Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
Más filtros

Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-19, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987975

RESUMEN

Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.

2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000045

RESUMEN

Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.


Asunto(s)
Productos Biológicos , Neoplasias , Protectores contra Radiación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Protectores contra Radiación/uso terapéutico , Protectores contra Radiación/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Animales
3.
Plant Cell Environ ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946377

RESUMEN

The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.

4.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999586

RESUMEN

In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.

5.
J Mol Model ; 30(8): 255, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970658

RESUMEN

CONTEXT: Although quantum mechanical calculations have proven effective in accurately predicting UV absorption and assessing the antioxidant potential of compounds, the utilization of computer-aided drug design (CADD) to support sustainable synthesis research of new sunscreen active ingredients remains an area with limited exploration. Furthermore, there are ongoing concerns about the safety and effectiveness of existing sunscreens. Therefore, it remains crucial to investigate photoprotection mechanisms and develop enhanced strategies for mitigating the harmful effects of UVR exposure, improving both the safety and efficacy of sunscreen products. A previous study conducted synthesis research on eight novel hybrid compounds (I-VIII) for use in sunscreen products by molecular hybridization of trans-resveratrol (RESV), avobenzone (AVO), and octinoxate (OMC). Herein, time-dependent density functional theory (TD-DFT) calculations performed in the gas phase on the isolated hybrid compounds (I-VIII) proved to reproduce the experimental UV absorption. Resveratrol-avobenzone structure-based hybrids (I-IV) present absorption maxima in the UVB range with slight differences between them, while resveratrol-OMC structure-based hybrids (V-VIII) showed main absorption in the UVA range. Among RESV-OMC hybrids, compounds V and VI exhibited higher UV absorption intensity, and compound VIII stood out for its broad-spectrum coverage in our simulations. Furthermore, both in silico and in vitro analyses revealed that compounds VII and VIII exhibited the highest antioxidant activity, with compound I emerging as the most reactive antioxidant within RESV-AVO hybrids. The study suggests a preference for the hydrogen atom transfer (HAT) mechanism over single-electron transfer followed by proton transfer (SET-PT) in the gas phase. With a strong focus on sustainability, this approach reduces costs and minimizes effluent production in synthesis research, promoting the eco-friendly development of new sunscreen active ingredients. METHODS: The SPARTAN'20 program was utilized for the geometry optimization and energy calculations of all compounds. Conformer distribution analysis was performed using the Merck molecular force field 94 (MMFF94), and geometry optimization was carried out using the parametric method 6 (PM6) followed by density functional theory (DFT/B3LYP/6-31G(d)). The antioxidant behavior of the hybrid compounds (I-VIII) was determined using the highest occupied molecular orbital (εHOMO) and the lowest unoccupied molecular orbital (εLUMO) energies, as well as the bond dissociation enthalpy (BDE), ionization potential (IP), and proton dissociation enthalpy (PDE) values, all calculated at the same level of structural optimization. TD-DFT study is carried out to calculate the excitation energy using the B3LYP functional with the 6-31G(d) basis set. The calculated transitions were convoluted with a Gaussian profile using the Gabedit program.


Asunto(s)
Antioxidantes , Diseño Asistido por Computadora , Diseño de Fármacos , Resveratrol , Protectores Solares , Rayos Ultravioleta , Protectores Solares/química , Antioxidantes/química , Antioxidantes/farmacología , Resveratrol/química , Propiofenonas/química , Teoría Funcional de la Densidad , Estilbenos/química , Estilbenos/farmacología , Modelos Moleculares , Teoría Cuántica , Estructura Molecular
6.
Photochem Photobiol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899585

RESUMEN

Exposure to phototoxicants and photosensitizers can result in the generation of reactive oxygen species (ROS), leading to oxidative stress, DNA damage, and various skin-related issues such as aging, allergies, and cancer. While several photo-protectants offer defense against ultraviolet radiation (UV-R), their effectiveness is often limited by photo-instability. Sunset Yellow (SY), an FDA-approved food dye, possesses significant UV-R and visible light absorption properties. However, its photoprotective potential has remained unexplored. Our investigation reveals that SY exhibits remarkable photostability for up to 8 h under both UV-R and sunlight. Notably, SY demonstrates the ability to quench ROS, including singlet oxygen (1O2), superoxide radicals ( O 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ ), and hydroxyl radicals (·OH) induced by rose bengal, riboflavin and levofloxacin, respectively. Moreover, SY proves effective in protecting against the apoptotic and necrotic cell death induced by the phototoxicant chlorpromazine (CPZ) in HaCaT cells. Further, it was observed that SY imparts photoprotection by inhibiting intracellular ROS generation and calcium release. Genotoxicity evaluation provides additional evidence supporting SY's photoprotective effects against CPZ-induced DNA damage. In conclusion, these findings underscore the potential of SY as a promising photoprotective agent against the toxic hazards induced by phototoxicants, suggesting its prospective application in the formulation of broad-spectrum sunscreens.

8.
Plants (Basel) ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931064

RESUMEN

The photosystem I (PSI) of the green alga Chlamydomonas reinhardtii associates with 10 light-harvesting proteins (LHCIs) to form the PSI-LHCI complex. In the context of state transitions, two LHCII trimers bind to the PSAL, PSAH and PSAO side of PSI to produce the PSI-LHCI-LHCII complex. In this work, we took advantage of chemical crosslinking of proteins in conjunction with mass spectrometry to identify protein-protein interactions between the light-harvesting proteins of PSI and PSII. We detected crosslinks suggesting the binding of LHCBM proteins to the LHCA1-PSAG side of PSI as well as protein-protein interactions of LHCSR3 with LHCA5 and LHCA3. Our data indicate that the binding of LHCII to PSI is more versatile than anticipated and imply that LHCSR3 might be involved in the regulation of excitation energy transfer to the PSI core via LHCA5/LHCA3.

9.
Photodermatol Photoimmunol Photomed ; 40(4): e12985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38845468

RESUMEN

BACKGROUND: Photoprotection is the first measure in the prevention and treatment of the deleterious effects that sunlight can cause on the skin. It is well known that prolonged exposure to solar radiation leads to acute and chronic complications, such as erythema, accelerated skin aging, proinflammatory and procarcinogenic effects, and eye damage, among others. METHODS: A better understanding of the molecules that can protect against ultraviolet radiation and their effects will lead to improvements in skin health. RESULTS: Most of these effects of the sunlight are modulated by oxidative stress and proinflammatory mechanisms, therefore, the supplementation of substances that can regulate and neutralize reactive oxygen species would be beneficial for skin protection. Current evidence indicates that systemic photoprotection should be used as an adjunctive measure to topical photoprotection. CONCLUSION: Oral photoprotectors are a promising option in improving protection against damage induced by UVR, as they contain active ingredients that increase the antioxidant effects of the body, complementing other photoprotection measures. We present a review of oral photoprotectors and their effects.


Asunto(s)
Sustancias Protectoras , Rayos Ultravioleta , Humanos , Administración Oral , Antioxidantes/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Piel/efectos de los fármacos , Luz Solar/efectos adversos , Rayos Ultravioleta/efectos adversos , Sustancias Protectoras/administración & dosificación
10.
Artículo en Inglés | MEDLINE | ID: mdl-38857302

RESUMEN

The physiological role of α-melanocyte stimulating hormone in regulating integumental pigmentation of many vertebrate species has been recognized since the 1960's. However, its physiological significance for human pigmentation remained enigmatic until the 1990's. α-Melanocyte stimulating hormone and related melanocortins are synthesized locally in the skin, primarily by keratinocytes, in addition to the pituitary gland, and therefore act as paracrine factors for melanocytes. Human melanocytes express the melanocortin 1 receptor, which recognizes α-melanocyte stimulating hormone and the related adrenocorticotropic hormone as agonists. This review summarizes the current knowledge of the pleotropic effects of the activated melanocortin 1 receptor that maintain human melanocyte homeostasis by regulating melanogenesis and the response to environmental stressors, mainly solar radiation. Certain allelic variants of the melanocortin 1 receptor gene are associated with specific pigmentary phenotypes in various human populations. Variants associated with red hair phenotype compromise the function of the encoded receptor. Activation of the human melanocortin 1 receptor regulates eumelanin synthesis and enhances DNA damage response of melanocytes to solar radiation and oxidative stressors. We describe how synthetic selective melanocortin 1 receptor agonists can be efficacious as sunless tanning agents, for treatment of vitiligo and photosensitivity disorders, and for prevention of skin cancer, including melanoma.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38849973

RESUMEN

Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.

12.
BMC Ophthalmol ; 24(1): 237, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844903

RESUMEN

BACKGROUND: The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS: ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS: After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION: PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.


Asunto(s)
Apoptosis , Supervivencia Celular , Estrés Oxidativo , Peroxirredoxinas , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Rayos Ultravioleta , Humanos , Epitelio Pigmentado de la Retina/efectos de la radiación , Epitelio Pigmentado de la Retina/metabolismo , Peroxirredoxinas/metabolismo , Rayos Ultravioleta/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Línea Celular , Western Blotting , Células Cultivadas , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Transducción de Señal
13.
Photochem Photobiol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828502

RESUMEN

The field of sun protection is quickly changing and the research article by Douki et al., published in the current issue of Photochemistry and Photobiology, reported key experimental data that will certainly help the development of better sun care products. Mutagenic photoproducts (CPDs, cyclobutane pyrimidine dimers and 6-4PPs, pyrimidine-6-4-pyrimidone photoproducts) were formed in the reconstructed human epidermis (RHE) by UVB (312 nm) irradiation, and their concentrations were detected by HPLC-MS/MS as a function of time after the UVB treatment. RHE had been previously exposed or not (control) to blue light (427 nm). Both CPDs and 6-4PPs were shown to last longer in blue-light irradiated RHE, proving the inhibition of the DNA repair by blue light exposure. This is a highly relevant information because sunscreens allow people to enjoy longer periods under the sun and consequently, to endure very high doses of blue light. The work also reported results obtained with RHEs previously treated with a sunscreen formulation containing a broadband filter that offers blue-light protection. Interestingly, authors observed that the DNA repair was not significantly inhibited in RHE previously treated with the sunscreen offering broadband protection. Readers will find a scientifically sound proof of the importance of blue-light protection in sun care products.

14.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930846

RESUMEN

Grape marc is a by-product resulting from the winemaking industry that still contains beneficial compounds that can be valorized. Thus, we report here the possibility of using polyphenolic extracts of grape marc origin to obtain sun protection creams. The extractions were performed in ethanol and acetone solutions using pomace from different grape varieties (Merlot, Bläufrankisch, Feteasca Neagra, Isabella) as a raw material. The obtained extracts were analyzed in order to determine the total phenolic content, the antioxidant activity, and the sun protection factor (SPF) via Mansur spectrophotometric assay. The best results were achieved using 70% ethanol in water as a solvent. The extracts with the highest potential photoprotective effects are from the Merlot variety (SPFspectrophotometric = 7.83 ± 0.76). The sunscreens were prepared using the 70% ethanolic extract of the Merlot variety evaporated to dryness, redissolved in either distilled water or ethanol. The SPF estimated in vitro via the COLIPA method showed values of 14.07 ± 1.50 and 11.46 ± 1.32 for the aqueous and ethanolic extracts, respectively, when working with a cream to polyphenolic extract a ratio of 1/1 (w/w). At the same time, the use of aqueous polyphenolic extracts ensures the better stability of creams compared with the ethanolic ones.


Asunto(s)
Antioxidantes , Extractos Vegetales , Protectores Solares , Vitis , Protectores Solares/química , Protectores Solares/farmacología , Vitis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Cosméticos/química , Polifenoles/química , Polifenoles/farmacología , Vino/análisis , Productos Biológicos/química , Productos Biológicos/farmacología , Factor de Protección Solar
15.
Front Med (Lausanne) ; 11: 1355799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698778

RESUMEN

Introduction: Daily solar ultraviolet (UV) radiation has an important impact on skin health. Understanding the initial events of the UV-induced response is critical to prevent deleterious conditions. However, studies in human volunteers have ethical, technical, and economic implications that make skin equivalents a valuable platform to investigate mechanisms related to UV exposure to the skin. In vitro human skin equivalents can recreate the structure and function of in vivo human skin and represent a valuable tool for academic and industrial applications. Previous studies have utilised non-pigmented full-thickness or pigmented epidermal skin equivalents to investigate skin responses to UV exposure. However, these do not recapitulate the dermal-epidermal crosstalk and the melanocyte role in photoprotection that occurs in vivo. In addition, the UV radiation used in these studies is generally not physiologically representative of real-world UV exposure. Methods: Well-characterised pigmented and non-pigmented skin equivalents that contain human dermal fibroblasts, endogenous secreted extracellular matrix proteins (ECM) and a well-differentiated and stratified epidermis have been developed. These constructs were exposed to UV radiation for ×5 consecutive days with a physiologically relevant UV dose and subsequently analysed using appropriate end-points to ascertain photodamage to the skin. Results: We have described that repeated irradiation of full-thickness human skin equivalents in a controlled laboratory environment can recreate UV-associated responses in vitro, mirroring those found in photoexposed native human skin: morphological damage, tanning, alterations in epidermal apoptosis, DNA lesions, proliferation, inflammatory response, and ECM-remodelling. Discussion: We have found a differential response when using the same UV doses in non-pigmented and pigmented full-thickness skin equivalents, emphasising the role of melanocytes in photoprotection.

16.
Photochem Photobiol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695248

RESUMEN

Astaxanthin (AST) is a xanthophyll carotenoid with strong oxidation resistance, which can effectively scavenge various free radicals and protect organisms from oxidative damage. AST is also known to have prominent anti-aging effects, but the underlying mechanism of AST in anti-radiation aging is largely unknown. In this work, we applied ultraviolet (UV) irradiation to accelerate the aging of Caenorhabditis elegans (C. elegans) and treated the nematodes with AST to explore whether and how AST could attenuate the radiation-induced aging effect. Our results showed that AST improved the survival rate of C. elegans, reduced the aging biomarkers, and alleviated the mitochondrial dysfunction caused by the irradiation. Based on the transcriptome sequencing analysis, we identified that the key genes regulated by AST were involved in JNK-MAPK and DAF-16 longevity signaling pathways. Furthermore, we employed jnk-1 and daf-16 mutants and verified the role of the JNK-1/DAF-16 signaling pathway in the anti-aging effect. As such, this study has not only demonstrated that AST can resist the aging process caused by UV-irradiation but also revealed the anti-aging mechanism of AST through JNK-1/DAF-16 activation in C. elegans.

17.
Curr Res Struct Biol ; 7: 100141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736459

RESUMEN

Orange carotenoid proteins (OCPs) are unique photoreceptors that are critical for cyanobacterial photoprotection. Upon exposure to blue-green light, OCPs are activated from a stable orange form, OCPO, to an active red form, OCPR, which binds to phycobilisomes (PBSs) and performs photoprotective non-photochemical quenching (NPQ). OCPs can be divided into three main families: the most abundant and best studied OCP1, and two others, OCP2 and OCP3, which have different activation and quenching properties and are yet underexplored. Crystal structures have been acquired for the three OCP clades, providing a glimpse into the conformational underpinnings of their light-absorption and energy dissipation attributes. Recently, the structure of the PBS-OCPR complex has been obtained allowing for an unprecedented insight into the photoprotective action of OCPs. Here, we review the latest findings in the field that have substantially improved our understanding of how cyanobacteria protect themselves from the toxic consequences of excess light absorption. Furthermore, current research is applying the structure of OCPs to bio-inspired optogenetic tools, to function as carotenoid delivery devices, as well as engineering the NPQ mechanism of cyanobacteria to enhance their photosynthetic biomass production.

18.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763078

RESUMEN

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Asunto(s)
Chlamydomonas reinhardtii , Complejos de Proteína Captadores de Luz , Presión Osmótica , Complejo de Proteína del Fotosistema II , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/efectos de la radiación , Luz , Clorofila/metabolismo
19.
Arch Dermatol Res ; 316(6): 253, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795157

RESUMEN

Dyschromia is a top diagnosis among African Americans (AA). Sunscreen is an essential part of its management, but AA have low sunscreen use. We sought to examine the perception of sunscreen utility in dyschromia and photoaging among patients who identify as AA or Black. This cross-sectional study recruited participants from the Case Western Reserve University Academic Dental Clinic. Participants completed an electronic survey that contained questions related to sunscreen use, knowledge of the sun's role in hyperpigmentation and photoaging, and whether sunscreen could be used for hyperpigmentation and photoaging. Of the 151 participants recruited, 63.6% (n = 96) were women and 36.4% (n = 57) were men. Consistent with previous reports, participants had lower sunscreen use (20.5%) than whites (43.5%). The majority of participants (80.1% and 58.3%, respectively) didn't attribute the sun to hyperpigmentation or photoaging. Participants with dark/brown spots were significantly more likely to not attribute the sun to hyperpigmentation than those without spots. (p = 0.003) Limitations for this study include its small sample size, recall and reporter bias, question misinterpretation, and lack of question neutrality. This study highlights the knowledge gap of a major contributing factor to dyschromia which in turn could be leading to their view of the decreased utility of sunscreen.


Asunto(s)
Negro o Afroamericano , Conocimientos, Actitudes y Práctica en Salud , Protectores Solares , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Negro o Afroamericano/estadística & datos numéricos , Negro o Afroamericano/psicología , Estudios Transversales , Hiperpigmentación/prevención & control , Envejecimiento de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de los fármacos , Luz Solar/efectos adversos , Protectores Solares/administración & dosificación , Encuestas y Cuestionarios/estadística & datos numéricos
20.
New Phytol ; 243(1): 145-161, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38736026

RESUMEN

Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.


Asunto(s)
Diatomeas , Ecosistema , Ecotipo , Luz , Fotobiorreactores , Diatomeas/crecimiento & desarrollo , Diatomeas/efectos de la radiación , Diatomeas/fisiología , Filogenia , Aclimatación , Clorofila/metabolismo , Fotosíntesis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA