Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Intervalo de año de publicación
1.
Methods Mol Biol ; 2852: 33-46, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235735

RESUMEN

Foodborne pathogens are responsible for foodborne diseases and food poisoning and thus pose a great threat to food safety. These microorganisms can adhere to surface and form a biofilm composed of an extracellular matrix. This matrix protects bacterial cells from industrial environmental stress factors such as cleaning and disinfection operations. Moreover, during these environmental stresses, many bacterial species can be entered in a viable but nonculturable (VBNC) state. VBNC cells are characterized by an active metabolism and a loss of cultivability on conventional bacteriological agar. This leads to an underestimation of total viable cells in environmental samples and thus may pose a risk for public health. In this chapter, we present a method to detect viable population of foodborne pathogens in industrial environmental samples using a molecular method combining propidium monoazide (PMA) and quantitative PCR (qPCR) and a fluorescence microscopic method associated with the LIVE/DEAD BacLight™ viability stain.


Asunto(s)
Azidas , Microbiología de Alimentos , Viabilidad Microbiana , Propidio , Reacción en Cadena en Tiempo Real de la Polimerasa , Microbiología de Alimentos/métodos , Azidas/química , Propidio/análogos & derivados , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Microscopía Fluorescente/métodos , Humanos
2.
Sci Rep ; 14(1): 22350, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333362

RESUMEN

DNA characterisation in people with tuberculosis (TB) is critical for diagnostic and microbiome evaluations. However, extracellular DNA, more frequent in people on chemotherapy, confounds results. We evaluated whether nucleic acid dyes [propidium monoazide (PMA), PEMAX] and DNaseI could reduce this. PCR [16S Mycobacterium tuberculosis complex (Mtb) qPCR, Xpert MTB/RIF] was done on dilution series of untreated and treated (PMA, PEMAX, DNaseI) Mtb. Separately, 16S rRNA gene qPCR and sequencing were done on untreated and treated sputa before (Cohort A: 11 TB-negatives, 9 TB-positives; Cohort B: 19 TB-positives, PEMAX only) and 24-weeks after chemotherapy (Cohort B). PMA and PEMAX reduced PCR-detected Mtb DNA for dilution series and Cohort A sputum versus untreated controls, suggesting non-intact Mtb is present before treatment-start. PEMAX enabled sequencing-based Mycobacterium-detection in 7/12 (58%) TB-positive sputa where no such reads otherwise occurred. In Cohort A, PMA- and PEMAX-treated versus untreated sputa had decreased α- and increased ß-diversities. In Cohort B, ß-diversity differences between timepoints were only detected with PEMAX. DNaseI had negligible effects. PMA and PEMAX (but not DNaseI) reduced extracellular DNA in PCR and improved pathogen detection by sequencing. PEMAX additionally detected chemotherapy-associated taxonomic changes that would otherwise be missed. Dyes enhance microbiome evaluations especially during chemotherapy.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Bacteriano , Microbiota , Mycobacterium tuberculosis , ARN Ribosómico 16S , Esputo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología , Microbiota/efectos de los fármacos , Microbiota/genética , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/diagnóstico , Femenino , Masculino , Adulto , Persona de Mediana Edad , Azidas/farmacología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/diagnóstico , Propidio/análogos & derivados
3.
Microorganisms ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203351

RESUMEN

Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 µM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.

4.
Microorganisms ; 12(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065168

RESUMEN

The aim of the study was to establish a live/dead qPCR with propidium monoazide (PMA) that can quantitatively differentiate between viable/non-viable microorganisms in dental hard tissues. Human premolars (n = 88) were prepared with nickel-titanium instruments and incubated with E. faecalis (21 d). Subsequently, the bacteria in half of the teeth were devitalized by heat inactivation (100 °C, 2 h). The following parameters were tested: PMA concentrations at 0 µmol (control), 50 µmol, 100 µmol, and 200 µmol; PMA incubation times of 30 min and 60 min, and blue light treatment for 30 min and 60 min. The teeth were ground using a cryomill and the bacterial DNA was quantified using qPCR, ANOVA, and p = 0.05. The qPCR of the control group detected a similar number of avital 9.94 × 106 and vital 1.61 × 107 bacterial cells. The use of PMA inhibited the amplification of DNA from non-viable cells during qPCR. As a result, the best detection of avital bacteria was achieved with the following PMA parameters: (concentration, incubation time, blue light treatment) 200-30-30; 5.53 × 104 (avital) and 1.21 × 100.7 (vital). The live/dead qPCR method using PMA treatment is suitable for the differentiation and quantification of viable/non-viable microorganisms in dentin, as well as to evaluate the effectiveness of different preparation procedures and antimicrobial irrigants in other biological hard substances.

5.
Foods ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891011

RESUMEN

The fermentation process of Chinese Baijiu's fermented grains involves the intricate succession and metabolism of microbial communities, collectively shaping the Baijiu's quality. Understanding the composition and succession of these living microbial communities within fermented grains is crucial for comprehending fermentation and flavor formation mechanisms. However, conducting high-throughput analysis of living microbial communities within the complex microbial system of fermented grains poses significant challenges. Thus, this study addressed this challenge by devising a high-throughput analysis framework using light-flavor Baijiu as a model. This framework combined propidium monoazide (PMA) pretreatment technology with amplicon sequencing techniques. Optimal PMA treatment parameters, including a concentration of 50 µM and incubation in darkness for 5 min followed by an exposure incubation period of 5 min, were identified. Utilizing this protocol, viable microorganism biomass ranging from 8.71 × 106 to 1.47 × 108 copies/µL was successfully detected in fermented grain samples. Subsequent amplicon sequencing analysis revealed distinct microbial community structures between untreated and PMA-treated groups, with notable differences in relative abundance compositions, particularly in dominant species such as Lactobacillus, Bacillus, Pediococcus, Saccharomycopsis, Issatchenkia and Pichia, as identified by LEfSe analysis. The results of this study confirmed the efficacy of PMA-amplicon sequencing technology for analyzing living microbial communities in fermented grains and furnished a methodological framework for investigating living microbial communities in diverse traditional fermented foods. This technical framework holds considerable significance for advancing our understanding of the fermentation mechanisms intrinsic to traditional fermented foods.

6.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892344

RESUMEN

SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.


Asunto(s)
Azidas , COVID-19 , Nasofaringe , Propidio , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Azidas/química , Propidio/análogos & derivados , Propidio/química , COVID-19/virología , Carga Viral/métodos , Nasofaringe/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Prueba de Ácido Nucleico para COVID-19/métodos , Reacción en Cadena de la Polimerasa/métodos
7.
BMC Oral Health ; 24(1): 575, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760758

RESUMEN

BACKGROUND: Translational microbiome research using next-generation DNA sequencing is challenging due to the semi-qualitative nature of relative abundance data. A novel method for quantitative analysis was applied in this 12-week clinical trial to understand the mechanical vs. chemotherapeutic actions of brushing, flossing, and mouthrinsing against the supragingival dental plaque microbiome. Enumeration of viable bacteria using vPCR was also applied on supragingival plaque for validation and on subgingival plaque to evaluate interventional effects below the gingival margin. METHODS: Subjects with gingivitis were enrolled in a single center, examiner-blind, virtually supervised, parallel group controlled clinical trial. Subjects with gingivitis were randomized into brushing only (B); brushing and flossing (BF); brushing and rinsing with Listerine® Cool Mint® Antiseptic (BA); brushing and rinsing with Listerine® Cool Mint® Zero (BZ); or brushing, flossing, and rinsing with Listerine® Cool Mint® Zero (BFZ). All subjects brushed twice daily for 1 min with a sodium monofluorophosphate toothpaste and a soft-bristled toothbrush. Subjects who flossed used unflavored waxed dental floss once daily. Subjects assigned to mouthrinses rinsed twice daily. Plaque specimens were collected at the baseline visit and after 4 and 12 weeks of intervention. Bacterial cell number quantification was achieved by adding reference amounts of DNA controls to plaque samples prior to DNA extraction, followed by shallow shotgun metagenome sequencing. RESULTS: 286 subjects completed the trial. The metagenomic data for supragingival plaque showed significant reductions in Shannon-Weaver diversity, species richness, and total and categorical bacterial abundances (commensal, gingivitis, and malodor) after 4 and 12 weeks for the BA, BZ, and BFZ groups compared to the B group, while no significant differences were observed between the B and BF groups. Supragingival plaque vPCR further validated these results, and subgingival plaque vPCR demonstrated significant efficacy for the BFZ intervention only. CONCLUSIONS: This publication reports on a successful application of a quantitative method of microbiome analysis in a clinical trial demonstrating the sustained and superior efficacy of essential oil mouthrinses at controlling dental plaque compared to mechanical methods. The quantitative microbiological data in this trial also reinforce the safety and mechanism of action of EO mouthrinses against plaque microbial ecology and highlights the importance of elevating EO mouthrinsing as an integral part of an oral hygiene regimen. TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov on 31/10/2022. The registration number is NCT05600231.


Asunto(s)
Dispositivos para el Autocuidado Bucal , Placa Dental , Gingivitis , Microbiota , Antisépticos Bucales , Cepillado Dental , Humanos , Placa Dental/microbiología , Gingivitis/microbiología , Antisépticos Bucales/uso terapéutico , Femenino , Microbiota/efectos de los fármacos , Adulto , Cepillado Dental/métodos , Masculino , Método Simple Ciego , Persona de Mediana Edad , Salicilatos/uso terapéutico , Combinación de Medicamentos , Terpenos/uso terapéutico , Terpenos/farmacología , Carga Bacteriana/efectos de los fármacos , Antiinfecciosos Locales/uso terapéutico , Adulto Joven
8.
Microorganisms ; 12(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674709

RESUMEN

Bacteremia, specifically if progressed to sepsis, poses a time-sensitive threat to human and animal health. Escherichia coli is a main causative agent of sepsis in humans. The objective was to evaluate a propidium monoazide (PMA)-based viability PCR (vPCR) protocol to detect and quantify live E. coli from whole blood. We optimized the protocol by adding a eukaryotic-specific lysis step prior to PMA exposure, then used spiking experiments to determine the lower limit of detection (LOD) and linear range of quantification. We also compared the vPCR quantification method to standard colony count of spiked inoculum. Lastly, we calculated percent viability in spiked samples containing 50% live cells or 0% live cells. The LOD was 102 CFU/mL for samples containing live cells only and samples with mixed live and heat-killed cells. The linear range of quantification was 102 CFU/mL to 108 CFU/mL (R2 of 0.997) in samples containing only live cells and 103 CFU/mL to 108 CFU/mL (R2 of 0.998) in samples containing live plus heat-killed cells. A Bland-Altman analysis showed that vPCR quantification overestimates compared to standard plate count of the spiked inoculum, with an average bias of 1.85 Log10 CFU/mL across the linear range when only live cells were present in the sample and 1.98 Log10 CFU/mL when live plus heat-killed cells were present. Lastly, percent viability calculations showed an average 89.5% viable cells for samples containing 50% live cells and an average 19.3% for samples containing 0% live cells. In summary, this optimized protocol can detect and quantify viable E. coli in blood in the presence of heat-killed cells. Additionally, the data presented here provide the groundwork for further development of vPCR to detect and quantify live bacteria in blood in clinical settings.

9.
Foods ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611327

RESUMEN

Pathogenic Escherichia coli are the most prevalent foodborne bacteria, and their accurate detection in food samples is critical for ensuring food safety. Therefore, a quick technique named viability-qPCR (v-qPCR), which is based on the ability of a selective dye, such as propidium monoazide (PMA), to differentiate between alive and dead cells, has been developed. Despite diverse, successful applications, v-qPCR is impaired by some practical limitations, including the ability of PMA to penetrate the outer membrane of dead Gram-negative bacteria. The objective of this study is to evaluate the ability of lactic acid (LA) to improve PMA penetration and, thus, the efficiency of v-qPCR in detecting the live fraction of pathogens. The pre-treatment of E. coli ATCC 8739 cells with 10 mM LA greatly increased PMA penetration into dead cells compared to conventional PMA-qPCR assay, avoiding false positive results. The limit of detection when using LA-PMA qPCR is 1% viable cells in a mixture of dead and alive cells. The optimized LA-PMA qPCR method was reliably able to detect log 2 CFU/mL culturable E. coli in milk spiked with viable and non-viable bacteria. Lactic acid is cheap, has low toxicity, and can be used to improve the efficiency of the v-qPCR assay, which is economically interesting for larger-scale pathogen detection applications intended for food matrices.

10.
J Virol Methods ; 327: 114919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531509

RESUMEN

Human norovirus (HuNoV) is regularly involved in food-borne infections. To detect infectious HuNoV in food, RT-qPCR remains state of the art but also amplifies non-infectious virus. The present study combines pre-treatments, RNase and propidium monoazide, with three molecular analyses, including long-range PCR, to predominantly detect infectious Tulane virus (TuV), a culturable HuNoV surrogate. TuV was exposed to inactivating conditions to assess which molecular method most closely approximates the reduction in infectious virus determined by cell culture (TCID50). After thermal treatments (56 °C/5 min, 70 °C/5 min, 72 °C/20 min), TCID50 reductions of 0.3, 4.4 and 5.9 log10 were observed. UV exposure (40/100/1000 mJ/cm2) resulted in 1.1, 2.5 and 5.9 log10 reductions. Chlorine (45/100 mg/L for 1 h) reduced infectious TuV by 2.0 and 3.0 log10. After thermal inactivation standard RT-qPCR, especially with pre-treatments, showed the smallest deviation from TCID50. On average, RT-qPCR with pre-treatments deviated by 1.1-1.3 log10 from TCID50. For UV light, long-range PCR was closest to TCID50 results. Long-range reductions deviated from TCID50 by ≤0.1 log10 for mild and medium UV-conditions. However, long-range analyses often resulted in qPCR non-detects. At higher UV doses, RT-qPCR with pre-treatments differed by ≤1.0 log10 from TCID50. After chlorination the molecular methods repeatedly deviated from TCID50 by >1.0 log10, Overall, each method needs to be further optimized for the individual types of inactivation treatment.


Asunto(s)
Azidas , Propidio , Rayos Ultravioleta , Inactivación de Virus , Azidas/farmacología , Propidio/análogos & derivados , Propidio/farmacología , Inactivación de Virus/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Humanos , Caliciviridae/genética , Caliciviridae/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Cloro/farmacología , Ribonucleasas , Calor
11.
Front Microbiol ; 15: 1325268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389538

RESUMEN

Viability is a prerequisite for any therapeutic benefits associated with the ingestion of probiotic bacteria. Current culture-based techniques are inadequate for the enumeration of probiotics in mixed-species food products. This study utilized a quantitative PCR (qPCR) method coupled with propidium monoazide (PMAxx), and novel species-specific tuf gene primers to selectively enumerate Lacticaseibacillus rhamnosus, Bifidobacterium spp., and yogurt starter cultures in mixed-species probiotic yogurt. The method was optimized for PMAxx concentration and specificity and evaluated for efficiency and applicability. PMAxx-qPCR showed high specificity to the target organisms in mixed-species yogurt, quantifying only viable cells. The linear dynamic ranges were established over five to seven orders of magnitude. The assay was reliable with an efficiency of 91-99%, R2 values > 0.99, and a good correlation to the plate count method (r = 0.882). The results of this study demonstrate the high selectivity, improved lead time, and reliability of PMAxx-qPCR over the culture-dependent method, making it a valuable tool for inline viability verification during processing and improving probiotic quality assurance for processors and consumers.

12.
Microorganisms ; 12(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38399780

RESUMEN

The bacterium Erwinia amylovora causes fire blight and continues to threaten global commercial apple and pear production. Conventional microbiology techniques cannot accurately determine the presence of live pathogen cells in fire blight cankers. Several factors may prevent E. amylovora from growing on solid culture media, including competing microbiota and the release of bacterial-growth-inhibitory compounds by plant material during sample processing. We previously developed a canker processing methodology and a chip-based viability digital PCR (v-dPCR) assay using propidium monoazide (PMA) to bypass these obstacles. However, sample analysis was still time-consuming and physically demanding. In this work, we improved the previous protocol using an automatic tissue homogenizer and transferred the chip-based v-dPCR to the BioRad QX200 droplet dPCR (ddPCR) platform. The improved sample processing method allowed the simultaneous, fast, and effortless processing of up to six samples. Moreover, the transferred v-ddPCR protocol was compatible with the same PMA treatment and showed a similar dynamic range, from 7.2 × 102 to 7.6 × 107 cells mL-1, as the previous v-dPCR. Finally, the improved protocol allowed, for the first time, the detection of E. amylovora viable but nonculturable (VBNC) cells in cankers and bark tissues surrounding cankers. Our v-ddPCR assay will enable new ways to evaluate resistant pome fruit tree germplasm, further dissect the E. amylovora life cycle, and elucidate E. amylovora physiology, epidemiology, and new options for canker management.

13.
Appl Environ Microbiol ; 90(2): e0165823, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38236032

RESUMEN

In this study, we compared conventional vacuum filtration of small volumes through disc membranes (effective sample volumes for potable water: 0.3-1.0 L) with filtration of high volumes using ultrafiltration (UF) modules (effective sample volumes for potable water: 10.6-84.5 L) for collecting bacterial biomass from raw, finished, and tap water at seven drinking water systems. Total bacteria, Legionella spp., Legionella pneumophila, Mycobacterium spp., and Mycobacterium avium complex in these samples were enumerated using both conventional quantitative PCR (qPCR) and viability qPCR (using propidium monoazide). In addition, PCR-amplified gene fragments were sequenced for microbial community analysis. The frequency of detection (FOD) of Legionella spp. in finished and tap water samples was much greater using UF modules (83% and 77%, respectively) than disc filters (24% and 33%, respectively). The FODs for Mycobacterium spp. in raw, finished, and tap water samples were also consistently greater using UF modules than disc filters. Furthermore, the number of observed operational taxonomic units and diversity index values for finished and tap water samples were often substantially greater when using UF modules as compared to disc filters. Conventional and viability qPCR yielded similar results, suggesting that membrane-compromised cells represented a minor fraction of total bacterial biomass. In conclusion, our research demonstrates that large-volume filtration using UF modules improved the detection of opportunistic pathogens at the low concentrations typically found in public drinking water systems and that the majority of bacteria in these systems appear to be viable in spite of disinfection with free chlorine and/or chloramine.IMPORTANCEOpportunistic pathogens, such as Legionella pneumophila, are a growing public health concern. In this study, we compared sample collection and enumeration methods on raw, finished, and tap water at seven water systems throughout the State of Minnesota, USA. The results showed that on-site filtration of large water volumes (i.e., 500-1,000 L) using ultrafiltration membrane modules improved the frequency of detection of relatively rare organisms, including opportunistic pathogens, compared to the common approach of filtering about 1 L using disc membranes. Furthermore, results from viability quantitative PCR (qPCR) with propidium monoazide were similar to conventional qPCR, suggesting that membrane-compromised cells represent an insignificant fraction of microorganisms. Results from these ultrafiltration membrane modules should lead to a better understanding of the microbial ecology of drinking water distribution systems and their potential to inoculate premise plumbing systems with opportunistic pathogens where conditions are more favorable for their growth.


Asunto(s)
Azidas , Agua Potable , Legionella pneumophila , Legionella , Mycobacterium , Propidio/análogos & derivados , Agua Potable/microbiología , Mycobacterium/genética , Microbiología del Agua , Abastecimiento de Agua , Legionella/genética
14.
Viruses ; 16(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257810

RESUMEN

The current study investigated the effects of heat treatment (85 °C or 100 °C for 5-20 min) on human norovirus (HuNoV) GII.4's capsid stability in fresh oysters. In addition, propidium monoazide (PMA) was used in viral samples to distinguish infectious viruses and evaluated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Further, we explored the effect of the heat treatment on oyster quality (Hunter color and hardness). The titer of HuNoV for oysters significantly (p < 0.05) decreased to 0.39-1.32 and 0.93-2.27 log10 copy number/µL in the non-PMA and PMA-treated groups, respectively, after heat treatment. HuNoV in oysters not treated with PMA showed a decrease of <1.5 - log10, whereas in PMA-treated oysters, a decrease of >1 - log10 was observed after treatment at 85 °C for 10 min. Treatments for both 15 min and 20 min at 100 °C showed a >99% log10 reduction using PMA/RT-qPCR. In the Hunter color, an increase in heat temperature and duration was associated with a significant decrease in 'L' (brightness+, darkness-) and an increase in 'a' (redness+, greenness-) and 'b' (yellowness+, blueness-) (p < 0.05). Our findings confirmed that the hardness of oyster meat significantly increased with increasing temperature and time (p < 0.05). This study demonstrated that PMA/RT-qPCR was effective in distinguishing HuNoV viability in heat-treated oysters. The optimal heat treatment for oysters was 10 min at 85 °C and 5 min at 100 °C.


Asunto(s)
Azidas , Crassostrea , Norovirus , Humanos , Animales , Propidio , Cápside
15.
Virus Res ; 340: 199307, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160910

RESUMEN

Ostreid herpes virus 1 (OsHV-1) has been classified within the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 is the etiological agent of a contagious viral disease of Pacific oysters, C. gigas, affecting also other bivalve species. Mortality rates reported associated with the viral infection vary considerably between sites and countries and depend on the age of affected stocks. A variant called µVar has been reported since 2008 in Europe and other variants in Australia and in New Zealand last decade. These variants are considered as the main causative agents of mass mortality events affecting C. gigas. Presently there is no established cell line that allows for the detection of infectious OsHV-1. In this context, a technique of propidium monoazide (PMA) PCR was developed in order to quantify "undamaged" capsids. This methodology is of interest to explore the virus infectivity. Being able to quantify viral particles getting an undamaged capsid (not only an amount of viral DNA) in tissue homogenates prepared from infected oysters or in seawater samples can assist in the definition of a Lethal Dose (LD) 50 and gain information in the experiments conducted to reproduce the viral infection. The main objectives of the present study were (i) the development/optimization of a PMA PCR technique for OsHV-1 detection using the best quantity of PMA and verifying its effectiveness through heat treatment, (ii) the definition of the percentage of undamaged capsids in four different tissue homogenates prepared from infected Pacific oysters and (iii) the approach of a LD50 during experimental viral infection assays on the basis of a number of undamaged capsids. Although the developped PMA PCR technique was unable to determine OsHV-1 infectivity in viral supensions, it could greatly improve interpretation of virus positive results obtained by qPCR. This technique is not intended to replace the quantification of viral DNA by qPCR, but it does make it possible to give a form of biological meaning to the detection of this DNA.


Asunto(s)
Azidas , Crassostrea , Herpesviridae , Propidio/análogos & derivados , Virosis , Animales , Herpesviridae/genética , ADN Viral/genética , Cápside , Dosificación Letal Mediana , Crassostrea/genética , Reacción en Cadena de la Polimerasa
16.
Genes (Basel) ; 14(12)2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38136957

RESUMEN

With the rapid development and commercialization of industrial genetically modified microorganisms (GMMs), public concerns regarding their potential effects are on the rise. It is imperative to promptly monitor the unintended release of viable GMMs into wastewater, the air, and the surrounding ecosystems to prevent the risk of horizontal gene transfer to native microorganisms. In this study, we have developed a method that combines propidium monoazide (PMA) with a dual-plex quantitative PCR (qPCR) approach based on TaqMan probes. This method targets the chloramphenicol-resistant gene (CmR) along with the endogenous genes D-1-deoxyxylulose 5-phosphate synthase (dxs) and chromosomal replication initiator protein (dnaA). It allows for the direct quantitative detection of viable genetically modified Escherichia coli and Corynebacterium glutamicum cells, eliminating the requirement for DNA isolation. The dual-plex qPCR targeting CmR/dxs and CmR/dnaA demonstrated excellent performance across various templates, including DNA, cultured cells, and PMA-treated cells. Repeatability and precision, defined as RSDr% and bias%, respectively, were calculated and found to fall within the acceptable limits specified by the European Network of GMO Laboratories (ENGL). Through PMA-qPCR assays, we determined the detection limits for viable chloramphenicol-resistant E. coli and C. glutamicum strains to be 20 and 51 cells, respectively, at a 95% confidence level. Notably, this method demonstrated superior sensitivity compared to Enzyme-Linked Immunosorbent Assay (ELISA), which has a detection limit exceeding 1000 viable cells for both GM bacterial strains. This approach offers the potential to accurately and efficiently detect viable cells of GMMs, providing a time-saving and cost-effective solution.


Asunto(s)
Corynebacterium glutamicum , Escherichia coli , Escherichia coli/genética , Corynebacterium glutamicum/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Ecosistema , ADN
17.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952090

RESUMEN

Paenibacillus polymyxa is an important biocontrol bacterium. The combination of propidium monoazide (PMA) and quantitative polymerase chain reactionq (qPCR) has proven effective in quantifying live bacteria from various microorganisms. The objective was to create a PMA-qPCR assay to precisely and consistently measure the number of living bacteria of biocontrol P. polymyxa. The primers were designed for the spo0A gene of P. polymyxa HY96-2. The optimal conditions for treating the target strain with PMA were a PMA concentration of 15 µg/mL, an incubation time of 5 min, and an exposure time of 10 min. The PMA-qPCR method had a limit of quantification (LOQ) of 1.0 × 103 CFU/mL for measuring the amount of viable P. polymyxa bacteria. The PMA-qPCR method is more sensitive than the qPCR method in detecting viable bacteria in the mixtures of viable and dead bacteria. The accuracy and reproducibility of quantifying viable P. polymyxa bacteria using the PMA-qPCR method were higher compared to the plate count method.


Asunto(s)
Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Reproducibilidad de los Resultados , Bioensayo , Bacterias
18.
Foods ; 12(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893675

RESUMEN

The authenticity of probiotic products and fermented foods and beverages that have the status of protected designation of origin (PDO) or geographical indication (PGI) can be assessed via numerous methods. DNA-based technologies have emerged in recent decades as valuable tools to achieve food authentication, and advanced DNA-based methods and platforms are being developed. The present review focuses on the recent and advanced DNA-based techniques for the authentication of probiotic, PDO and PGI fermented foods and beverages. Moreover, the most promising DNA-based detection tools are presented. Strain- and species-specific DNA-based markers of microorganisms used as starter cultures or (probiotic) adjuncts for the production of probiotic and fermented food and beverages have been exploited for valuable authentication in several detection methods. Among the available technologies, propidium monoazide (PMA) real-time polymerase chain reaction (PCR)-based technologies allow for the on-time quantitative detection of viable microbes. DNA-based lab-on-a-chips are promising devices that can be used for the on-site and on-time quantitative detection of microorganisms. PCR-DGGE and metagenomics, even combined with the use of PMA, are valuable tools allowing for the fingerprinting of the microbial communities, which characterize PDO and PGI fermented foods and beverages, and they are necessary for authentication besides permitting the detection of extra or mislabeled species in probiotic products. These methods, in relation to the authentication of probiotic foods and beverages, need to be used in combination with PMA, culturomics or flow cytometry to allow for the enumeration of viable microorganisms.

19.
Water Res ; 245: 120656, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37748345

RESUMEN

The assessment of antimicrobial resistance (AMR) risk by DNA-based techniques mainly relies on total bacterial DNA. In this case, AMR risk recognition is restricted to the genotype level, lacking crucial phenotypic information, such as the distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in dead and viable bacteria. This limitation hinders the recognition of AMR behavior. Herein, based on propidium monoazide (PMA) shielding method, this work firstly quantified the intracellular ARGs/MGEs in viable and dead bacteria, and the impact of viable bacteria composition on the formation of intracellular/extracellular polymeric substance-related /cell-free ARGs (i/e/cARGs) and MGEs (i/e/cMGEs) in aerobic granular sludge (AGS). The shielding efficiency of PMA against dead bacteria was optimized to be as high as 97.5% when the MLSS of AGS was 2.0 g/L. Under antibiotic stimulation, 29.0% ∼ 49.0% of iARGs/iMGEs were carried by viable bacteria, and the remaining proportion were carried by dead bacteria. 18 out of the top 20 dominant genera showed a change in abundance by more than 1% after PMA treatment. 29 viable hosts were identified to associate with 52 iARGs, of which 28 and 15 hosts were also linked to 40 eARGs and 26 cARGs. Also, partial least-squares path model and variance partitioning analysis disclosed that viable bacteria and i/e/cMGEs had a positive effect on i/e/cARGs, with both contributing as much as 64.5% to the total ARGs enrichment. These results better visualized the AMR risk carried by viable bacteria and the categories of viable hosts. This work provides a novel insight into analyzing the actual AMR risk and viable hosts, helping to the reduction and control of AMR in wastewater treatment plants.

20.
Sci Total Environ ; 904: 166658, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659522

RESUMEN

Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 µg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 µg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.


Asunto(s)
Antozoos , Microbiota , Animales , Cobre/toxicidad , ARN Ribosómico 16S/genética , Teorema de Bayes , Australia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA