Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.533
Filtrar
Más filtros

Intervalo de año de publicación
1.
Gait Posture ; 113: 252-257, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964049

RESUMEN

BACKGROUND: The number of people who run to achieve competitive performance has increased, encouraging the scientific community to analyze the association of factors that can affect a runner performance. RESEARCH QUESTION: Is there association between running spatiotemporal and angular kinematics with the physiological markers of endurance performance during a cardiorespiratory exercise test? METHODS: This was an observational cross-sectional study with 40 distance runners simultaneously submitted to a running biomechanical analysis and cardiorespiratory exercise test on a treadmill. Mixed models were developed to verify the association between angular kinematic data obtained by the Movement Deviation Profile and the running spatiotemporal data with oxygen consumption and ventilatory thresholds. RESULTS: Spatiotemporal variables [.e., step frequency Odds Ratio 0.09 [0.06-0.12 95 % Confidence Interval], center of mass vertical displacement Odds Ratio 0.10 [0.07-0.14 95 % Confidence Interval], and step length [Odds Ratio -0.01 [-0.01 to -0.00 95 % Confidence Interval]] were associated with VO2. Also, step frequency Odds Ratio 1.03 [1.01-1.05 95 % Confidence Interval] was associated with the first ventilatory threshold, and angular running kinematics [Movement Deviation Profile analysis] Odds Ratio 1.47 [1.13-1.91 95 % Confidence Interval] was associated with peak of exercise during the cardiorespiratory exercise test. SIGNIFICANCE: Our findings demonstrated that: both higher step frequency and center of mass vertical displacement are associated with the increase of oxygen demand; step frequency is associated with the first ventilatory threshold, due to the entrainment mechanism and angular kinematic parameters are associated with peak aerobic speed. Future studies could also compare the biomechanical and physiological characteristics of different groups of distance runners. This could help identify the factors that contribute to oxygen demands during running and performance across different ages, genders, and levels of competition.

2.
BMC Geriatr ; 24(1): 572, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961397

RESUMEN

INTRODUCTION: Aging is associated with a progressive decline in the capacity for physical activity. The objective of the current study was to evaluate the effect of an intermittent hyperbaric oxygen therapy (HBOT) protocol on maximal physical performance and cardiac perfusion in sedentary older adults. METHODS: A randomized controlled clinical trial randomized 63 adults (> 64yrs) either to HBOT (n = 30) or control arms (n = 33) for three months. Primary endpoint included the maximal oxygen consumption (VO2Max) and VO2Max/Kg, on an E100 cycle ergometer. Secondary endpoints included cardiac perfusion, evaluated by magnetic resonance imaging and pulmonary function. The HBOT protocol comprised of 60 sessions administered on a daily basis, for 12 consecutive weeks, breathing 100% oxygen at 2 absolute atmospheres (ATA) for 90 min with 5-minute air breaks every 20 min. RESULTS: Following HBOT, improvements were observed in VO2Max/kg, with a significant increase of 1.91 ± 3.29 ml/kg/min indicated by a net effect size of 0.455 (p = 0.0034). Additionally, oxygen consumption measured at the first ventilatory threshold (VO2VT1) showed a significant increase by 160.03 ± 155.35 ml/min (p < 0.001) with a net effect size of 0.617. Furthermore, both cardiac blood flow (MBF) and cardiac blood volume (MBV) exhibited significant increases when compared to the control group. The net effect size for MBF was large at 0.797 (p = 0.008), while the net effect size for MBV was even larger at 0.896 (p = 0.009). CONCLUSION: The findings of the study indicate that HBOT has the potential to improve physical performance in aging adults. The enhancements observed encompass improvements in key factors including VO2Max, and VO2VT1. An important mechanism contributing to these improvements is the heightened cardiac perfusion induced by HBOT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02790541 (registration date 06/06/2016).


Asunto(s)
Oxigenoterapia Hiperbárica , Consumo de Oxígeno , Humanos , Masculino , Femenino , Anciano , Oxigenoterapia Hiperbárica/métodos , Consumo de Oxígeno/fisiología , Persona de Mediana Edad , Ejercicio Físico/fisiología
4.
Free Radic Biol Med ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977138

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a significant cause of death in diabetic patients. Growing evidence suggests that mitochondrial dysfunction contributes to heart failure in diabetes. However, the molecular mechanisms of mitochondrial dysfunction mediating heart failure in diabetes are still poorly understood. METHODS: The current study aimed to investigate the role of mitochondrial ribosomal protein L7/L12 (MRPL12) in human heart. Mitochondrial oxygen consumption rate and membrane potential was determined using Seahorse analysis and confocal microscopy respectively. Data was analyzed by using the mean of the groups was compared using a student t-test (for 2 groups) and ANOVA, followed by a Tukey test (for >2 groups). RESULTS: We found increased MRPL12 levels in heart tissue samples of diabetic patients with ischemic heart disease compared to non-diabetic patients. With the overexpression of MRPL12 under hyperglycemic conditions, the level of oxidative phosphorylation (OXPHOS) was found downregulated, but cellular ATP and human cardiomyocyte cell death remained unchanged, However, there was notable impairment in mitochondrial membrane potential (MMP) in hyperglycemia condition, along with changes in basal respiration oxygen consumption rate (OCR) and maximal respiratory capacity OCR. CONCLUSIONS: Overall, our results suggest that MRPL12 may have a compensatory role in the diabetic myocardium with ischemic heart disease, suggesting that MRPL12 may implicate in the pathophysiology of MI in diabetes.

5.
Biochim Biophys Acta Bioenerg ; : 149486, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986826

RESUMEN

The persistent growth of cancer cells is underscored by complex metabolic reprogramming, with mitochondria playing a key role in the transition to aerobic glycolysis and representing new therapeutic targets. Mitochondrial uncoupling protein 2 (UCP2) has attracted interest because of its abundance in rapidly proliferating cells, including cancer cells, and its involvement in cellular metabolism. However, the specific contributions of UCP2 to cancer biology remain poorly defined. Our investigation of UCP2 expression in various human and mouse cancer cell lines aimed to elucidate its links to metabolic states, proliferation, and adaptation to environmental stresses such as hypoxia and nutrient deprivation. We observed significant variability in UCP2 expression across cancer types, with no direct correlation to their metabolic activity or proliferation rates. UCP2 abundance was also differentially affected by nutrient availability in different cancer cells, but UCP2 was generally downregulated under hypoxia. These findings challenge the notion that UCP2 is a marker of malignant potential and suggest its more complex involvement in the metabolic landscape of cancer.

6.
Circ Rep ; 6(7): 255-262, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38989107

RESUMEN

Background: This study investigated the prognostic value of cardiovascular magnetic resonance (CMR)-derived global coronary flow reserve (G-CFR) in addition to cardiopulmonary exercise testing (CPET) variables in patients with acute myocardial infarction (AMI). Methods and Results: We investigated 127 patients with AMI who underwent primary or urgent percutaneous coronary intervention (PCI) and post-intervention CMR and CPET. The incidence of major cardiac and cerebrovascular events (MACCE), defined as all-cause death, recurrent non-fatal myocardial infarction, re-hospitalization due to congestive heart failure, and stroke, was evaluated (median follow-up, 2.8 years). Patients with MACCE (n=14) had lower ejection fraction (EF) (50 [43-59] vs. 58 [51-63]%; P=0.014), lower G-CFR (1.74 [1.19-2.20] vs. 2.40 [1.61-3.66]; P=0.008), and lower peak oxygen consumption (V̇O2) (15.16±2.64 vs. 17.19±3.70 mL/kg/min; P=0.049) than patients without MACCE. G-CFR<2.33 and peak V̇O2 <15.65 mL/kg/min (cut-off values derived from receiver operating characteristic curve analyses) were significantly associated with the incidence of MACCE (log-rank test, P=0.01). The combination of low G-CFR and low peak V̇O2 improved risk discrimination for MACCE when added to the reference clinical model including age, male sex, post-PCI peak creatine kinase, EF, and left anterior descending artery culprit lesion. Conclusions: G-CFR and peak V̇O2 showed incremental prognostic information compared with the reference model using historically important clinical risk factors, indicating that this approach may help identify high-risk patients who suffer subsequent adverse events.

7.
Front Transplant ; 3: 1379695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993775

RESUMEN

Introduction: Pre-transplant obesity and weight gain after heart transplantation are both associated with increased risk of poor clinical outcomes. We aimed to assess the association between overweight or obesity, exercise capacity, and health-related quality of life in heart transplant recipients. Methods: This study is based on baseline data from the IronIC trial, in which we randomized 102 heart transplant recipients with iron deficiency to ferric derisomaltose or placebo. We performed cardio pulmonary exercise testing in all participants. To assess quality of life, we used the SF-36v2 questionnaire, using two sum scores: the physical component summary and the mental component summary. A minimal clinically important difference was defined as ≥2 and ≥3 for the physical and the mental component summary, respectively. Results: 24/102 heart transplant recipients (24%) had a body mass index (BMI) ≥30 kg/m2. Peak oxygen consumption was 17.3 ± 4.6 ml/kg/min in the obese group vs. 24.7 ± 6.4 ml/kg/min in the group with a BMI <30 for a between-group difference of 7.4 (95% confidence interval 4.7-10.2) ml/kg/min: p < 0.001. The physical component summary score was on average 5.2 points lower in the patients with a body mass index ≥30 than in the lower weight group (p = 0.04). Conclusion: Almost a quarter of our heart transplant recipients in long-term follow-up had a BMI ≥30 kg/m2. These patients had substantially lower exercise capacity and lower quality of life in the physical domain.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38867669

RESUMEN

Prior studies of muscle blood flow and muscle specific oxygen consumption have required invasive injection of dye and Magnetic Resonance Imaging, respectively. Such measures have limited utility for continuous monitoring of the respiratory muscles. Frequency domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS) can provide continuous surrogate measures of blood flow index (BFi) and metabolic rate of oxygen consumption (MRO2). This study aimed to validate sternocleidomastoid FD-NIRS & DCS outcomes against electromyography (EMG) and mouth pressure (Pm) during incremental inspiratory threshold loading (ITL). Six females and six male healthy adults (mean±SD; 30±7 years, maximum inspiratory pressure 118±61 cmH2O) performed incremental ITL starting at low loads (8±2 cmH2O) followed by 50g increments every two minutes until task failure. FD-NIRS & DCS continuously measured sternocleidomastoid oxygenated and deoxygenated hemoglobin+myoglobin (oxy/deoxy[Hb+Mb]), tissue saturation of oxygen (StO2), BFi, and MRO2. Ventilatory parameters including inspiratory Pm were also evaluated. Pm increased during incremental ITL (P<0.05), reaching -47[-74 - -34] cmH2O (median[25%-75%IQR] at task failure. Ventilatory parameters were constant throughout ITL (all P>0.05). Sternocleidomastoid BFi and MRO2 increased from the start of the ITL (both P<0.05). Deoxy[Hb+Mb] increased close to task failure, concomitantly with a constant increase in MRO2, and decreased StO2. Sternocleidomastoid deoxy[Hb+Mb], BFi, StO2 and MRO2 obtained during ITL via FD-NIRS & DCS correlated with sternocleidomastoid EMG (all P<0.05). In healthy adults, FD-NIRS & DCS can provide continuous surrogate measures of respiratory BFi and MRO-2. Increasing sternocleidomastoid oxygen consumption near task failure was associated with increased oxygen extraction and reduced tissue saturation.

9.
Adv Exp Med Biol ; 1441: 417-433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884723

RESUMEN

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).


Asunto(s)
Contracción Miocárdica , Miocitos Cardíacos , Humanos , Contracción Miocárdica/fisiología , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Calcio/metabolismo , Metabolismo Energético , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Acoplamiento Excitación-Contracción/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-38874616

RESUMEN

Aging is associated with a significant decline in exercise fitness assessed by maximal exercise oxygen consumption (VO2-max). The specific VO2-max components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A-V) O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age 21-96 years; average follow-up 12.6 years) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. VO2-peak, a surrogate of VO2-max, was used to assess aerobic capacity during upright cycle exercise. Peak exercise left ventricular (LV) volumes, heart rate, and cardiac output were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A-V) O2-peak from CO-peak and VO2-peak. In unadjusted models, VO2-peak, (A-V) O2-peak, and CO-peakdeclined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in VO2-peak and (A-V) O2 peak were observed with advanced entry age but not in CO-peak. The association between the declines in VO2-peak and (A-V) O2-peakwas stronger among those >=50 years compared to their younger counterparts but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak VO2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A-V) O2 are warranted.

11.
J Pers Med ; 14(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38929815

RESUMEN

Surgical resection is the key treatment for colorectal cancer, but the extent of surgical trauma has been implied as a key factor for the oncologic outcome. The immune stress response to surgical trauma generates a cascade of immunological events implying neutrophils' perioperative change generating NETosis, N killer decrease, and platelets' activation that may influence postoperative surgical outcome, tumor cell growth, and future oncogenesis. The present study aimed to investigate the correlation between intraoperative oxygen consumption (VO2) and the dynamic variation of neutrophils, lymphocytes, and platelets in the perioperative period to identify an intraoperative tool that could predict the postoperative immune response. Twenty-six colorectal oncological surgical patients were enrolled in an observational, prospective, monocentric study, over 18 months. Serum neutrophils, lymphocytes, and thrombocytes values were collected in the preoperative period and on the third postoperative day, oxygen consumption was measured and recorded every 15 min during surgery using indirect calorimetry. We compared oxygen consumption measurements registered 30 min after induction of anesthesia (VO2a) and the first value registered after abdominal wall closure (VO2b) to perioperative variation of absolute neutrophils (VNC), lymphocytes (VLC), and platelets (VPC) count. Our results proved a significant correlation between VO2 variation and neutrophils' perioperative dynamic assessed by VNC (correlation coefficient = 0.547, p < 0.01, 95% confidence interval (CI) =0.175, 0.783). We also noticed a correlation between VPC and VO2 (correlation coefficient = -0.603, p < 0.01, 95% CI = -0.815, -0.248). No correlation could be shown between VO2 and VLC variation (p = 0.39). In conclusion, intraoperative VO2 variation measured by indirect calorimetry correlates well with perioperative neutrophils and platelets count dynamic variations and can be used as an early prognosis marker of postoperative immune response and surgical outcome in colorectal oncological surgery.

12.
J Clin Med ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930148

RESUMEN

Background: Poor cardiorespiratory fitness poses the highest risk of mortality. Long-COVID-19 survivors exhibit a reduced cardiorespiratory fitness (CRF). While exercise rehabilitation, such as cardiopulmonary exercise, is used for long-COVID-19 survivors, the effects of exercise on CRF in this population remain inconclusive. In this study, we aim to systematically summarise and synthesise whether exercise rehabilitation improves CRF among long-COVID-19 survivors. Methods: A comprehensive search was performed through PubMed, CINAHL, Embase, Scopus, and the Cochrane Library (since their inception to November 2023) and study reference lists. Studies presenting the effects of exercise rehabilitation on CRF (peak oxygen consumption (VO2peak) and six-minute walk distance (6MWD)) in long-COVID-19 survivors were identified. The standardised mean difference (SMD), mean difference (MD), and 95% confidence interval (CI) were used for analyses. The certainty of evidence was measured using a Grading of Recommendation Assessment, Development and Evaluation approach. Results: Twelve eligible studies (five RCTs and seven non-RCTs) with 682 participants were analysed. The meta-analysis showed significantly improved 6MWDs (MD 76.47, 95% CI 59.19-93.71, low certainty) and significantly greater 6MWDs (SMD 0.85, 95% CI 0.11-1.59, very low certainty) in the exercise rehabilitation group compared to the control group. A significantly improved 6MWD was found in subgroups of young to middle-aged adults and subgroups of patients who undertook aerobic exercise combined with resistance and respiratory exercise and centre-based training programs. Conclusions: Exercise rehabilitation is effective for improving CRF, as measured by the 6MWD in long-COVID-19 survivors. Improvements are likely to be more pronounced in specific subgroups of young to middle-aged adults and patients undertaking aerobic exercise combined with resistance and respiratory exercise and centre-based training programs. However, recommendations for clinical practice are limited due to the very low evidence certainty.

13.
Curr Res Food Sci ; 8: 100774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846017

RESUMEN

Winemakers have access to a diverse range of commercially available Inactivated Dry Yeast Based products (IDYB) from various companies and brand names. Among these, thermally inactivated dried yeasts (TIYs) are utilized as yeast nutrients during alcoholic fermentation, aiding in the rehydration of active dry yeasts and reducing ochratoxin A levels during wine maturation and clarification. While IDYB products are generally derived from Saccharomyces spp., this study investigates into the biodiversity of those deriving from non-Saccharomyces for potential applications in winemaking. For that S. cerevisiae and non-Saccharomyces TIYs were produced, characterized for nitrogen and lipid content using FT-NIR spectroscopy, and applied in a wine-like solution (WLS) for analyzing and quantifying released soluble compounds. The impact of TIYs on oxygen consumption was also assessed. Non-Saccharomyces TIYs exhibited significant diversity in terms of cell lipid composition, and amount, composition, and molecular weight of polysaccharides. Compared to that of S. cerevisiae, non-Saccharomyces TIYs released notably higher protein amounts and nHPLC-MS/MS-based shotgun proteomics highlighted the release of cytosolic proteins, as expected due to cell disruption during inactivation, along with the presence of high molecular weight cell wall mannoproteins. Evaluation of antioxidant activity and oxygen consumption demonstrated significant differences among TIYs, as well as variations in GSH and thiol contents. The Principal Component Analysis (PCA) results suggest that oxygen consumption is more closely linked to the lipid fraction rather than the glutathione (GSH) content in the TIYs. Overall, these findings imply that the observed biodiversity of TIYs could have a significant impact on achieving specific oenological objectives.

14.
Resusc Plus ; 19: 100667, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38827271

RESUMEN

Aim: Whether changes in oxygen metabolism, as measured by oxygen consumption (VO2), carbon dioxide production (VCO2) and the respiratory exchange ratio (RER), are associated with survival after cardiac arrest is poorly understood. In this prospective observational study, we investigated the association between VO2, VCO2, and RER in the initial 12 and 24 h after return of spontaneous circulation (ROSC) and survival to hospital discharge. Methods: Adults with ROSC after cardiac arrest, admitted to the intensive care unit, requiring mechanical ventilation and treated with targeted temperature management were included. VO2 and VCO2 were measured continuously for 24 h after ROSC, using a noninvasive anesthesia monitor. Area under the curve for VO2, VCO2 & RER was calculated using all available values over 12 and 24 h after ROSC. Using logistic regression, we evaluated the relationship between these metabolic variables and survival to hospital discharge. Analyses were adjusted for temperature, vasopressors, and neuromuscular blockade. Results: Sixty four patients were included. Mean age was 64 ± 16 years, and 59% were women. There was no significant association between the area under the curve of VO2 or VCO2 and survival. A higher RER in the initial 12 h was associated with better survival (aOR = 3.97, 95% CI [1.01,15.6], p = 0.048). Survival was lower in those with median RER < 0.7 in the initial 12 h compared with those with a median RER ≥ 0.7 (25% vs 67%, p = 0.011). Conclusion: Higher RER in the initial 12 h was associated with survival after cardiac arrest. The etiology of unusually low RERs in this patient population remains unclear.

15.
Eur J Appl Physiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918220

RESUMEN

PURPOSE: To measure oxygen demand, uptake, and deficits in competitive cross-country skiers during outdoor roller skiing at different competition durations, ranging from the endurance domain to the sprint domain. METHODS: Ten competitive cross-country skiers (6 males; V ˙ O2max 78 ± 3 and 4 females; V ˙ O2max 62 ± 3 mL∙kg-1∙min-1) raced time trials consisting of 1, 2, and 4 laps in a 1.6 km racecourse in a randomized order with 35 min recovery in-between. Oxygen uptake was measured using a wearable metabolic system while oxygen demand was estimated from kinematic data (GPS and IMU) and an athlete-specific model of skiing economy. Skiing economy and V ˙ O2max was established on a separate test day using six submaximal constant-load trials at different speeds and inclines, and one maximal-effort trial on a roller-skiing treadmill. RESULTS: Average oxygen demand was 112 ± 8%, 103 ± 7% and 98 ± 7% of V ˙ O2max during the 1 (3:37 ± 0:20 m:ss), 2 (7:36 ± 0:38 m:ss) and 4 (15:43 ± 1:26 m:ss) lap time trials, respectively, and appeared to follow an inverse relationship with time-trial duration. Average oxygen uptake was unaffected by race length (86 ± 5%, 86 ± 5%, and 86 ± 7% of V ˙ O2max, respectively). Accumulated oxygen deficit at the end of each time trial was 85 ± 13, 106 ± 32 and 158 ± 62 mL∙kg-1, while oxygen deficits per work bout was 23 ± 3, 18 ± 3 and 16 ± 3 mL∙kg-1 for the 1, 2, and 4-lap time trials, respectively. CONCLUSION: Elite cross-country skiers adjust their pacing strategies from attaining relatively small oxygen deficits per work bout in the endurance domain, to larger deficits in the sprint domain. This indicates a shift in strategy from prioritizing stable work-economy and rate-of-recovery in the endurance domain, to maximizing power output in the sprint domain.

16.
Int J Yoga ; 17(1): 53-60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899139

RESUMEN

Background: Traditional yoga texts describe "cross nostril breathing," with inhalation and exhalation through different nostrils. Previous research reported no clear differences in oxygen consumption during uninostril breathing (i.e., inhalation and exhalation through the same nostril), hence not supporting right and left uninostril breathing as activating or relaxing, respectively, with no research on oxygen consumed in "cross nostril breathing." Methods: Oxygen consumed during "cross nostril breathing" was measured in healthy participants (n = 47, males, 26.3 ± 6.4 years). Five sessions (viz., right nostril inspiration yoga breathing [RNIYB], left nostril inspiration yoga breathing [LNIYB], alternate nostril yoga breathing [ANYB], breath awareness (BAW), and quiet rest (QR) were conducted on separate days in random order. Sessions were 33 min in duration with pre, during, and post states. Results: Volume of oxygen consumed (VO2) and carbon dioxide eliminated (VCO2) increased during RNIYB (9.60% in VO2 and 23.52% in VCO2), LNIYB (9.42% in VO2 and 21.20% in VCO2) and ANYB (10.25% in VO2 and 22.72% in VCO2) with no significant change in BAW and QR. Diastolic blood pressure decreased during BAW and QR and after all five sessions (P < 0.05; in all cases). All comparisons were with the respective preceding state. Conclusion: During the three yoga breathing practices, the volume of oxygen consumed increased irrespective of the nostril breathed through, possibly associated with (i) conscious regulation of the breath; (ii) attention directed to the breath, and (iii) "respiration-locked cortical activation." Restriction of the study to males reduces the generalizability of the findings.

17.
J Therm Biol ; 123: 103888, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38901397

RESUMEN

The relationship between behavioral thermoregulation and physiological recovery following exhaustive exercise is not well understood. Behavioral thermoregulation could be beneficial for exercise recovery; for example, selection of cooler temperatures could reduce maintenance metabolic cost to preserve aerobic scope for recovery cost, or selection of warmer temperatures could accelerate recovery of exercise metabolites. While post-exercise behavioral thermoregulation has been observed in lizards and frogs, little is known about its importance in fish. We examined the influence of post-exercise recovery temperature on metabolic rate, thermal preference, and metabolite concentrations in juvenile brook char (Salvelinus fontinalis). Fish were acclimated to and exercised at 15 °C, then recovered at either 15 °C or 10 °C while their metabolic rate was measured via respirometry. Metabolite concentrations were measured in fish after exercise at 15 °C and recovery under one of three thermal treatments (to simulate various behavioral thermoregulation scenarios): (i) 6 h recovery at 15 °C, (ii) 6 h recovery at 10 °C, or (iii) 3 h recovery at 10 °C followed by 3 h recovery at 15 °C. Thermal preference was quantified using a static temperature preference system (15 °C vs. 10 °C). Metabolic rates returned to resting faster at 10 °C compared with 15 °C, although at 10 °C there was a tradeoff of delayed metabolite recovery. Specifically, post-exercise plasma osmolality, plasma lactate, and muscle lactate remained elevated for the entire period in fish recovering at 10 °C, whereas these parameters returned to resting levels by 6 h in fish from the other two recovery groups. Regardless, fish did not exhibit clear behavioral thermoregulation (i.e., fish overall did not consistently prefer one temperature) to prioritize either physiological recovery process. The advantage of metabolic rate recovery at cooler temperatures may balance against the advantage of metabolite recovery at warmer temperatures, lessening the usefulness of behavioral thermoregulation as a post-exercise recovery strategy in fish.

18.
Aquat Toxicol ; 273: 107009, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38909584

RESUMEN

Microplastics (MPs) are a heterogeneous class of pollutants fouling aquatic environments and they are hazardous to aquatic organisms. This study investigated the size-dependent effects of polystyrene microspheres (PSMPs) on the swimming ability, metabolism, and oxidative stress of juvenile grass carp (Ctenopharyngodon idella). Test fish were exposed to four sizes of PSMPs (0.07, 0.5, 5, and 20-µm), and swimming ability was tested after different exposure times (2, 7, and 15 days). To measure the effect on swimming ability, critical swimming speed (Ucrit) was determined, and to assess metabolic effects, oxygen consumption (MO2), routine metabolic rate (RMR), maximum oxygen consumption (MMR), and excess post-exercise oxygen consumption (EPOC) were determined. To assess the effects on oxidative stress, the activities of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) were determined in the liver and gills of test fish. After exposure to 20 µm PSMPs, there was a significant drop in Ucrit compared to the control group (P<0.05), with decreases of 22 % on Day 2 and Day 7, and 21 % on Day 15. The RMR and MMR increased significantly (P<0.05), the RMR by 23.9 % on Day 2 and the MMR by 17.2 % on Day 2 and on Day 15, 44.7 % and 20.0 % respectively. The EPOC decreased with exposure time, by 31 % (0.07-µm), 45 %-(0.5-µm), 49 % (5-µm), and 57 % (20-µm) after 15 days. Exposure to the larger PSMPs increased CAT and SOD activity more than the smaller PSMPs and the increases began with SOD activity in the gills. The larger PSMPs were consistently more harmful to juvenile grass carp than the smaller PSMPs. Our results clearly show that PSMPs have detrimental effects on juvenile grass carp and provide additional scientific evidence that environmental monitoring and regulation of microplastic pollution is necessary.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38909012

RESUMEN

OBJECTIVE: Central venous-arterial PCO2 to arterial-central venous O2 content ratio (Pcv-aCO2/Ca-cvO2) is commonly used as a surrogate for respiratory quotient (RQ) and tissue oxygenation. Although Pcv-aCO2/Ca-cvO2 might be associated with hyperlactatemia and outcome, neither the interchangeability with RQ nor the correlation with conclusive variables of anaerobic metabolism has never been demonstrated in septic shock. Our goal was to compare Pcv-aCO2/Ca-cvO2 and RQ in patients with septic shock. DESIGN: Prospective, observational study. SETTING: Two adult ICUs. PATIENTS: Forty-seven patients with septic shock on mechanical ventilation with stable respiratory settings and vasopressor dose after initial resuscitation. INTERVENTIONS: None. MAIN VARIABLES OF INTEREST: We measured arterial and central venous gases, Hb, and O2Hb. Pcv-aCO2/Ca-cvO2 and the ratio of central venous-arterial CO2 content to arterial-central venous O2 content (Ccv-aCO2/Ca-cvO2) were calculated. RQ was determined by indirect calorimetry. RESULTS: Pcv-aCO2/Ca-cvO2 and Ccv-aCO2/Ca-cvO2 were not correlated with RQ (R2 = 0.01, P = 0.50 and R2 = 0.01, P = 0.58, respectively), showing large bias and wide 95 % limits of agreement with RQ (1.09, -1.10-3.27 and 0.42, -1.53-2.37). A multiple linear regression model showed Hb, and central venous PCO2 and O2Hb, but not RQ, as Pcv-aCO2/Ca-cvO2 determinants (R2 = 0.36, P = 0.0007). CONCLUSIONS: In patients with septic shock, Pcv-aCO2/Ca-cvO2 did not correlate with RQ and was mainly determined by factors that modify the dissociation of CO2 from Hb. Pcv-aCO2/Ca-cvO2 seems to be a poor surrogate for RQ; therefore, its values should be interpreted with caution.

20.
J Anesth ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842681

RESUMEN

PURPOSE: This study was performed to evaluate the changes in oxygen supply-demand balance during induction of general anesthesia using an indirect calorimeter capable of measuring oxygen consumption (VO2) and carbon dioxide production (VCO2). METHODS: This study included patients scheduled for surgery in whom remimazolam was administered as a general anesthetic. VO2 and VCO2 were measured at different intervals: upon awakening (T1), 15 min after tracheal intubation (T2), and 1 h after T2 (T3). Oxygen delivery (DO2) was calculated simultaneously with these measurements. VO2 was ascertained using an indirect calorimeter and further calculated using vital signs, among other factors. DO2 was derived from cardiac output and arterial blood gas analysis performed with an arterial pressure-based cardiac output measurement system. RESULTS: VO2, VCO2, and DO2 decreased significantly from T1 to T2 and T3 [VO2/body surface area (BSA) (ml/min/m2): T1, 130 (122-146); T2, 107 (83-139); T3, 97 (93-121); p = 0.011], [VCO2/BSA (ml/min/m2): T1, 115 (105-129); T2, 90 (71-107); T3, 81 (69-101); p = 0.011], [DO2/BSA (ml/min/m2): T1, 467 (395-582); T2, 347 (286-392); T3, 382 (238-414); p = 0.0020]. Among the study subjects, a subset exhibited minimal reduction in VCO2. Although the respiratory frequency was titrated on the basis of end-tidal CO2 levels, there was no significant difference between the groups. CONCLUSION: General anesthetic induction with remimazolam decreased VO2, VCO2, and DO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA