Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226125

RESUMEN

Sulfur-containing compounds have diverse biological functions and are crucial in crop protection chemistry. In this study, a series of novel 1-methyl-1H-pyrazol-5-amine derivatives incorporating disulfide moieties were synthesized and evaluated for their antimicrobial properties. In vitro bioassays demonstrated that compound 7f displayed potent antifungal activity against Valsa mali, with an EC50 value of 0.64 mg/L, outperforming allicin (EC50 = 26.0 mg/L) but lower than tebuconazole (EC50 = 0.33 mg/L). In vivo experiments confirmed that compound 7f could effectively inhibit V. mali infection on apples at a concentration of 100 mg/L, similar to the positive control tebuconazole. Mechanistic studies revealed that compound 7f could induce hyphal shrinkage and collapse, trigger intracellular reactive oxygen species accumulation, modulate antioxidant enzyme activities, initiate lipid peroxidation, and ultimately cause irreversible oxidative damage to the cells of V. mali. Additionally, compound 7b exhibited notable antibacterial activity, particularly against Pseudomonas syringae pv. actinidiae, with a MIC90 value of 1.56 mg/L, surpassing the positive controls allicin, bismerthiazol, and streptomycin sulfate. These findings suggest that 1-methyl-1H-pyrazol-5-amine derivatives containing disulfide moieties hold promise as potent candidates for the development of novel antimicrobial agents.

2.
Bioorg Chem ; 153: 107779, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39236583

RESUMEN

To facilitate the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we synthesized three series of derivatives by introducing phenyl pyrazole fragments into the structure of pyrazol-4-yl amides. The results of the bioactivity assay showed that most of the target compounds possessed varying degrees of inhibitory activity against the tested fungi. At a concentration of 100 mg/L, the compound B8 exhibited effective protective activity against S. sclerotiorum in vivo. Molecular docking analysis and succinate dehydrogenase (SDH) inhibition assay indicated that B8 was not a potential SDHI. The preliminary antifungal mechanism of studies showed that B8 induced a large amount of reactive oxygen species (ROS) and severe lipid peroxidation damage in S. sclerotiorum mycelium, resulting in mycelial rupture and disruption of the integrity of the cell membrane and leakage of soluble proteins, soluble sugars and nucleic acids. Further transcriptome analysis showed that compound B8 blocked various metabolic pathways by downregulating the differentially expressed genes (DEGs) catalase, disrupting hydrogen peroxide hydrolysis, accelerating membrane oxidative damage, and upregulating neutral ceramidase, accelerating sphingolipid metabolism to disrupt cell membrane structure and cell proliferation and differentiation, potentially accelerating cell death. The above results indicated that the potential target of these dis-pyrazole carboxamide derivatives may be the cell membrane of pathogenic fungi.

3.
Chem Biodivers ; : e202401810, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225328

RESUMEN

In the present study, a new series of 1,2,4‒triazole linked pyrazole hybrids (5a‒5l) were synthesized from dimethyl amino pyrazole (1) in good yield by three-step reaction. The chemical structures of the resulted compounds were thoroughly elucidated using spectral analyses such as IR, 1H-NMR, 13C-NMR, mass spectra and elemental analysis. The target compounds were screened for their antimicrobial activities against the various standard pathogen strains, Gram‒(‒ve) (E. coli, P. aeruginosa, K. pneumoniae, A. baumannii), and Gram‒(+ve) (S. aureus,S. faecalis) microorganisms. According to the results obtained, in particular, compounds 5b, 5f, 5h and 5j was effective at inhibiting the antibacterial growth of all the bacteria's, having MIC values ranging 0.983‒14.862 mg/mL and compared to moxifloxacin (1.391‒22.01 mg mL-1). The most active compounds were chosen to interact with the DNA gyrase and topoisomerase-IV targets via molecular docking. These selected ligands interacted with PDB targets 2XCO, 1S16 and docked into the active site of amino acids Ala-269, Gly-413, Asn-405, Ser-1182, Thr-1185, His-1186, His-1186, Lys-1189, and Trp-1213. The pharmacokinetic properties, stability, and drug-likeness parameters of all target molecules were estimated using SwissADME and PkCSM protocols. The current study used in silico approaches combining e-pharmacophore modeling and structure-based molecular docking of targets to identify antimicrobial agents.

4.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124949

RESUMEN

Chagas disease, a silent but widespread disease that mainly affects a socioeconomically vulnerable population, lacks innovative safe drug therapy. The available drugs, benznidazole and nifurtimox, are more than fifty years old, have limited efficacy, and carry harmful side effects, highlighting the need for new therapeutics. This study presents two new series of pyrazole-thiadiazole compounds evaluated for trypanocidal activity using cellular models predictive of efficacy. Derivatives 1c (2,4-diCl) and 2k (4-NO2) were the most active against intracellular amastigotes. Derivative 1c also showed activity against trypomastigotes, with the detachment of the flagellum from the parasite body being a predominant effect at the ultrastructural level. Analogs have favorable physicochemical parameters and are predicted to be orally available. Drug efficacy was also evaluated in 3D cardiac microtissue, an important target tissue of Trypanosoma cruzi, with derivative 2k showing potent antiparasitic activity and a significant reduction in parasite load. Although 2k potentially reduced parasite load in the washout assay, it did not prevent parasite recrudescence. Drug combination analysis revealed an additive profile, which may lead to favorable clinical outcomes. Our data demonstrate the antiparasitic activity of pyrazole-thiadiazole derivatives and support the development of these compounds using new optimization strategies.


Asunto(s)
Pirazoles , Tiadiazoles , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Tiadiazoles/química , Tiadiazoles/farmacología , Tiadiazoles/síntesis química , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Humanos
5.
Future Med Chem ; 16(13): 1299-1311, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39109431

RESUMEN

Aim: Design and synthesis of pyrazole-based chemotherapeutic agents. Materials & methods: A series of novel diphenyl pyrazole-chalcone derivatives were synthesized and assessed for their cytotoxic activities against 14 cancer cell lines and their antimicrobial activities against MRSA and Escherichia coli along with their safety using HSF normal cell line. Results & conclusion: Majority of the compounds showed moderate-to-significant anticancer activity with selective high percentage inhibition (>80%) against HNO-97 while being nontoxic toward normal cells. Compounds 6b and 6d were the most potent congeners with IC50 of 10 and 10.56 µM respectively. The synthesized compounds exhibited moderate to potent antimicrobial activities. Interestingly, compound 6d exhibited a minimum inhibitory concentration of 15.7 µg/ml against MRSA; and a minimum inhibitory concentration of 7.8 µg/ml versus E. coli.


[Box: see text].


Asunto(s)
Antibacterianos , Antineoplásicos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli , Pruebas de Sensibilidad Microbiana , Pirazoles , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Estructura-Actividad , Línea Celular Tumoral , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Estructura Molecular , Proliferación Celular/efectos de los fármacos
6.
Heliyon ; 10(14): e34540, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130476

RESUMEN

Peptic ulcer disease (PUD), often caused by Helicobacter pylori infection, is a prevalent gastrointestinal condition characterized by the erosion of the gastric or duodenal mucosal lining. H. pylori adheres to gastric epithelial cells, secreting toxins and disrupting the stomach's defenses. H. pylori relies on various receptors to establish infection, making these molecules attractive therapeutic targets. This study aimed to develop novel anti-ulcer compounds by combining benzothiazole, pyrazoline, and chalcone pharmacophores. A series of chalcone derivatives 4a-c were synthesized via Claisen-Schmidt condensation and characterized using spectroscopic techniques such as FT-IR, NMR and elemental analysis. The DFT calculations, using B3LYP method with 6-311G basis set, revealed the p-tolyl derivative 4b exhibited the highest thermal stability while the p-bromophenyl derivative 4c showed the lowest stability but highest chemical reactivity. The HOMO-LUMO energy gaps as well as the dipole moments decreased in the order: 4b > 4a > 4c, reflecting a similar reactivity trend. Molecular docking showed ligands 4a-c bound effectively to the H. pylori urease enzyme, with docking scores from -5.3862 to -5.7367 kcal/mol with superior affinity over lansoprazole. Key interactions involved hydrogen bonds and hydrophobic pi-hydrogen bonds with distances ranging 3.46-4.34 Å with active site residues ASN666, SER714 and ASN810. The combined anti-inflammatory, antimicrobial, and H. pylori anti-adhesion properties make these novel chalcones promising PUD therapeutic candidates.

7.
Beilstein J Org Chem ; 20: 2024-2077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161713

RESUMEN

Pyrazoles are rarely found in nature but are traditionally used in the agrochemical and pharmaceutical industries, while other areas of use are also actively developing. However, they have also found numerous other applications. The search for new and efficient syntheses of these heterocycles is therefore highly relevant. The modular concept of multicomponent reactions (MCR) has paved a broad alley to heteroaromatics. The advantages over traditional methods are the broader scope and increased efficiency of these reactions. In particular, traditional multistep syntheses of pyrazoles have considerably been extended by MCR. Progress has been made in the cyclocondensation of 1,3-dielectrophiles that are generated in situ. Limitations in the regioselectivity of cyclocondensation with 1,3-dicarbonyls were overcome by the addition-cyclocondensation of α,ß-unsaturated ketones. Embedding 1,3-dipolar cycloadditions into a one-pot process has additionally been developed for concise syntheses of pyrazoles. The MCR strategy also allows for concatenating classical condensation-based methodology with modern cross-coupling and radical chemistry, as well as providing versatile synthetic approaches to pyrazoles. This overview summarizes the most important MCR syntheses of pyrazoles based on ring-forming sequences in a flashlight fashion.

8.
J Phys Org Chem ; 37(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39185358

RESUMEN

The condensation of 1,3-diketones with hydrazine to access 4H-pyrazoles is a well-established synthetic route that travels through a 4H-pyrazol-1-ium intermediate. In the route to a 3,5-diphenyl-4H-pyrazole containing a cyclobutane spirocycle, density functional theory calculations predict and experiments show that the protonated intermediate undergoes a rapid 1,5-sigmatropic shift to form a tetrahydrocyclopenta[c]pyrazole. Replacing the 3,5-diphenyl groups with 2-furanyl groups decreases the calculated rate of the 1,5-sigmatropic shift by 6.2 × 105-fold and enables the isolation of new spirocyclic 4H-pyrazoles for click chemistry.

9.
Chem Asian J ; : e202400784, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191674

RESUMEN

Host-guest doping strategy has gradually become the mainstream in constructing organic room-temperature phosphorescence (RTP) materials. The two-component doped system typically emits monochromatic phosphorescence dominated by the guest molecule, which also means that the intrinsic phosphorescence emission of the host molecule is not well utilized. In this work, a time-dependent color-changing RTP material is constructed based on host-guest doped system, in which the initial yellow phosphorescence stems from the isoquinoline-pyrazole guest and the final cyan phosphorescence originates from the intrinsic emission of the polymer host. The phenomenon of the strong interaction between host and guest molecules leading to their respective intrinsic phosphorescence provides new design inspiration for designing and developing two-component doped materials with RTP properties of color variation over time.

10.
Food Chem ; 460(Pt 3): 140722, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106753

RESUMEN

Tyrosinase (Polyphenol oxidase), a key enzyme in enzymatic browning, is an attractive target for developing new anti-browning agents in the food industry. In this work, twenty pyrazole-1,2,4-triazole derivatives (3a-3n, 4a-4f) were synthesized and tested in vitro, most of compounds showed potent anti-tyrosinase activity. Of these, 3c (IC50 = 1.02 ± 0.08 µM) was found to be 14 folds stronger than kojic acid (IC50 = 14.74 ± 1.23 µM) and behaved as a mixed type inhibitor. Besides, the disappeared peak of dopaquinone in the HPLC assay intuitively validated the inhibitory effect of 3c. Copper ions chelating, fluorescence quenching and molecular docking assays showed that coordination with copper is the key to play a role. Furthermore, 3c exhibited excellent anti-browning ability for the Rosa roxburghii Tratt, the non-enzymatic browning experiment showed that 3c could prevent browning in non-enzymatic ways. It is suggested that these derivatives could serve as the leading compounds to find more efficient anti-browning agents in the future.


Asunto(s)
Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Pirazoles , Triazoles , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Triazoles/química , Triazoles/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazoles/química , Pirazoles/farmacología , Relación Estructura-Actividad , Diseño de Fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inhibidores , Estructura Molecular , Reacción de Maillard
11.
Bioorg Chem ; 152: 107722, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39213796

RESUMEN

This study reports the Design Hypothesis of a novel series of 1,3-diphenyl pyrazole-thiosemicarbazone as novel tyrosinase inhibitors (TYRI). The designed compounds were prepared and their TYRI activity and mechanisms were studied. The results showed that the selected compounds exhibited potent tyrosinase inhibitory activities greater than that of kojic acid (KA). Lead candidates, denoted as 6g and 6n, with a para-hydroxyphenyl group attached to the 3-position of the pyrazole ring demonstrated IC50 values of 2.09 and 3.18 µM, respectively. The potency of these compounds was approximately 5-8 times higher than that of KA. The in vitro melanin content of 6g or 6n-treated melanoma cells resulted in significant efficacy in melanin reduction. The DPPH assay result revealed that the tyrosinase inhibition mechanism for these derivatives was independent of a redox effect and corresponded to the interaction with tyrosinase. According to the Lineweaver-Burk plot, the most potent compounds, 6g and 6n, exhibit a mixed type of inhibition, primarily noncompetitive inhibition. In silico molecular docking studies were employed to determine the binding mode and explore the Design Hypothesis in detail. The results suggested that these compounds could be considered promising leads for the further development of novel inhibitors to treat disorders related to tyrosinase.

12.
Mol Divers ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150608

RESUMEN

To address the urgent need for new antifungal agents, a collection of novel pyrazole carboxamide derivatives incorporating a benzimidazole group were innovatively designed, synthesized, and evaluated for their efficacy against fungal pathogens. The bioassay results revealed that the EC50 values for the compounds A7 (3-(difluoromethyl)-1-methyl-N-(1-propyl-1H-benzo[d]imidazol-2-yl)-1H-pyrazole-4-carboxamide) and B11 (N-(1-(4-chlorobenzyl)-1H-benzo[d]imidazol-2-yl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide) against B. cinerea were notably low to 0.79 µg/mL and 0.56 µg/mL, respectively, demonstrating the potency comparable to that of the control fungicide boscalid, which has an EC50 value of 0.60 µg/mL. Noteworthy is the fact that in vivo tests demonstrated that A7 and B11 showed superior protective effects on tomatoes and strawberries against B. cinerea infection when juxtaposed with the commercial fungicide carbendazim. The examination through scanning electron microscopy revealed that B11 notably alters the morphology of the fungal mycelium, inducing shrinkage and roughening of the hyphal surfaces. To elucidate the mechanism of action, the study on molecular docking and molecular dynamics simulations was conducted, which suggested that B11 effectively interacts with crucial amino acid residues within the active site of succinate dehydrogenase (SDH). This investigation contributes a novel perspective for the structural design and diversification of potential SDH inhibitors, offering a promising avenue for the development of antifungal therapeutics.

13.
Front Chem ; 12: 1445671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983676
14.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 800-805, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38974147

RESUMEN

The crystal structures of 4-benzyl-1H-pyrazole (C10H10N2, 1) and 3,5-di-amino-4-benzyl-1H-pyrazole (C10H12N4, 2) were measured at 150 K. Although its different conformers and atropenanti-omers easily inter-convert in solution by annular tautomerism and/or rotation of the benzyl substituent around the C(pyrazole)-C(CH2) single bond (as revealed by 1H NMR spectroscopy), 1 crystallizes in the non-centrosymmetric space group P21. Within its crystal structure, the pyrazole and phenyl aromatic moieties are organized into alternating bilayers. Both pyrazole and phenyl layers consist of aromatic rings stacked into columns in two orthogonal directions. Within the pyrazole layer, the pyrazole rings form parallel catemers by N-H⋯N hydrogen bonding. Compound 2 adopts a similar bilayer structure, albeit in the centrosymmetric space group P21/c, with pyrazole N-H protons as donors in N-H⋯π hydrogen bonds with neighboring pyrazole rings, and NH2 protons as donors in N-H⋯N hydrogen bonds with adjacent pyrazoles and other NH2 moieties. The crystal structures and supra-molecular features of 1 and 2 are contrasted with the two known structures of their analogs, 3,5-dimethyl-4-benzyl-1H-pyrazole and 3,5-diphenyl-4-benzyl-1H-pyrazole.

15.
Curr Org Synth ; 21(7): 947-956, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044704

RESUMEN

BACKGROUND: Pyrazolopyridines are interesting fused heterocyclic pharmacophores that combine pyrazole and pyridine; two privileged nuclei extensively studied and with a wide range of applications. They can be obtained by a broad variety of synthetic methods among which multicomponent reactions have gained importance, especially from 5-aminopyrazoles and dielectrophilic reagents. However, the search for new approaches more in tune with sustainable chemistry and the use of unconventional heating in three-component synthesis are open and highly relevant study fields. METHODS: A novel, practical and efficient three-component synthesis of cycloalkane-fused pyrazolo[ 4,3-e]pyridines was developed through a tandem reaction of 5-aminopyrazoles, cyclic ketones and electron-rich olefins, using microwave induction in perfluorinated solvent and iodine as catalyst. RESULTS: The microwave-induced three-component approach applied in this work promoted the construction of 10 new pyrazolopyridines with high speed and excellent control of regioselectivity, favoring the linear product with good yields; where the versatility of electron-rich olefins in iodine-catalyzed cascade heterocyclizations, granted the additional benefit of easy isolation and the possibility to reuse the fluorous phase. CONCLUSION: Although pyrazolopyridines have been synthetically explored because of their structural and biological properties, most of the reported synthetic methods use common or even toxic organic solvents and conventional heating or multi-step processes. In contrast, this study applied a multicomponent methodology in a single step by microwave induction and with the versatility provided in this case by the use of perfluorinated solvent, which allowed easy isolation of the final product and recovery of the fluorous phase.

16.
Heliyon ; 10(13): e33160, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39035494

RESUMEN

In the present work, two hybrid series of pyrazole-clubbed pyrimidine and pyrazole-clubbed thiazole compounds 3-21 from 4-acetyl-1,3-diphenyl-1H-pyrazole-5(4H)-ole 1 were synthesized as novel antimicrobial agents. Their chemical structures were thoroughly elucidated in terms of spectral analyses such as IR, 1H NMR, 13C NMR and mass spectra. The compounds were in vitro evaluated for their antimicrobial efficiency against various standard pathogen strains, gram -ive bacteria (Pseudomonas aeruginosa, Klebsiella pneumonia), gram + ive bacteria (MRSA, Bacillus subtilis), and Unicellular fungi (Candida albicans) microorganisms. The ZOI results exhibited that most of the tested molecules exhibited inhibition potency from moderate to high. Where compounds 7, 8, 12, 13 and 19 represented the highest inhibition potency against most of the tested pathogenic microbes comparing with the standard drugs. In addition, the MIC results showed that the most potent molecules 7, 8, 12, 13 and 19 showed inhibition effect against most of the tested microbes at low concentration. Moreover, the docking approach of the newly synthesized compounds against DNA gyrase enzyme was performed to go deeper into their molecular mechanism of antimicrobial efficacy. Further, computational investigations to calculate the pharmacokinetics parameters of the compounds were performed. Among them 7, 8, 12, 13 and 19 are the most potent compounds revealed the highest inhibition efficacy against most of the tested pathogenic microbes comparing with the standard drugs.

17.
Bioorg Chem ; 150: 107601, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991489

RESUMEN

A set of novels 2-thiohydantoin derivatives were synthesized and enaminone function was discussed at position 5 using DMFDMA catalyst which result in formation of pyrazole, isoxazole, benzoxazepine by using reagents such as hydrazine, hydroxylamine and 2-aminothiophenol. These newly synthesized compounds were evaluated for their antioxidant and antiproliferative activity. In vitro studies on the effect of 2-thiohydantoin on scavenging 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) confirmed the free radical scavenging and antioxidant activity of 2-thiohydantoin. The synthesized compounds show significant antioxidant activity. The in vitro antitumor activity of 2-thiohydantoin on MCF7 (breast) and PC3 cells (prostate) was evaluated using MTT assay. Some of the synthesized compounds show significant to moderate antiproliferative properties compared to reference drug erlotinib. Among all, compound 4a exhibit potent antitumor properties against MCF7 and PC3 cancer cell lines with IC50 = 2.53 ± 0.09 /ml & with IC50 = 3.25 ± 0.12 µg/ml respectively and has potent antioxidant activity with IC50 = 10.04 ± 0.49 µg/ml.


Asunto(s)
Antineoplásicos , Antioxidantes , Aromatasa , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Simulación del Acoplamiento Molecular , Tiohidantoínas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Tiohidantoínas/farmacología , Tiohidantoínas/química , Tiohidantoínas/síntesis química , Aromatasa/metabolismo , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Catálisis , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/química , Línea Celular Tumoral , Termodinámica , Picratos/antagonistas & inhibidores , Hidrazinas , Tioamidas
18.
Mol Divers ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014146

RESUMEN

Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.

19.
Chem Biodivers ; : e202400831, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005105

RESUMEN

5-(Cyanomethyl)-3-((5,5-dimethyl-3-oxocyclohex-1-en-1-yl)amino)-1H-pyrazole-4-carbonitrile (3) is used as a key for the synthesis of arylidenes 5a-fvia its reaction with some aldehydes 4a-f. 5-[(5,5-Dimethyl-3-oxocyclohex-1-en-1-yl)amino]-3-(2-imino-2H-chromen-3-yl)-1H-pyrazole-4-carbonitrile (7) was synthesized via the reaction of compound (3) with 2-hydroxybenzaldehyde in EtOH/piperidine. The target compounds were tested against cotton leafworm larvae in their second and fourth instar. The available data demonstrated that the LC50 values for commercial phenylpyrazole were 3.37 mg/L and 4.55 mg/L for the most affected synthesized compound, 5b. The chemical structure of compound 5b has two cyano moieties, a pyrazole ring and a chlorophenyl, which may be increasing it efficiency. Evaluation of the latent effects of the examined synthesized compounds on various biological parameters, including adult longevity, pupal weight, proportion of normal, deformed pupae, adult emergency, fecundity, and egg hatchability, was done in an additional effort to slightly improve insecticidal compounds. Twelve synthesized compounds were subjected to a molecular docking analysis against glutamate-activated chloride channels. Twelve artificial compounds with the PDB ID of 4COF were subjected to a molecular docking study against the gamma-aminobutyric acid receptor (GABA).

20.
Arch Pharm (Weinheim) ; : e2400282, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969965

RESUMEN

A series of new indole-pyrazole hybrids 8a-m were synthesized through the palladium-catalyzed ligandless Heck coupling reaction from easily accessible unsubstituted, methoxy- or fluoro-substituted 4-ethenyl-1H-pyrazoles and 5-bromo-3H-indoles. These compounds exerted cytotoxicity to melanoma G361 cells when irradiated with blue light (414 nm) and no cytotoxicity in the dark at concentrations up to 10 µM, prompting us to explore their photodynamic effects. The photodynamic properties of the example compound 8d were further investigated in breast cancer MCF-7 cells. Evaluation revealed comparable anticancer activities of 8d in both breast and melanoma cancer cell lines within the submicromolar range. The treatment induced a massive generation of reactive oxygen species, leading to different types of cell death depending on the compound concentration and the irradiation intensity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA