontal/patología , Diente Molar
3.
Int J Biol Macromol ; 280(Pt 3): 135978, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39322143

RESUMEN

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a multifaceted clinical syndrome characterized by mineral imbalances, abnormalities in bone metabolism, chronic inflammation and vascular calcification. Etelcalcetide, a second-generation intravenous calcimimetic agent, has been approved for treating high-turnover renal osteodystrophy, effectively targeting the pathophysiological mechanisms underlying this condition. We investigate the impacts of etelcalcetide on osteoclast (OC) differentiation and functionality in CKD-MBD via three critical mechanisms: inflammation initiated by interferon regulatory factor 7 (IRF7), receptor-interacting protein (RIP)-mediated necroptosis and apoptosis-induced cell death. The low-dose (CKD + L) or high-dose (CKD + H) of etelcalcetide groups significantly improved biochemical markers compared to the CKD control mice. Additionally, etelcalcetide-treated CKD mice significantly improved cortical and trabecular bone parameters. In an in vitro study, etelcalcetide was observed to bolster the IRF7-mediated IFNß response in OC differentiation. Furthermore, it stimulated RIP-mediated necroptosis via RIP and MLKL activation, inhibiting bone resorption. Moreover, the drug increased levels of caspases 3 and 9, inducing cell death in OCs. These findings suggest that etelcalcetide regulates bone metabolism and reduces skeletal issues in CKD-MBD. Etelcalcetide likely enhances bone parameters in CKD-MBD mice by regulating IRF7 pathways and inhibiting OC differentiation. It also improves bone health and promotes RIP-mediated necroptosis and apoptosis pathways within OCs.

4.
PNAS Nexus ; 3(7): pgae266, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39296332

RESUMEN

Collagen fibers provide physical support to animal tissues by orienting in the correct position and at optimal density. Actinotrichia are thick collagen fibers that are present at the tips of fish fins and serve as scaffolds for bone formation. The arrangement and density of actinotrichia must be constantly maintained with a high degree of regularity to form spatial patterns in the fin bones, but the mechanisms of this process are largely unknown. To address this issue, we first identified two fluorescent probes that can stain actinotrichia clearly in vivo. Using these probes and time-lapse observation of actinotrichia synthesized at different growth stages, we revealed the following previously unknown dynamics of actinotrichia. (i) Actinotrichia do not stay stationary at the place where they are produced; instead, they move towards the dorsal area during the notochord bending and (ii) move towards the distal tip during the fin growth. (iii) Actinotrichia elongate asymmetrically as new collagen is added at the proximal side. (iv) Density is maintained by the insertion of new actinotrichia. (v) Actinotrichia are selectively degraded by osteoclasts. These findings suggest that the regular arrangement of actinotrichia is the outcome of multiple dynamic processes.

5.
Acta Histochem Cytochem ; 57(4): 137-147, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39228907

RESUMEN

While the rapid decrease in estrogen is well known as the main cause of postmenopausal osteoporosis in women, the precise pathogenesis of senile osteoporosis in the elderly regardless of gender is largely unknown. The age-related epigenetic regulation of receptor activator NF-κB (RANK) gene expression was investigated with the use of a high-passaged mouse osteoclast progenitor cell line, RAW264.7, as an in vitro model of aging. In the RAW264.7 cells after repeated passages, receptor RANK expression was downregulated, resulting in decreased soluble RANK ligand (sRANKL)-induced osteoclastogenesis, expression of tartrate-resistant acid phosphatase-5b (TRAcP) and cathepsin K (CTSK). Methylation-specific PCR and bisulfite mapping revealed hypermethylation of CpG-loci located in the RANK gene promoter in multiple-passaged cells. ICON probe-mediated in situ assessment of methylated-cytosine at the CpG loci revealed an increase in the percentage of methylated RAW264.7 cells in the RANK gene in a passage-dependent manner. Conversely, upon treatment with demethylating agent 5-aza-2-deoxycytidine (5-aza-dC), high-passaged RAW264.7 cells displayed restored expression of the RANK gene, osteoclastogenesis, TRAcP and CTSK. Ex vivo cultures of splenic macrophages from young (10.5 W) and aged (12 M) mice also showed that CpG methylation was predominant in the aged animals, resulting in reduced RANK expression and osteoclastogenesis. Reduced RANK expression by age-related accumulation of DNA methylation, albeit in a limited population of osteoclast precursor cells, might be, at least in part, indicative of low-turnover bone characteristic of senile osteoporosis.

6.
Angle Orthod ; 94(5): 566-573, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230015

RESUMEN

OBJECTIVES: To investigate whether the inhibition of 12/15-lipoxygenase (12/15-LOX), one of the core enzymes of the arachidonic acid cascade, suppresses orthodontically induced root resorption (OIRR), and examine the involvement of the hyaline degeneration of periodontal ligament cells and odontoclast differentiation. MATERIALS AND METHODS: The left maxillary first molars of 10-week-old male Wistar rats were moved mesially for 14 days using a closed-coil spring (25 cN) inserted between the first molar and incisor. The rats were intraperitoneally administered with a 12/15-LOX specific inhibitor (ML-351; 0.05 mmol/kg) daily in the experimental group or vehicle (dimethyl sulfoxide) in the control group. Tooth movement was measured using microcomputed tomography on day 14. The appearance of OIRR, hyaline degeneration, osteoclasts, and odontoclasts was evaluated via histological analysis. Immunohistochemical staining for receptor-activated NF-kB ligand (RANKL) and osteoprotegerin was performed. RESULTS: OIRR observed on day 14 in the control group was strongly suppressed by ML-351 treatment. Hyaline degeneration observed on the compression side on day 3 and the appearance of osteoclasts and odontoclasts on days 3 and 14 were significantly suppressed by ML-351. RANKL expression on day 3 was significantly suppressed by ML-351. These key processes in OIRR were substantially suppressed by ML-351 treatment. CONCLUSIONS: Inhibition of 12/15-LOX reduced OIRR by suppressing hyaline degeneration and subsequent odontoclast differentiation.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Araquidonato 15-Lipooxigenasa , Inhibidores de la Lipooxigenasa , Osteoclastos , Ratas Wistar , Resorción Radicular , Técnicas de Movimiento Dental , Animales , Masculino , Técnicas de Movimiento Dental/métodos , Resorción Radicular/etiología , Resorción Radicular/prevención & control , Resorción Radicular/patología , Ratas , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 12-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/uso terapéutico , Osteoclastos/efectos de los fármacos , Microtomografía por Rayos X , Ligando RANK/metabolismo , Diferenciación Celular/efectos de los fármacos , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/patología , Osteoprotegerina/metabolismo , Diente Molar
7.
Results Probl Cell Differ ; 73: 419-434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242388

RESUMEN

Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.


Asunto(s)
Comunicación Celular , Células Mieloides , Humanos , Comunicación Celular/fisiología , Animales , Infecciones por VIH/inmunología , VIH-1/fisiología , Estructuras de la Membrana Celular , Nanotubos
8.
Br J Pharmacol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294929

RESUMEN

BACKGROUND AND PURPOSE: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and painful joint destruction. Current treatments are helpful in RA remission, but strong immunosuppressive activity and patient resistance are clinical issues. This study explores a dual-action inhibitor, possessing both anti-inflammatory and anti-resorptive properties, as a novel treatment for RA. EXPERIMENTAL APPROACH: Therapeutic efficacy and mechanisms of ectosteric (tanshinone IIA sulfonate [T06]) and active site-directed (odanacatib [ODN]) inhibitors of cathepsin K (CatK) were evaluated in RA mouse models. Pathology was assessed through biochemical analyses and histopathological examination. Flow cytometry analysis was performed to characterize immune cells. Anti-inflammatory effects of T06 on nuclear factor kappa beta (NF-κB) pathway were studied in macrophages. KEY RESULTS: T06 effectively lowered the number of joint-resident immune cells, accompanied by significantly reduced production of inflammatory cytokines and collagenolytic proteases. This also included the suppression of Th17 cells and IL-17, resulting in the reduction of osteoclasts in arthritic joints and amplification of the overall anti-resorptive effect of T06, which has been attributed to its selective inhibition of the collagenolytic activity of CatK by preventing its oligomerization. The anti-inflammatory mechanism of T06 was based on blocking the phosphorylation of IκBα in the NF-κB pathway, resulting in reduced activation and expression of inflammatory cytokines. In contrast, ODN had no effect on inflammation and disease progression and was limited to the inhibition of CatK. CONCLUSIONS: The combined anti-resorptive and anti-inflammatory activities characterize T06 as a novel therapeutic agent for RA.

9.
Eur J Orthod ; 46(5)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39225083

RESUMEN

BACKGROUND: Orchestration of tooth movement necessitates an equilibrium of bone synthesis and resorption. Vitamin D, through receptor-mediated actions, regulates the differentiation and maturation of osteoblasts and also induces osteoclastogenesis, maintaining this equilibrium. OBJECTIVE: To analyze the impact of vitamin D in orthodontic tooth movement (OTM). SEARCH METHOD: A comprehensive exploration of the existing literature was conducted by systematic search through seven e-databases. SELECTION CRITERIA: The criteria for inclusion were established using the PICO format: Orthodontic patients treated with fixed appliance (P), administered with vitamin D3 (I), collated with appropriate control groups (C), with tooth movement as the primary outcome and root resorption, anchorage loss, gingival crevicular fluid (GCF) volume, pain perception, and alveolar bone density as the secondary outcome (O). DATA COLLECTION AND ANALYSIS: After an extensive database search, 251 articles were obtained. Six articles were chosen following a stringent selection using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The critical appraisal of randomized control trials (RCTs) involved the meticulous application of the RoB 2 tool. The quantitative synthesis incorporated a subset of six articles only. RESULTS: In the meta-analysis investigating the influence of vitamin D on OTM, a notable disparity was evident between the vitamin D and control groups. Specifically, the standardized mean difference (SMD) stood at 1.43, accompanied by a 95% confidence interval (CI) ranging from 0.691 to 2.169 (P = .00154). For root resorption, the SMD was recorded at -0.51, with a 95% CI spanning from -3.051 to 2.031 (P = .11). CONCLUSIONS: The rate of tooth movement was enhanced by systemic and local administration of vitamin D. However, the inadequacy of available data is a hindrance in determining conclusively the impact of vitamin D on the extent of root resorption. The resolution of this quandary needs future human studies devoted toward investigating the influence of vitamin D in the realms of OTM and associated root resorption, thereby providing a definitive elucidation. REGISTRATION DETAILS: Prospero- CRD42023491783.


Asunto(s)
Resorción Radicular , Técnicas de Movimiento Dental , Vitamina D , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resorción Radicular/etiología , Técnicas de Movimiento Dental/métodos , Vitamina D/administración & dosificación
10.
Ann N Y Acad Sci ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269749

RESUMEN

The neuropeptide kisspeptin and its cognate receptor have been extensively studied in reproductive physiology, with diverse and well-established functions, including as an upstream regulator of pubertal onset, reproductive hormone secretion, and sexual behavior. Besides classical reproduction, both kisspeptin and its receptor are extensively expressed in bone-resorbing osteoclasts and bone-forming osteoblasts, which putatively permits direct bone effects. Accordingly, this sets the scene for recent compelling findings derived from in vitro experiments through to in vivo and clinical studies revealing prominent regulatory interactions for kisspeptin signaling in bone metabolism, as well as certain oncological aspects of bone metabolism. Herein, we comprehensively examine the experimental evidence obtained to date supporting the interaction between kisspeptin and bone. A comprehensive understanding of this emerging facet of kisspeptin biology is fundamental to exploiting the future therapeutic potential of kisspeptin-based medicines as a novel strategy for treating bone-related disorders.

11.
BMC Oral Health ; 24(1): 1146, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334089

RESUMEN

BACKGROUND: Bisphosphonates (BPs) are widely used to inhibit excessive osteoclast activity. However, the potential to compromise bone defect healing has limited their broader application. To better understand the influence of BPs on bone regeneration, we established a bone grafting model with Zoledronate administration, aiming to deepen the understanding of bone remodeling and mineralization processes. METHODS: A bone grafting model was established in the distal femurs of male Sprague-Dawley rats. The experimental group received systemic administration of Zoledronate (ZOL, 0.2 mg/kg, administered twice). Histological analysis and immunohistochemistry (IHC) were employed to assess osteoblastic and macrophage activity, tartrate-resistant acid phosphatase (TRAP) staining was used to evaluate osteoclastogenesis. Mineralization was assessed through Micro-CT analysis, Raman spectroscopy, and back-scatter scanning electron microscopy (BSE-SEM). Additionally, the in vitro effects of ZOL on osteoblast and osteoclast activity were investigated to further elucidate its impact on bone regeneration. RESULTS: In vivo, the ZOL group showed increased bone mass, as observed in histological and radiological assessments. However, Micro-CT, Raman spectroscopy, and BSE-SEM detection revealed lower mineralization levels in ZOL group's regenerated bone. Acid-etched SEM analysis showed abnormal osteocyte characteristics in ZOL-group's regenerated bone. Simultaneously, elevated osteopontin (OPN), F4/80 expression along with reduced TRAP expressing was found in the grafting region of ZOL group. In vitro, ZOL did not negatively impact osteogenetic activity (ALP, BMP4, OCN expression) at the tested concentrations (0.02-0.5 g/ml) but significantly impaired mineralization and inhibited osteoclast formation, even at the lowest concentration. CONCLUSIONS: This study highlights a less recognized negative effect of ZOL on bone mineralization during bone regeneration. More research is needed to elucidate the underlying mechanism.


Asunto(s)
Conservadores de la Densidad Ósea , Regeneración Ósea , Calcificación Fisiológica , Difosfonatos , Osteoclastos , Ratas Sprague-Dawley , Microtomografía por Rayos X , Ácido Zoledrónico , Animales , Ácido Zoledrónico/farmacología , Masculino , Regeneración Ósea/efectos de los fármacos , Ratas , Calcificación Fisiológica/efectos de los fármacos , Difosfonatos/farmacología , Conservadores de la Densidad Ósea/farmacología , Osteoclastos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Imidazoles/farmacología , Espectrometría Raman , Microscopía Electrónica de Rastreo , Fémur/efectos de los fármacos , Fémur/diagnóstico por imagen , Trasplante Óseo/métodos , Densidad Ósea/efectos de los fármacos , Inmunohistoquímica
12.
J Dent Sci ; 19(4): 2236-2246, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39347082

RESUMEN

Background/purpose: Cementum shares many properties with bone; however, in contrast to bone, it is not innervated or vascularized and has a limited capacity for remodeling. Osteocytes located in the lacunae-canalicular system of bone tissue play a central role in bone remodeling by communicating with osteoblasts and osteoclasts. Although cementocytes are present in cellular cementum and are morphologically similar to osteocytes, it remains unclear whether they are involved in the dynamic functional regulation of metabolism in cementum. The present study focused on the extracellular vesicles (EVs) secreted by cementocytes and examined their effects on osteoclasts and osteoblasts. Materials and methods: EVs were extracted from the mouse cementocyte cell line, IDG-CM6. The effects of EVs on recombinant RANKL-induced osteoclastogenesis and recombinant Bone morphogenetic protein (BMP)-2-mediated osteoblastogenesis were investigated using the mouse osteoclast progenitor cell line, RAW264.7 and mouse pre-osteoblast cell line, MC3T3-E1, respectively. Results: EVs enhanced the formation of tartrate-resistant acid phosphatase activity-positive cells. Real-time PCR revealed that EVs up-regulated the expression of osteoclast-related genes. On the other hand, the cell culture supernatant of cementocytes significantly inhibited the differentiation of osteoclasts. Regarding osteoblastogenesis, EVs suppressed the expression of alkaline phosphatase, bone sialoprotein, and osteocalcin induced by recombinant BMP-2 at the gene and protein levels. Conclusion: A network of cementocytes, osteoblasts, and osteoclasts may exist in cellular cementum, which suggests the involvement of cementocytes in dynamic metabolism of cementum through EVs.

13.
Biomed Pharmacother ; 178: 117271, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39121589

RESUMEN

Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.


Asunto(s)
Huesos , Humanos , Animales , Huesos/metabolismo , Osteoporosis/metabolismo , Anexinas/metabolismo , Anexinas/genética , Osteogénesis/fisiología , Osteogénesis/genética , Diferenciación Celular , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Resorción Ósea/metabolismo
14.
Mol Metab ; 88: 102012, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154858

RESUMEN

OBJECTIVES: The mitochondrial deacetylase sirtuin-3 (SIRT3) is necessary for the increased bone resorption and enhanced function of mitochondria in osteoclasts that occur with advancing age; how SIRT3 drives bone resorption remains elusive. METHODS: To determine the role of SIRT3 in osteoclast mitochondria, we used mice with conditional loss of Sirt3 in osteoclast lineage and mice with germline deletion of either Sirt3 or its known target Pink1. RESULTS: SIRT3 stimulates mitochondrial quality in osteoclasts in a PINK1-independent manner, promoting mitochondrial activity and osteoclast maturation and function, thereby contributing to bone loss in female but not male mice. Quantitative analyses of global proteomes and acetylomes revealed that deletion of Sirt3 dramatically increased acetylation of osteoclast mitochondrial proteins, particularly ATPase inhibitory factor 1 (ATPIF1), an essential protein for mitophagy. Inhibition of mitophagy via mdivi-1 recapitulated the effect of deletion of Sirt3 or Atpif1 in osteoclast formation and mitochondrial function. CONCLUSIONS: Decreasing mitophagic flux in osteoclasts may be a promising pharmacotherapeutic approach to treat osteoporosis in older adults.


Asunto(s)
Envejecimiento , Resorción Ósea , Mitocondrias , Proteínas Mitocondriales , Osteoclastos , Sirtuina 3 , Animales , Sirtuina 3/metabolismo , Sirtuina 3/genética , Osteoclastos/metabolismo , Ratones , Femenino , Envejecimiento/metabolismo , Resorción Ósea/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Acetilación , Mitofagia , Ratones Noqueados , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Osteoporosis/metabolismo , Osteoporosis/patología
15.
Int Immunopharmacol ; 141: 112906, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173403

RESUMEN

Hyperactive osteoclasts and hypoactive osteoblasts usually result in osteolytic conditions such as estrogen-deficiency bone loss. Few natural compounds that both attenuating bone resorption and enhancing bone formation could exert effects on this imbalance. 5-Deoxycajanin (5-D), an isoflavonoid extracted from Cajan leaf with estrogen-like properties, were found to have beneficial pharmacological effects on rebalancing the activities of osteoclasts and osteoblasts. This study revealed that 5-D at the same concentration could inhibit osteoclastogenesis of BMMs and promoted osteoblast differentiation of BMSCs. 5-D not only attenuated the fluorescent formation of RANKL-induced F-actin belts and NFATc1, but also activated ALP and RUNX2 expressions. As to downstream factor expressions, 5-D could block osteoclast-specific genes and proteins including NFATc1 and CTSK, while increased osteogenic genes and proteins including OPG and OCN, as confirmed by Real-time PCR and Western Blotting. Additionally, the network pharmacology and molecular docking identified the involvement of 5-D in the MIF and MAPK signaling pathways and the stable binding between 5-D and MAPK2K1. Further Western blot studies showed that 5-D decreased the phosphorylation of p38 and ERK in osteoclasts, but promoted these phosphorylations in osteoblasts. In a female C57BL/6J mouse model of estrogen deficiency-induced bone loss, 5-D demonstrated efficacy in enhancing BMD through attenuating osteoclast activities and promoting osteogenesis. These results underscore the potential application of 5-D on treating osteolysis resulting from hyperactive osteoclasts and hypoactive osteoblasts, shedding light on modulating osteoclast-osteoblast homeostasis.


Asunto(s)
Resorción Ósea , Estrógenos , Osteoblastos , Osteoclastos , Animales , Osteoclastos/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Ratones , Femenino , Estrógenos/deficiencia , Estrógenos/metabolismo , Resorción Ósea/tratamiento farmacológico , Osteogénesis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratones Endogámicos C57BL , Células Cultivadas , Diferenciación Celular/efectos de los fármacos , Ovariectomía , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Ligando RANK/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo
16.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39119717

RESUMEN

Developing long bones alter their shape while maintaining uniform cortical thickness via coordinated activity of bone-forming osteoblasts and bone-resorbing osteoclasts at periosteal and endosteal surfaces, a process we designate trans-pairing. Two types of trans-pairing shift cortical bone in opposite orientations: peri-forming trans-pairing (peri-t-p) increases bone marrow space and endo-forming trans-pairing (endo-t-p) decreases it, via paired activity of bone resorption and formation across the cortex. Here, we focused on endo-t-p in growing bones. Analysis of endo-t-p activity in the cortex of mouse fibulae revealed osteoclasts under the periosteum compressed by muscles, and expression of RANKL in periosteal cells of the cambium layer. Furthermore, mature osteoblasts were localized on the endosteum, while preosteoblasts were at the periosteum and within cortical canals. X-ray tomographic microscopy revealed the presence of cortical canals more closely associated with endo- than with peri-t-p. Sciatic nerve transection followed by muscle atrophy and unloading induced circumferential endo-t-p with concomitant spread of cortical canals. Such canals likely supply the endosteum with preosteoblasts from the periosteum under endo-t-p, allowing bone shape to change in response to mechanical stress or nerve injury.


Asunto(s)
Osteoblastos , Osteoclastos , Periostio , Animales , Osteoblastos/metabolismo , Osteoblastos/citología , Periostio/citología , Periostio/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citología , Ratones , Desarrollo Óseo , Osteogénesis/fisiología , Resorción Ósea/patología , Hueso Cortical , Ligando RANK/metabolismo , Ratones Endogámicos C57BL
17.
Artículo en Inglés | MEDLINE | ID: mdl-39136739

RESUMEN

Tanshinone, a lipophilic component of Salvia miltiorrhiza, is used to treat diseases like atherosclerosis, hypertension, Alzheimer's disease, and diabetes mellitus through its pharmacological activities like anti-inflammatory, anti-oxidant, and anti-tumor. Excessive inflammation is the primary cause of bone diseases such as osteoporosis and rheumatoid arthritis, affecting more than millions of people across the globe. Recently, tanshinone has shown potential benefits against bone diseases by modulating signaling pathways accountable for the proliferation and differentiation of bone cells. In vitro and in vivo studies reported that tanshinone promotes osteoblast formation and mineralization and suppresses excessive bone resorption during disease conditions. In this review, we have summarized the beneficial effects of tanshinone and other extracts of Salvia miltiorrhiza for bone health and their potential molecular targets in signaling.

18.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126003

RESUMEN

Periapical lesions are common pathologies affecting the alveolar bone, often initiated by intraradicular lesions resulting from microbial exposure to dental pulp. These microorganisms trigger inflammatory and immune responses. When endodontic treatment fails to eliminate the infection, periapical lesions persist, leading to bone loss. The RANK/RANKL/OPG pathway plays a crucial role in both the formation and the destruction of the bone. In this study, the objective was to inhibit the RANK/RANKL pathway in vitro within exposed Thp-1 macrophages to endodontic microorganisms, specifically Enterococcus faecalis, which was isolated from root canals of 20 patients with endodontic secondary/persistent infection, symptomatic and asymptomatic, and utilizing an α-IRAK-4 inhibitor, we introduced endodontic microorganisms and/or lipoteichoic acid from Streptococcus spp. to cellular cultures in a culture plate, containing thp-1 cells and/or PBMC from patients with apical periodontitis. Subsequently, we assessed the percentages of RANK+, RANKL+, and OPG+ cells through flow cytometry and measured the levels of several inflammatory cytokines (IL-1ß, TNF-α, IL-6, IL-8, IL-10, and IL-12p70) in the cellular culture supernatant through a CBA kit and performed analysis by flow cytometry. A significant difference was observed in the percentages of RANK+RANKL+, OPG+ RANKL+ cells in thp-1 cells and PBMCs from patients with apical periodontitis. The findings revealed significant differences in the percentages of the evaluated cells, highlighting the novel role of the IRAK-4 inhibitor in addressing this oral pathology, apical periodontitis, where bone destruction is observed.


Asunto(s)
Macrófagos , Periodontitis Periapical , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Transducción de Señal , Humanos , Ligando RANK/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células THP-1 , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Periodontitis Periapical/metabolismo , Periodontitis Periapical/microbiología , Periodontitis Periapical/patología , Citocinas/metabolismo , Enterococcus faecalis , Lipopolisacáridos , Cavidad Pulpar/microbiología , Cavidad Pulpar/metabolismo , Masculino , Osteoprotegerina/metabolismo , Adulto , Ácidos Teicoicos/farmacología
19.
Front Mol Biosci ; 11: 1390257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114369

RESUMEN

To alleviate bone loss, most current drugs target osteoclasts. Saikosaponin A (Ssa), a triterpene saponin derived from Bupleurum falcatum (also known as Radix bupleuri), has immunoregulatory, neuromodulatory, antiviral, anticancer, anti-convulsant, anti-inflammatory, and anti-proliferative effects. Recently, modulation of bone homeostasis was shown to involve ferroptosis. Herein, we aimed to determine Ssa's inhibitory effects on osteoclastogenesis and differentiation, whether ferroptosis is involved, and the underlying mechanisms. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and pit formation assays were conducted to confirm Ssa-mediated inhibition of RANKL-induced osteoclastogenesis in vitro. Ssa could promote osteoclast ferroptosis and increase mitochondrial damage by promoting lipid peroxidation, as measured by iron quantification, FerroOrange staining, Dichloro-dihydro-fluorescein diacetate, MitoSOX, malondialdehyde, glutathione, and boron-dipyrromethene 581/591 C11 assays. Pathway analysis showed that Ssa can promote osteoclasts ferroptosis by inhibiting the Nrf2/SCL7A11/GPX4 axis. Notably, we found that the ferroptosis inhibitor ferrostatin-1 and the Nrf2 activator tert-Butylhydroquinone reversed the inhibitory effects of Ssa on RANKL-induced osteoclastogenesis. In vivo, micro-computed tomography, hematoxylin and eosin staining, TRAP staining, enzyme-linked immunosorbent assays, and immunofluorescence confirmed that in rats with periodontitis induced by lipopolysaccharide, treatment with Ssa reduced alveolar bone resorption dose-dependently. The results suggested Ssa as a promising drug to treat osteolytic diseases.

20.
J Bone Oncol ; 47: 100621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157742

RESUMEN

Secondary metastases, accounting for 90 % of cancer-related deaths, pose a formidable challenge in cancer treatment, with bone being a prevalent site. Importantly, tumours may relapse, often in the skeleton even after successful eradication of the primary tumour, indicating that tumour cells may lay dormant within bone for extended periods of time. This review summarises recent findings in the mechanisms underlying tumour cell dormancy and the role of bone cells in this process. Hematopoietic stem cell (HSC) niches in bone provide a model for understanding regulatory microenvironments. Dormant tumour cells have been shown to exploit similar niches, with evidence suggesting interactions with osteoblast-lineage cells and other stromal cells via CXCL12-CXCR4, integrins, and TAM receptor signalling, especially through GAS6-AXL, led to dormancy, with exit of dormancy potentially regulated by osteoclastic bone resorption and neuronal signalling. A comprehensive understanding of dormant tumour cell niches and their regulatory mechanisms is essential for developing targeted therapies, a critical step towards eradicating metastatic tumours and stopping disease relapse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA