Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 4(3): 237-45, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25737950

RESUMEN

OBJECTIVE: During pregnancy, women normally increase their food intake and body fat mass, and exhibit insulin resistance. However, an increasing number of women are developing metabolic imbalances during pregnancy, including excessive gestational weight gain and gestational diabetes mellitus. Despite the negative health impacts of pregnancy-induced metabolic imbalances, their molecular causes remain unclear. Therefore, the present study investigated the molecular mechanisms responsible for orchestrating the metabolic changes observed during pregnancy. METHODS: Initially, we investigated the hypothalamic expression of key genes that could influence the energy balance and glucose homeostasis during pregnancy. Based on these results, we generated a conditional knockout mouse that lacks the suppressor of cytokine signaling-3 (SOCS3) only in leptin receptor-expressing cells and studied these animals during pregnancy. RESULTS: Among several genes involved in leptin resistance, only SOCS3 was increased in the hypothalamus of pregnant mice. Remarkably, SOCS3 deletion from leptin receptor-expressing cells prevented pregnancy-induced hyperphagia, body fat accumulation as well as leptin and insulin resistance without affecting the ability of the females to carry their gestation to term. Additionally, we found that SOCS3 conditional deletion protected females against long-term postpartum fat retention and streptozotocin-induced gestational diabetes. CONCLUSIONS: Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances.

2.
Neuroscience ; 259: 71-83, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24316468

RESUMEN

Rodents exhibit leptin resistance and high levels of prolactin/placental lactogens during pregnancy. A crosstalk between prolactin and leptin signaling has been proposed as a possible mechanism to explain the changes in energy balance during gestation. However, it remains unclear if specific neuronal populations co-express leptin and prolactin receptors. Therefore, our present study was undertaken to identify in the mouse brain prolactin-responsive cells that possibly express the leptin receptor (LepR). In addition, we assessed the leptin response in different brain nuclei of pregnant and nulliparous mice. We used a LepR-reporter mouse to visualize LepR-expressing cells with the tdTomato fluorescent protein. Prolactin-responsive cells were visualized with the immunohistochemical detection of the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5-ir). Notably, many neurons that co-expressed tdTomato and pSTAT5-ir were observed in the medial preoptic area (MPA, 27-48% of tdTomato cells), the retrochiasmatic area (34-51%) and the nucleus of the solitary tract (NTS, 16-24%) of prolactin-treated nulliparous mice, pregnant mice and prolactin-treated leptin-deficient (ob/ob) mice. The arcuate nucleus of the hypothalamus (8-22%), the medial tuberal nucleus (11-15%) and the ventral premammillary nucleus (4-10%) showed smaller percentages of double-labeled cells among the groups. Other brain nuclei did not show significant percentages of neurons that co-expressed tdTomato and pSTAT5-ir. Late pregnant mice exhibited a reduced leptin response in the MPA and NTS when compared with nulliparous mice; however, a normal leptin response was observed in other brain nuclei. In conclusion, our findings shed light on how the brain integrates the information conveyed by leptin and prolactin. Our results corroborate the hypothesis that high levels of prolactin or placental lactogens during pregnancy may directly interfere with LepR signaling, possibly predisposing to leptin resistance.


Asunto(s)
Encéfalo/metabolismo , Leptina/metabolismo , Embarazo/metabolismo , Prolactina/metabolismo , Análisis de Varianza , Animales , Encéfalo/citología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Leptina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Paridad/efectos de los fármacos , Paridad/fisiología , Embarazo/efectos de los fármacos , ARN no Traducido/genética , Receptores de Leptina/genética , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA