Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Phytomedicine ; 135: 156048, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39326132

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a type of inflammatory bowel disease primarily affecting the colon and rectum. The clinical symptoms of UC include persistent diarrhea, abdominal pain, and rectal bleeding, with chronic inflammation often limited to the mucosal layer of the colon. Macrophages play a significant role in the pathogenesis of UC in response to the presence of gut microbiota. Puerarin is an active compound derived from the root of pueraria lobata, a traditional Chinese herbal medicine, and exhibits potent anti-inflammatory properties in various diseases and disease models including UC-like colitis in mice. However, how the molecule achieves its therapeutic effect in colitis by re-polarizing macrophages remains poorly understood. PURPOSE: Utilizing in vivo and in vitro experimental methods along with multi-omics analysis, we aimed to elucidate the potential mechanism by which puerarin targets macrophages to treat colitis. METHODS: The inflammation induced by DSS was assessed both locally in the gut and systemically, and the anti-inflammatory effect of puerarin was evaluated using molecular and histological assays such as H&E staining, qPCR, ELISA, Western blot, and immunofluorescence. Intestinal permeability parameters were measured by in vivo imaging, immunofluorescence, Western blot, qPCR, and PAS staining. The central role of macrophages in colitis was investigated through macrophage depletion/infusion using cytological methods. The direct effects of puerarin on the macrophages were examined by CCK8, flow cytometry, and qPCR in vitro. Additionally, 16S rRNA sequencing and metabolomics analysis of gut contents were conducted. Identification of key pathogenic flora was facilitated by a trans-omic approach and validated both in vitro and in vivo. RESULTS: Puerarin exerted a direct and robust suppression of M1-like polarization of macrophages in vitro, which was sufficient to confer therapeutic benefits in terms of colonic lesions and systemic inflammation in DSS mice. Puerarin also reduced the abundance of Akkermansia muciniphila in the gut, which was significantly upregulated in DSS mice in our experimental context. Further study demonstrated that puerarin effectively suppressed M1-like macrophage activation induced by Akkermansia muciniphila secreted protein Amuc_2172, thereby altering the pathology in the DSS model. CONCLUSION: Our data suggest that the pathogenesis of DSS colitis is mediated by host cellular responses to toxic foreign molecules and the gut microbiota, and targeting specific cell populations, such as macrophages, with puerarin holds potential therapeutic value.

2.
Biochem Biophys Res Commun ; 733: 150702, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39298917

RESUMEN

Myocarditis is an inflammatory lesion of the myocardium that is caused by a variety of factors. At present, treatment of symptoms remains the main clinical intervention, but it cannot reduce the myocarditis damage caused by inflammation. M1 macrophages are thought to contribute significantly to the occurrence and development of inflammation by secreting a large number of proinflammatory factors. Puerarin is an isoflavone derivative isolated from pueraria that can be used as a dietary supplement and exerts wide range of anti-inflammatory and antioxidant effects. However, the mechanism underlying its anti-inflammatory effects needs to be further studied. The objective of this study was to investigate whether puerarin inhibited M1 polarization by affecting the JAK-STAT signaling pathway in a mouse model of autoimmune myocarditis, thus inhibiting the occurrence of inflammation in experimental autoimmune myocarditis (EAM) model mice. The results showed that EAM model mice treated with puerarin showed milder clinical symptoms and inflammatory infiltration than EAM model mice. Puerarin suppressed the in vivo and in vitro JAK1/2-STAT1 signal transduction in macrophages, thus inhibiting M1 polarization, reducing the secretion of proinflammatory factors, and ultimately decreasing IFN-γ and TNF-α levels in vivo, which led to myocardial apoptosis. Thus, puerarin could alleviate myocardial damage caused by inflammation. The conclusion of this study was that puerarin reduced myocardial damage in EAM model mice by regulating the polarization of macrophages toward M1, and this inhibitory effect may be achieved by inhibiting JAK1/2-STAT1 signaling.

3.
Chem Biol Drug Des ; 104(3): e14617, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223105

RESUMEN

Puerarin has been reported to have anticancer properties; however, its mechanism in regulating triple-negative breast cancer (TNBC) remains unclear. Cell function was assessed using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and transwell assay. Additionally, the glucose assay kit, lactate assay kit, and ADP/ATP ratio assay kit were used to analyze glucose metabolism. mRNA and protein expression levels were analyzed using qRT-PCR and western blotting assays, respectively. The relationship between FUS RNA binding protein (FUS) and mitogen-activated protein kinase 4 (MAPK4) was determined using an RNA immunoprecipitation assay. TNBC cell malignancy in vitro was validated using a xenograft mouse model assay. Puerarin treatment or MAPK4 knockdown effectively inhibited TNBC cell proliferation, invasion, and glucose metabolism, and induced cell apoptosis. Additionally, puerarin treatment downregulated MAPK4 and FUS expression. Conversely, MAPK4 overexpression attenuated the effects of puerarin in TNBC cells. FUS stabilized MAPK4 mRNA expression in TNBC cells. Furthermore, puerarin decreased MAPK4 expression by downregulating FUS in TNBC cells. Finally, puerarin inhibited tumor formation in vivo. Puerarin inhibited TNBC development by decreasing the expression of FUS-dependent MAPK4, indicating that puerarin may serve as a promising therapeutic agent to hind TNBC.


Asunto(s)
Proliferación Celular , Isoflavonas , Proteína FUS de Unión a ARN , Neoplasias de la Mama Triple Negativas , Isoflavonas/farmacología , Isoflavonas/química , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Humanos , Animales , Femenino , Línea Celular Tumoral , Ratones , Proliferación Celular/efectos de los fármacos , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Apoptosis/efectos de los fármacos , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Antineoplásicos/química
4.
Heliyon ; 10(16): e36176, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224278

RESUMEN

The dysfunction of pancreatic ß-cells plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite numerous studies demonstrating the anti-inflammatory and antioxidant properties of puerarin, the protective effects of puerarin on ß-cells remain poorly understood. Hence, this study aimed to explore the effects of puerarin on ß-cell dysfunction in a hyperglycemic environment via the PINK/Parkin-mediated mitochondrial autophagy pathway. The alterations in cell viability of MIN6 cells exposed to glucose concentrations of 5 mM, 10 mM, 20 mM, and 30 mM for 24 h, 48 h, and 72 h, respectively, were assessed using the CCK-8 assay to optimize the modeling conditions. Subsequently, cellular insulin secretion was measured using enzyme-linked immunosorbent assay (ELISA), apoptosis rate by flow cytometry, mitochondrial membrane potential alteration by JC-1, cellular ROS production by the DCFH-DA fluorescent probe, and fusion of cellular autophagosomes and lysosomes through adenoviral infection analysis. Furthermore, gene and protein expression levels of the PINK/Parkin-mediated mitochondrial autophagy pathway and mitochondrial apoptosis pathway were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. Results indicated a significant decrease in MIN6 cell viability following 48 h of exposure to 30 mM glucose concentration. Puerarin intervention markedly attenuated ROS production, restored mitochondrial membrane potential, induced PINK/Parkin-mediated mitochondrial autophagy, suppressed activation of the mitochondrial apoptotic pathway, mitigated apoptosis, and enhanced insulin secretion in a high glucose (HG) environment. The findings of this investigation contribute to a deeper understanding of the precise mechanism underlying the protective effects of puerarin on ß-cells and offer a theoretical foundation for advancing puerarin-based therapeutics aimed at ameliorating T2DM.

5.
Nanomedicine ; : 102786, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341480

RESUMEN

The low oral bioavailability of puerarin (Pur) affects its efficacy. Preparation of puerarin cubic liquid crystal nanoparticles (Pur-Cub) enhances the protective effect of Pur against ischemic stroke (IS) by increasing its bioavailability. The average particle size, PDI, and zeta potential of Pur-Cub were 274.70 ±â€¯16.20 nm, 0.24 ±â€¯0.05 and -25.30 ±â€¯2.34 mV, respectively. Polarized light microscopy (PLM) and Small angle X-ray diffraction (SAXS) identified Pur-Cub as a cubic phase (Pn3m). The in vitro release of Pur-Cub was fast and then slow, in accordance with the biphasic kinetic equation. Pur-Cub increased the penetration of Pur in the intestine (mainly the duodenum) and significantly improved the bioavailability of Pur in the blood (304.16 %) and its distribution in the brain (1.69-fold) compared to Pur suspension. Pur-Cub narrowed down cerebral infarcts and significantly reduced levels of TNF-α, IL-1ß, and IL-6 in a rat model of middle cerebral artery occlusion (MCAO).

6.
Gels ; 10(9)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39330171

RESUMEN

Chinese herbs are a huge treasure trove of natural products and an important source of many active molecules. The theory of traditional Chinese medicine compatibility (TCMC) is widely applied in clinical practice, but its mechanism is still ambiguous. This study aims to open a new window for this predicament by studying the interaction between the main active ingredients from a drug pair. Carrier-free assembly of natural products improves the shortcomings of traditional nanodelivery systems and opens a new path for the development of new nanomaterials. The drug pair "Pueraria and Hedyotis diffusa" has been commonly used in clinical practice, with a predominant therapeutic effect. This study is devoted to the study of the binary small molecule co-assembly of the main active molecules from the drug pair. In this study, we introduce a carrier-free composite gel, formed by the co-assembly of puerarin (PUE) and deacetylasperulosidic acid (DAA) via non-covalent bonds including π-π packing, intermolecular hydrogen bonding, and C=O π interactions. With a strain point 7-fold higher than that of P gel, the P - D gel exhibited favorable rheological properties. The survival rate of SW1990 cells in the P - D group was only 21.39% when the concentration of administration reached 200 µM. It thus demonstrated activity in inhibiting SW1990 cells' survival, suggesting potential in combating pancreatic cancer. Furthermore, this research offers a valuable concept for enhancing the mechanical properties and bioactivity of hydrogel materials through the utilization of a multi-component natural small molecule co-assembly approach. More importantly, this provides new ideas and methods for the treatment of pancreatic cancer and the analysis of traditional Chinese medicine compatibility theory.

7.
Biomed Pharmacother ; 179: 117319, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39197190

RESUMEN

Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.


Asunto(s)
Isoflavonas , Enfermedades Metabólicas , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/prevención & control , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Resistencia a la Insulina
8.
J Asian Nat Prod Res ; : 1-21, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133645

RESUMEN

Based on previous experiments, we demonstrated puerarin inhibited the proliferation of BC T24 cells. To further explore the molecular mechanisms, whole transcriptome sequencing combined with bioinformatics analysis was performed. The results showed puerarin significantly inhibited T24 proliferation and pathway enrichment analysis of differentially expressed RNAs were mainly enriched in Cell cycle, PI3K/AKT, Ras family chromatin remodeling. lncRNAs and circRNAs may regulate miRNAs, thereby regulating the expression of ITGA1, PAK2 and UTRN. The predicted upstream transcription factor ERG and puerarin were well docked, which may be one of the underlying mechanisms by which puerarin inhibiting BC cells.

9.
Int J Nanomedicine ; 19: 7997-8014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130683

RESUMEN

Purpose: Mitochondrial damage may lead to uncontrolled oxidative stress and massive apoptosis, and thus plays a pivotal role in the pathological processes of myocardial ischemia-reperfusion (I/R) injury. However, it is difficult for the drugs such as puerarin (PUE) to reach the mitochondrial lesion due to lack of targeting ability, which seriously affects the expected efficacy of drug therapy for myocardial I/R injury. Methods: We prepared triphenylphosphonium (TPP) cations and ischemic myocardium-targeting peptide (IMTP) co-modified puerarin-loaded liposomes (PUE@T/I-L), which effectively deliver the drug to mitochondria and improve the effectiveness of PUE in reducing myocardial I/R injury. Results: In vitro test results showed that PUE@T/I-L had sustained release and excellent hemocompatibility. Fluorescence test results showed that TPP cations and IMTP double-modified liposomes (T/I-L) enhanced the intracellular uptake, escaped lysosomal capture and promoted drug targeting into the mitochondria. Notably, PUE@T/I-L inhibited the opening of the mitochondrial permeability transition pore, reduced intracellular reactive oxygen species (ROS) levels and increased superoxide dismutase (SOD) levels, thereby decreasing the percentage of Hoechst-positive cells and improving the survival of hypoxia-reoxygenated (H/R)-injured H9c2 cells. In a mouse myocardial I/R injury model, PUE@T/I-L showed a significant myocardial protective effect against myocardial I/R injury by protecting mitochondrial integrity, reducing myocardial apoptosis and decreasing infarct size. Conclusion: This drug delivery system exhibited excellent mitochondrial targeting and reduction of myocardial apoptosis, which endowed it with good potential extension value in the precise treatment of myocardial I/R injury.


Asunto(s)
Isoflavonas , Liposomas , Daño por Reperfusión Miocárdica , Compuestos Organofosforados , Animales , Liposomas/química , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Isoflavonas/química , Isoflavonas/farmacología , Isoflavonas/administración & dosificación , Isoflavonas/farmacocinética , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/farmacocinética , Masculino , Ratones , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cationes/química , Miocardio/patología , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos
10.
Front Pharmacol ; 15: 1442831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206261

RESUMEN

Objective: This study investigated the role of Mzb1 in puerarin protection against heart injury and dysfunction in acute myocardial infarction (AMI) mice. Methods: C57BL/6 mice were pretreated with and without puerarin at doses of 50 mg/kg and 100 mg/kg for 14 days before establishing the AMI model. An AMI model was induced by ligating the left descending anterior coronary artery, and AC16 cardiomyocytes were treated with H2O2 in vitro. Echocardiography was performed to measure cardiac function. DHE staining, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assay, and DCFH-DA oxidative fluorescence staining were used to determine reactive oxygen species (ROS) production in vivo and in vitro. Bioinformatics analysis was used to predict potential upstream transcription factors of Mzb1. Results: Puerarin dose-dependently reduced myocardial infarction area and injury, accompanied by the improvement of cardiac function in AMI mice. AMI mice manifested an increase in myocardial oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and mitochondrial biogenesis dysfunction, which were inhibited by pretreatment with puerarin. Puerarin also prevented Mzb1 downregulation in the hearts of AMI mice or H2O2-treated AC16 cells. Consistent with the in vivo findings, puerarin inhibited H2O2-induced cardiomyocyte apoptosis, ER stress, and mitochondrial dysfunction, which were attenuated by siRNA Mzb1. Furthermore, the JASPAR website predicted that KLF4 may be a transcription factor for Mzb1. The expression of KLF4 was partially reversed by puerarin in the cardiomyocyte injury model, and KLF4 inhibitor (kenpaullone) inhibited Mzb1 expression and affected its function. Conclusion: These results suggest that puerarin can protect against cardiac injury by attenuating oxidative stress and endoplasmic reticulum stress through upregulating the KLF4/Mzb1 pathway and that puerarin may expand our armamentarium for the prevention and treatment of ischemic heart diseases.

11.
Nutrients ; 16(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203718

RESUMEN

BACKGROUND: Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. PURPOSE: The current study was designed to assess the preventive effects of puerarin on the onset and progression of hypertension and to verify the hypothesis that puerarin alleviates blood pressure by inhibiting the ROS/TLR4/NLRP3 inflammasome signaling pathway in the hypothalamic paraventricular nucleus (PVN) of salt-induced prehypertensive rats. METHODS: Male Dahl salt-sensitive rats were fed low NaCl salt (3% in drinking water) for the control (NS) group or 8% (HS) to induce prehypertension. Each batch was divided into two group and treated by bilateral PVN microinjection with either artificial cerebrospinal fluid or puerarin through a micro-osmotic pump for 6 weeks. The mean arterial pressure (MAP) was recorded, and samples were collected and analyzed. RESULTS: We concluded that puerarin significantly prevented the elevation of blood pressure and effectively alleviated the increase in heart rate caused by high salt. Norepinephrine (NE) in the plasma of salt-induced prehypertensive rats also decreased upon puerarin chronic infusion. Additionally, analysis of the PVN sample revealed that puerarin pretreatment decreased the positive cells and gene level of TLR4 (Toll-like receptor 4), NLRP3, Caspase-1 p10, NOX2, MyD88, NOX4, and proinflammatory cytokines in the PVN. Puerarin pretreatment also decreased NF-κBp65 activity, inhibited oxidative stress, and alleviated inflammatory responses in the PVN. CONCLUSION: We conclude that puerarin alleviated blood pressure via inhibition of the ROS/TLR4/NLRP3 inflammasome signaling pathway in the PVN, suggesting the therapeutic potential of puerarin in the prevention of hypertension.


Asunto(s)
Presión Sanguínea , Inflamasomas , Isoflavonas , Proteína con Dominio Pirina 3 de la Familia NLR , Núcleo Hipotalámico Paraventricular , Especies Reactivas de Oxígeno , Transducción de Señal , Receptor Toll-Like 4 , Animales , Masculino , Ratas , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Isoflavonas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Prehipertensión/tratamiento farmacológico , Ratas Endogámicas Dahl , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio Dietético , Receptor Toll-Like 4/metabolismo
12.
J Ethnopharmacol ; 335: 118622, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053719

RESUMEN

ETHNO-PHARMACOLOGICAL RELEVANCE: Huangqi Gegen decoction (HGD), which comprises Astragali Radix (AR) and Puerariae Radix (PR), is widely used to treat thrombosis in China. However, the mechanism underlying its synergistic effect in thrombosis treatment remains unclear. AIM OF THE STUDY: Following PR administration, low plasma exposure was reported for its primary ingredients. In this regard, this study examined the effect of AR on PR's antithrombotic efficacy with respect to the impact of Astragalus Polysaccharide (APS) on the oral delivery of Puerarin (PUE). MATERIALS AND METHODS: To evaluate the synergistic effect of HGD, a thrombus mice model was established via intraperitoneal injection of carrageenan. After treatment, histopathological observations were made, and the proportion of thrombus length in the tail, as well as the plasma APTT, PT, INR, and FIB levels, were detected. Molecular docking was employed to assess the PR ingredients that could inhibit the HMGB1/NF-κB/NLRP3 pathway. The Pharmacokinetics of PR ingredients in rats were also compared between the PR and HGD groups. Moreover, the effect of APS on the solubility, intestinal absorption, and pharmacokinetics of PUE was evaluated. Furthermore, the impact of APS on the antithrombotic efficacy of PUE was assessed. RESULTS: In mice, AR enhanced the antithrombotic effect of PR. This improved PR effect was associated with isoflavones-induced downregulation of the HMGB1/NF-κB/NLRP3 pathway. The synergistic effect resulting from the compatibility of HGD components was primarily achieved by improving the plasma exposure of PR isoflavones. Specifically, APS enhanced PUE's water solubility through the formation of self-assembly Nanoparticles, increasing its intestinal absorption and oral bioavailability, which, in turn, suppressed the HMGB1/NF-κB/NLRP3 pathway, thus improving its antithrombotic effect. CONCLUSIONS: Our findings revealed that APS improved PUE's plasma exposure, enhancing its inhibitory effect on the HMGB1/NF-κB/NLRP3 pathway. This mechanism presents a key aspect of the synergistic effect of HGD compatibility in thrombosis treatment.


Asunto(s)
Planta del Astrágalo , Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Isoflavonas , Polisacáridos , Trombosis , Animales , Isoflavonas/farmacología , Isoflavonas/administración & dosificación , Isoflavonas/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Polisacáridos/farmacología , Polisacáridos/administración & dosificación , Masculino , Administración Oral , Trombosis/tratamiento farmacológico , Ratones , Planta del Astrágalo/química , Fibrinolíticos/farmacología , Fibrinolíticos/administración & dosificación , Pueraria/química , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Astragalus propinquus/química , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
13.
Clinics (Sao Paulo) ; 79: 100413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024795

RESUMEN

OBJECTIVE: Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS: ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS: Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION: Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.


Asunto(s)
Acroleína , Aterosclerosis , Histona Desacetilasa 1 , Isoflavonas , Estrés Oxidativo , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Acroleína/farmacología , Masculino , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Western Blotting , Aorta/efectos de los fármacos , Aorta/patología
14.
Int J Mol Med ; 54(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39054965

RESUMEN

Following the publication of the above paper, it has been drawn to the Editor's attention by a concerned reader that the immunohistochemical assay data shown in Fig. 4B on p. 245 were strikingly similar to data appearing in different form in another article written by different authors at different research institutes that had already been published in the journal International Journal of Biological Sciences prior to the submission of this paper to International Journal of Molecular Medicine. In view of the fact that the contentious data had already apparently been published previously, the Editor of International Journal of Molecular Medicine has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 46: 239-251, 2020; DOI: 10.3892/ijmm.2020.4595].

15.
BMC Complement Med Ther ; 24(1): 257, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982456

RESUMEN

BACKGROUND: Neuroblastoma, a prevalent solid tumor in children, often manifests with hidden onset sites, rapid growth, and high metastatic potential. The prognosis for children with high-risk neuroblastoma remains poor, highlighting the urgent need for novel prognostic models and therapeutic avenues. In recent years, puerarin, as a kind of small molecule drug extracted from Chinese medicine Pueraria lobata, has demonstrated significant anticancer effects on various cancer cell types. In this study, through bioinformatics analysis and in vitro experiments, the potential and mechanism of puerarin in the treatment of neuroblastoma were investigated, and a prognostic model was established. METHODS: A total of 9 drug-disease related targets were observed by constructing a database of drug targets and disease genes. Besides, GO and KEGG enrichment analysis was performed to explore the potential mechanism of its therapeutic effect. To construct the prognostic model, risk regression analysis and LASSO analysis were carried out for validation. Finally, the prognostic genes were identified. Parachute test and immunofluorescence staining were performed to verify the potential mechanism of puerarin in neuroblastoma treatment. RESULTS: Three prognostic genes, i.e., BIRC5, TIMP2 and CASP9, were identified. In vitro studies verified puerarin's impact on BIRC5, TIMP2, and CASP9 expression, inhibiting proliferation in neuroblastoma SH-SY5Y cells. Puerarin disrupts the cytoskeleton, boosts gap junctional communication, curtailing invasion and migration, and induces mitochondrial damage in SH-SY5Y cells. CONCLUSIONS: Based on network pharmacology and bioinformatics analysis, combined with in vitro experimental verification, puerarin was hereby observed to enhance GJIC in neuroblastoma, destroy cytoskeleton and thus inhibit cell invasion and migration, cause mitochondrial damage of tumor cells, and inhibit cell proliferation. Overall, puerarin, as a natural medicinal compound, does hold potential as a novel therapy for neuroblastoma.


Asunto(s)
Biología Computacional , Isoflavonas , Neuroblastoma , Neuroblastoma/tratamiento farmacológico , Isoflavonas/farmacología , Humanos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
16.
Biomed Pharmacother ; 177: 117101, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002442

RESUMEN

Puerarin, a monomer of traditional Chinese medicine, is a key component of Pueraria radix. Both clinical and experimental researches demonstrated that puerarin has therapeutic effects on Parkinson's disease (PD). Puerarin's pharmacological mechanisms include: 1) Anti-apoptosis. Puerarin inhibits cell apoptosis through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. Puerarin also exerts a hormone-like effect against cell apoptosis; 2) Anti-oxidative stress injury. Puerarin inhibits the Nrf2 nuclear exclusion through the GSK-3ß/Fyn pathway to promote the Nrf2 accumulation in the nucleus, and then promotes the antioxidant synthesis through the Nrf2/ARE signaling pathway to protect against oxidative stress; 3) Neuroprotective effects by intervening in the ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP). Puerarin significantly enhances the activity of chaperone-mediated autophagy (CMA), which downregulates the expression of α-synuclein, reduces its accumulation, and thus improves the function of damaged neurons. Additionally, puerarin increases proteasome activity and decreases ubiquitin-binding proteins, thereby preventing toxic accumulation of intracellular proteins; 4) Alleviating inflammatory response. Puerarin inhibits the conversion of microglia to the M1 phenotype while inducing the transition of microglia to the M2 phenotype. Furthermore, puerarin promotes the secretion of anti-inflammatory factor and inhibits the expression of pro-inflammatory factors; 5) Increasing the levels of dopamine and its metabolites. Puerarin could increase the levels of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum; 6) Promoting neurotrophic factor expression and neuronal repair. Puerarin increases the expression of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), thereby exerting a neuroprotective effect. Moreover, the regulation of the gut microbiota by puerarin may be a potential mechanism for the treatment of PD. The current review discusses the molecular mechanisms of puerarin, which may provide insight into the active components of traditional Chinese medicine in the treatment of PD.


Asunto(s)
Isoflavonas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
17.
Front Pharmacol ; 15: 1423634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055493

RESUMEN

Introduction: Pueraria lobata is traditionally used in China for treatment of non-alcoholic fatty liver disease (NAFLD). Puerarin, a functional drug extracted from Pueraria lobata, features a pharmacological activity. The present study aims to investigate the effect of puerarin intervention on NAFLD. Methods: We established an NAFLD mouse model using a high-fat diet with 60% fat and evaluated the impact of puerarin intervention. Results and discussion: Our results demonstrate that puerarin intervention significantly ameliorates lipid accumulation and protects the liver from high-fat-induced damage while reducing oxidative stress levels in the liver. Furthermore, puerarin intervention significantly downregulates the transcription levels of acetyl-CoA carboxylase (ACC1) in the liver. It also upregulates the transcription levels of carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferators-activated receptor γ coactivator alpha (PGC1α), which are related to oxidation. Furthermore, we demonstrated that flavin-containing monooxygenase (FMO5) was involved in the protective effect of puerarin against NFALD. In conclusion, the present study demonstrated the beneficial effect of puerarin on NAFLD and showed that puerarin could prevent liver injury and lipid accumulation caused by NAFLD via activating FMO5. These findings provide a new theoretical basis for applying puerarin as a therapeutic agent for NAFLD.

18.
J Cell Mol Med ; 28(14): e18550, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39042561

RESUMEN

Endometritis is one of the important causes of infertility. Puerarin (PU) can inhibit oxidative stress and reduce inflammation; however, it is unclear whether PU has a protective effect on the endometritis. In our study, we used Staphylococcus aureus to induce mouse endometritis. The PU group (100 mg/kg PU) and the S. aureus + PU group received daily intraperitoneal injection of PU (25, 50 or 100 mg/kg PU). The results showed that S. aureus significantly increased the levels of MPO, TNF-α, IL-1ß and IL-6 in uterine tissue, and increased the expression of p-p65 and p-IκBα proteins in uterine tissue to induce endometritis in mice (p < 0.05). Furthermore, it has been found that S. aureus promotes the occurrence of ferroptosis by reducing GSH and ATP content, increasing MDA and iron content and reducing GPX4 and SLC7A11 protein expression levels (p < 0.05). S. aureus significantly increase the expression of NLRP3, ASC, caspase-1 and P2X7 proteins in uterine tissue (p < 0.05). However, PU obviously reduced the inflammatory response and reversed the changes of ferroptosis and the expression of P2X7 receptor/NLRP3 pathway associated proteins of the uterus induced by S. aureus (p < 0.05). Taken together, these findings emphasize the protective effect of PU on endometritis by regulating the P2X7 receptor/NLRP3 signalling pathway and inhibiting ferroptosis.


Asunto(s)
Endometritis , Ferroptosis , Isoflavonas , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores Purinérgicos P2X7 , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Femenino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Ferroptosis/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Endometritis/metabolismo , Endometritis/microbiología , Endometritis/tratamiento farmacológico , Endometritis/patología , Transducción de Señal/efectos de los fármacos , Ratones , Receptores Purinérgicos P2X7/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Útero/metabolismo , Útero/patología , Útero/efectos de los fármacos , Útero/microbiología , Estrés Oxidativo/efectos de los fármacos
19.
Mol Nutr Food Res ; 68(16): e2400003, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39072916

RESUMEN

SCOPE: Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from Pueraria lobata, exhibits antioxidant, anti-inflammatory, and antidiabetic effects. This study explores the potential mechanisms underlying puerarin's role in mitigating insulin resistance in high-fat diet (HFD)-induced obese mice. METHODS AND RESULTS: In this study, insulin resistant in mice is induced by a high-fat diet, followed by treatment with puerarin. The results demonstrate that puerarin effectively attenuates insulin resistance, including weight loss, improvement of glucose tolerance and insulin sensitivity, and activation of insulin signaling pathway. Additionally, puerarin administration suppresses ER stress by down-regulation of ATF6, ATF4, CHOP, GRP78 expressions in epididymal white adipose tissue (eWAT), along with decreased phosphorylation IRE1α, PERK, and eIF2α. Furthermore, puerarin exerts anti-inflammatory effects by inhibiting JNK and IKKß/NF-κB pathways, leading to reduction of TNF-α and IL-6. CONCLUSION: These findings suggest that puerarin mitigates insulin resistance by inhibiting ER stress and suppressing inflammation through the JNK and IKKß/NF-κB pathways. This highlights the promising clinical application of puerarin in the treatment of insulin resistance.


Asunto(s)
Tejido Adiposo Blanco , Dieta Alta en Grasa , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Quinasa I-kappa B , Resistencia a la Insulina , Isoflavonas , Ratones Endogámicos C57BL , FN-kappa B , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Isoflavonas/farmacología , Dieta Alta en Grasa/efectos adversos , Masculino , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , FN-kappa B/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Transducción de Señal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones
20.
Phytomedicine ; 130: 155546, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833790

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, and its increasing prevalence is a global concern. Early diagnostic markers and therapeutic targets are essential for DM prevention and treatment. Pueraria, derived from kudzu root, is used clinically for various symptoms, and its active compound, Puerarin, shows promise in improving insulin resistance and reducing inflammation. PURPOSE: This study aims to evaluate the protective effects of metformin and Puerarin at different doses in an STZ-induced DM mouse model. The intricate metabolites within the serum of STZ-induced diabetic mice were subjected to thorough investigation, thus elucidating the intricate mechanism through which Puerarin demonstrates notable efficacy in the treatment of diabetes. METHODS: An STZ-induced DM mouse model is established. Mice are treated with metformin and puerarin at varying doses. Physiological, biochemical, and histomorphological assessments are performed. Metabolomics analysis is carried out on serum samples from control, DM, metformin, and medium-dose Puerarin groups. Western blot and qRT-PCR technologies are used to validate the mechanisms. RESULTS: The DM mouse model replicates abnormal blood glucose, insulin levels, physiological, biochemical irregularities, as well as liver and pancreas damage. Treatment with metformin and Puerarin restores these abnormalities, reduces organ injury, and modulates AMPK, PPARγ, mTOR, and NF-κB protein and mRNA expression. Puerarin activates the AMPK-mTOR and PPARγ-NF-κB signaling pathways, regulating insulin signaling, glucolipid metabolism, and mitigating inflammatory damage. CONCLUSION: This study demonstrates that Puerarin has the potential to treat diabetes by modulating key signaling pathways. The focus was on the finding that Puerarin has been shown to improve insulin signaling, glucolipid metabolism and attenuate inflammatory damage through the modulation of the AMPK-mTOR and PPARγ-NF-κB pathways. The discovery of Puerarin's favorable protective effect and extremely complex mechanism highlights its prospect in the treatment of diabetes and provides theoretical support for its comprehensive development and utilization.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucemia , Diabetes Mellitus Experimental , Hipoglucemiantes , Isoflavonas , Metformina , FN-kappa B , PPAR gamma , Pueraria , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Isoflavonas/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , FN-kappa B/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Metformina/farmacología , PPAR gamma/metabolismo , Pueraria/química , Ratones , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolómica , Insulina/sangre , Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA