Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pineal Res ; 76(5): e12996, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129720

RESUMEN

In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.


Asunto(s)
Mamíferos , Melatonina , Estaciones del Año , Melatonina/metabolismo , Animales , Mamíferos/metabolismo , Fotoperiodo , Humanos , Glándula Pineal/metabolismo
2.
Ecol Evol ; 14(7): e11713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38975264

RESUMEN

The genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, timeless and period, on photoperiodic responses in the butterfly Pararge aegeria. While nonsynonymous candidate SNPs in both of these genes have previously shown to be associated with diapause induction on a between-population level, in the present experiment no such effect was found on a within-population level. In trying to reconcile these results, we examine sequence data, revealing considerable, previously unknown protein-level variation at both timeless and period across Scandinavian populations, including variants unique to the population studied here. Hence, we hypothesize that these variants may counteract the previously observed diapause-averting effect of the candidate SNPs, possibly explaining the difference in results between the experiments. Whatever the cause, these results highlight how the effects of candidate SNPs may sometimes vary across genetic backgrounds, which complicates evolutionary interpretations of geographic patterns of genetic variation.

3.
Insect Mol Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989821

RESUMEN

Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.

4.
Insect Biochem Mol Biol ; 172: 104153, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964485

RESUMEN

Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.


Asunto(s)
Bombyx , Ritmo Circadiano , Criptocromos , Diapausa de Insecto , Fotoperiodo , Animales , Criptocromos/genética , Criptocromos/metabolismo , Bombyx/genética , Bombyx/fisiología , Bombyx/metabolismo , Bombyx/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Filogenia , Diapausa/genética , Técnicas de Inactivación de Genes , Relojes Circadianos/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-38896260

RESUMEN

Circadian clocks play an essential role in adapting locomotor activity as well as physiological, and metabolic rhythms of organisms to the day-night cycles on Earth during the four seasons. In addition, they can serve as a time reference for measuring day length and adapt organisms in advance to annual changes in the environment, which can be particularly pronounced at higher latitudes. The physiological responses of organisms to day length are also known as photoperiodism. This special issue of the Journal of Comparative Physiology A aims to account for diurnal and photoperiodic adaptations by presenting a collection of ten review articles, five original research articles, and three perspective pieces. The contributions include historical accounts, circadian and photoperiodic clock models, epigenetic, molecular, and neuronal mechanisms of seasonal adaptations, latitudinal differences in photoperiodic responses and studies in the wild that address the challenges of global change.


Asunto(s)
Relojes Circadianos , Fotoperiodo , Estaciones del Año , Animales , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Humanos , Adaptación Fisiológica/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38805044

RESUMEN

In 1936, Erwin Bünning published his groundbreaking work that the endogenous clock is used to measure day length for initiating photoperiodic responses. His publication triggered years of controversial debate until it ultimately became the basic axiom of rhythm research and the theoretical pillar of chronobiology. Bünning's thesis is frequently quoted in the articles in this special issue on the subject of "A clock for all seasons". However, nowadays only few people know in detail about Bünning's experiments and almost nobody knows about the contribution of his former doctoral student, Wolfgang Engelmann, to his theory because most work on this topic is published in German. The aim of this review is to give an overview of the most important experiments at that time, including Wolfgang Engelmann's doctoral thesis, in which he demonstrated the importance of the circadian clock for photoperiodic flower induction in the Flaming Katy, Kalanchoë blossfeldiana, but not in the Red Morning Glory, Ipomoea coccinea.


Asunto(s)
Relojes Circadianos , Fotoperiodo , Animales , Historia del Siglo XX , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología
7.
Curr Biol ; 34(9): 2002-2010.e3, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579713

RESUMEN

Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex.1,2,3,4 ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success.5,6 However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear. Here, we analyzed the environmental perception mechanism in the crustacean, Daphnia pulex, a seasonal (photoperiodic) ESD arthropod, capable of producing females under long days and males under short days.7,8,9,10 Through breeding experiments, we found that their circadian clock likely contributes to perception of day length. To explore this further, we created a genetically modified daphnid by knocking out the clock gene, period, using genome editing. Knockout disrupted the daphnid's ability to sustain diel vertical migration (DVM) under constant darkness, driven by the circadian clock, and leading them to produce females regardless of day length. Additionally, when exposed to an analog of juvenile hormone (JH), an endocrine factor synthesized in mothers during male production, or subjected to unfavorable conditions of high density and low food availability, these knockout daphnids produced males regardless of day length, like wild-type daphnids. Based on these findings, we propose that recognizing short days via the circadian clock is the initial step in sex determination. This recognition subsequently triggers male production by signaling the endocrine system, specifically via the JH signal. Establishment of a connection between these two processes may be the crucial element in evolution of ESD in Daphnia.


Asunto(s)
Relojes Circadianos , Daphnia , Fotoperiodo , Procesos de Determinación del Sexo , Animales , Daphnia/genética , Daphnia/fisiología , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Femenino , Masculino
8.
Dev Cell ; 59(13): 1750-1763.e4, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38688276

RESUMEN

Photoperiod sensitivity is crucial for soybean flowering, adaptation, and yield. In soybean, photoperiod sensitivity centers around the evening complex (EC) that regulates the transcriptional level of the core transcription factor E1, thereby regulating flowering. However, little is known about the regulation of the activity of EC. Our study identifies how E2/GIGANTEA (GI) and its homologs modulate photoperiod sensitivity through interactions with the EC. During long days, E2 interacts with the blue-light receptor flavin-binding, kelch repeat, F box 1 (FKF1), leading to the degradation of J/ELF3, an EC component. EC also suppresses E2 expression by binding to its promoter. This interplay forms a photoperiod regulatory loop, maintaining sensitivity to photoperiod. Disruption of this loop leads to losing sensitivity, affecting soybean's adaptability and yield. Understanding this loop's dynamics is vital for molecular breeding to reduce soybean's photoperiod sensitivity and develop cultivars with better adaptability and higher yields, potentially leading to the creation of photoperiod-insensitive varieties for broader agricultural applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fotoperiodo , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/fisiología , Flores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Retroalimentación Fisiológica
9.
Ann Bot ; 134(1): 43-58, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38430562

RESUMEN

BACKGROUND AND AIMS: There is growing interest in the functional ecology of poikilohydric non-vascular photoautotrophs (NVPs), including 'cryptogamic' bryophytes and lichens. These organisms are structurally important in many ecosystems, contributing substantially to ecosystem function and services, while also being sensitive to climate change. Previous research has quantified the climate change response of poikilohydric NVPs using predictive bioclimatic models with standard climate variables including precipitation totals and temperature averages. This study aimed for an improved functional understanding of their climate change response based on their growth rate sensitivity to moisture and light. METHODS: We conducted a 24-month experiment to monitor lichen hydration and growth. We accounted for two well-known features in the ecology of poikilohydric NVPs, and exemplified here for a structurally dominant lichen epiphyte, Lobaria pulmonaria: (1) sensitivity to multiple sources of atmospheric moisture including rain, condensed dew-formation and water vapour; and (2) growth determined by the amount of time hydrated in the light, driving photosynthesis, referred to as the Iwet hypothesis. KEY RESULTS: First, we found that even within an oceanic high-rainfall environment, lichen hydration was better explained by vapour pressure deficit than precipitation totals. Second, growth at a monthly resolution was positively related to the amount of time spent hydrated in the light, and negatively related to the amount of time spent hydrated in the dark. CONCLUSIONS: Using multimodel averaging to project growth models for an ensemble of future climate change scenarios, we demonstrated reduced net growth for L. pulmonaria by the late 21st century, explained by extended climate dryness and lichen desiccation for periods when there is otherwise sufficient light to drive photosynthesis. The results further emphasize a key issue of photoperiodism when constructing functionally relevant models to understand the risk of climate change, especially for poikilohydric NVPs.


Asunto(s)
Cambio Climático , Líquenes , Fotosíntesis , Líquenes/fisiología , Líquenes/crecimiento & desarrollo , Líquenes/efectos de la radiación , Fotosíntesis/fisiología , Agua/fisiología , Luz , Ecosistema , Lluvia
10.
J Insect Physiol ; 153: 104615, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38237657

RESUMEN

Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.


Asunto(s)
Bombyx , Diapausa de Insecto , Diapausa , Animales , Bombyx/genética , Diapausa de Insecto/fisiología , Óvulo , Ritmo Circadiano/fisiología , Fotoperiodo , Diapausa/genética , Larva/genética
11.
Proc Natl Acad Sci U S A ; 120(52): e2313514120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109538

RESUMEN

To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.


Asunto(s)
Oryzias , Animales , Oryzias/genética , Estaciones del Año , Ritmo Circadiano/fisiología , Gónadas , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA