Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38920469

RESUMEN

The question of what generates conscious experience has mesmerized thinkers since the dawn of humanity, yet its origins remain a mystery. The topic of consciousness has gained traction in recent years, thanks to the development of large language models that now arguably pass the Turing test, an operational test for intelligence. However, intelligence and consciousness are not related in obvious ways, as anyone who suffers from a bad toothache can attest-pain generates intense feelings and absorbs all our conscious awareness, yet nothing particularly intelligent is going on. In the hard sciences, this topic is frequently met with skepticism because, to date, no protocol to measure the content or intensity of conscious experiences in an observer-independent manner has been agreed upon. Here, we present a novel proposal: Conscious experience arises whenever a quantum mechanical superposition forms. Our proposal has several implications: First, it suggests that the structure of the superposition determines the qualia of the experience. Second, quantum entanglement naturally solves the binding problem, ensuring the unity of phenomenal experience. Finally, a moment of agency may coincide with the formation of a superposition state. We outline a research program to experimentally test our conjecture via a sequence of quantum biology experiments. Applying these ideas opens up the possibility of expanding human conscious experience through brain-quantum computer interfaces.

2.
Sci Rep ; 14(1): 12152, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802472

RESUMEN

The spread of the COVID-19 virus has become a global health crisis, and finding effective treatments and preventions is a top priority. The field of quantum biology primarily focuses on energy or charge transfer, with a particular emphasis on photosynthesis. However, there is evidence to suggest that cellular receptors such as olfactory or neural receptors may also use vibration-assisted electron tunnelling to enhance their functions. Quantum tunnelling has also been observed in enzyme activity, which is relevant to the invasion of host cells by the SARS-CoV-2 virus. Additionally, COVID-19 appears to disrupt receptors such as olfactory receptors. These findings suggest that quantum effects could provide new insights into the mechanisms of biological systems and disease, including potential treatments for COVID-19. We have applied the open quantum system approach using Quantum State Diffusion to solve the non-linear stochastic Schrödinger equation (SSE) for COVID-19 virus infection. Our model includes the mechanism when the spike protein of the virus binds with an ACE2 receptor is considered as dimer. These two entities form a system and then coupled with the cell membrane, which is modelled as a set of harmonic oscillators (bath). By simulating the SSE, we find that there is vibration-assisted electron tunnelling happening in certain biological parameters and coupling regimes. Furthermore, our model contributes to the ongoing research to understand the fundamental nature of virus dynamics. It proposes that vibration-assisted electron tunneling could be a molecular phenomenon that augments the lock-and-key process for olfaction. This insight may enhance our understanding of the underlying mechanisms governing virus-receptor interactions and could potentially lead to the development of novel therapeutic strategies.


Asunto(s)
COVID-19 , Teoría Cuántica , SARS-CoV-2 , Vibración , COVID-19/virología , COVID-19/metabolismo , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/metabolismo , Electrones , Pandemias
3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38446742

RESUMEN

Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.


Asunto(s)
Metodologías Computacionales , Teoría Cuántica , Algoritmos , Biología Computacional , Diseño de Fármacos
4.
Life (Basel) ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541606

RESUMEN

Defining life is an arduous task that has puzzled philosophers and scientists for centuries. Yet biology suffers from a lack of clear definition, putting biologists in a paradoxical situation where one can describe at the atomic level complex objects that remain globally poorly defined. One could assume that such descriptions make it possible to perfectly characterize living systems. However, many cases of misinterpretation put this assumption into perspective. In this article, we focus on critical parameters such as time, water, entropy, space, quantum properties, and electrostatic potential to redefine the nature of living matter, with special emphasis on biological coding. Where does the DNA double helix come from, why cannot the reproduction of living organisms occur without mutations, what are the limitations of the genetic code, and why do not all proteins have a stable three-dimensional structure? There are so many questions that cannot be resolved without considering the aforementioned parameters. Indeed, (i) time and space constrain many biological mechanisms and impose drastic solutions on living beings (enzymes, transporters); (ii) water controls the fidelity of DNA replication and the structure/disorder balance of proteins; (iii) entropy is the driving force of many enzymatic reactions and molecular interactions; (iv) quantum mechanisms explain why a molecule as simple as hydrocyanic acid (HCN) foreshadows the helical structure of DNA, how DNA is stabilized, why mutations occur, and how the Earth magnetic field can influence the migration of birds; (v) electrostatic potential controls epigenetic mechanisms, lipid raft functions, and virus infections. We consider that raising awareness of these basic parameters is critical for better understanding what life is, and how it handles order and chaos through a combination of genetic and epigenetic mechanisms. Thus, we propose to incorporate these parameters into the definition of life.

5.
Front Physiol ; 15: 1348395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370016

RESUMEN

Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 µT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.

6.
Bioessays ; 46(1): e2300152, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888800

RESUMEN

Mechanisms occurring at the atomic level are now known to drive processes essential for life, as revealed by quantum effects on biochemical reactions. Some macroscopic characteristics of organisms may thus show an atomic imprint, which may be transferred across organisms and affect their evolution. This possibility is considered here for the first time, with the aim of elucidating the appearance of an animal innovation with an unclear evolutionary origin: migratory behaviour. This trait may be mediated by a radical pair (RP) mechanism in the retinal flavoprotein cryptochrome, providing essential magnetic orientation for migration. Isotopes may affect the performance of quantum processes through their nuclear spin. Here, we consider a simple model and then apply the standard open quantum system approach to the spin dynamics of cryptochrome RP. We changed the spin quantum number (I) and g-factor of hydrogen and nitrogen isotopes to investigate their effect on RP's yield and magnetic sensitivity. Strong differences arose between isotopes with I = 1 and I = 1/2 in their contribution to cryptochrome magnetic sensitivity, particularly regarding Earth's magnetic field strengths (25-65 µT). In most cases, isotopic substitution improved RP's magnetic sensitivity. Migratory behaviour may thus have been favoured in animals with certain isotopic compositions of cryptochrome.


Asunto(s)
Migración Animal , Criptocromos , Animales , Criptocromos/química , Campos Magnéticos , Aves , Isótopos , Biología
7.
Front Physiol ; 14: 1338479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148902

RESUMEN

One possible explanation for magnetosensing in biology, such as avian magnetoreception, is based on the spin dynamics of certain chemical reactions that involve radical pairs. Radical pairs have been suggested to also play a role in anesthesia, hyperactivity, neurogenesis, circadian clock rhythm, microtubule assembly, etc. It thus seems critical to probe the credibility of such models. One way to do so is through isotope effects with different nuclear spins. Here we briefly review the papers involving spin-related isotope effects in biology. We suggest studying isotope effects can be an interesting avenue for quantum biology.

8.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003655

RESUMEN

It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.


Asunto(s)
Efecto Espectador , Transducción de Señal , Efecto Espectador/efectos de la radiación , Tolerancia a Radiación , Radiación Ionizante , Biología
9.
Biosystems ; 234: 105061, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858738

RESUMEN

In this study, theories of aging and its mechanisms under various environmental conditions were analyzed. The analysis of published data suggested that aging is a controlled process. It is known that many mathematical algorithms utilize an analogy of aging. However, this is possible only when a "target set" is known in advance. Various forms of selection in relation to aging were analyzed both collectively and separately. The general conclusion is that aging is one of the mechanisms of directed evolution. A model was constructed, which shows how aging is integrated into partially directed evolution.

10.
Front Plant Sci ; 14: 1266357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860259

RESUMEN

Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.

11.
Bioessays ; 45(11): e2300113, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37694600

RESUMEN

Understanding biological systems in terms of scientific materialism has arguably reached a frontier, leaving fundamental questions about their complexity unanswered. In 1998, Friedrich Cramer proposed a general resonance theory as a way forward. His theory builds on the extension of the quantum physical duality of matter and wave to the macroscopic world. According to Cramer' theory, agents constituting biological systems oscillate, akin to musical soundwaves, at specific eigenfrequencies. Biological system dynamics can be described as "Symphonies of Life" emerging from the resonance (and dissonance) of eigenfrequencies within the interacting collective. His theory has potential for studying biological problems of increasing complexity in a fast-changing Anthropocene from a new and transdisciplinary angle. Despite data becoming increasingly available for analyses, Cramer's theory remains ignored and therefore untested a quarter century after its publication. This paper discusses how the theory can move to quantitative assessments and application. Cramer's general resonance theory deserves revival.

12.
Biosystems ; 231: 104967, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400052

RESUMEN

The paper simulates the process of the migration of a single energy excitation along a chain of tryptophans in cell microtubules connected by dipole-dipole interaction. The paper shows that the excited states propagation rate falls within the range of nerve impulse velocity. It was shown that such a process also causes a transfer of quantum entanglement between tryptophans, so that microtubules can be considered as signaling system, the basis for transmitting information via the quantum channel. The conditions under which the migration of entangled states in the microtubule is possible are obtained. In a certain sense, it allows us to argue that the signal function of tryptophans works as an analogue of a quantum repeater that transmits entangled states over microtubule by relaying through intermediate tryptophans. Thus, the paper shows that the tryptophan system can be considered as an environment that supports the existence of entangled states during the time comparable with the time of the processes in biosystems.


Asunto(s)
Microtúbulos , Triptófano , Potenciales de Acción , Transducción de Señal
13.
Chembiochem ; 24(13): e202300120, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37151197

RESUMEN

Molecular biology and biochemistry interpret microscopic processes in the living world in terms of molecular structures and their interactions, which are quantum mechanical by their very nature. Whereas the theoretical foundations of these interactions are well established, the computational solution of the relevant quantum mechanical equations is very hard. However, much of molecular function in biology can be understood in terms of classical mechanics, where the interactions of electrons and nuclei have been mapped onto effective classical surrogate potentials that model the interaction of atoms or even larger entities. The simple mathematical structure of these potentials offers huge computational advantages; however, this comes at the cost that all quantum correlations and the rigorous many-particle nature of the interactions are omitted. In this work, we discuss how quantum computation may advance the practical usefulness of the quantum foundations of molecular biology by offering computational advantages for simulations of biomolecules. We not only discuss typical quantum mechanical problems of the electronic structure of biomolecules in this context, but also consider the dominating classical problems (such as protein folding and drug design) as well as data-driven approaches of bioinformatics and the degree to which they might become amenable to quantum simulation and quantum computation.


Asunto(s)
Metodologías Computacionales , Simulación de Dinámica Molecular , Teoría Cuántica , Biología Molecular , Estructura Molecular
14.
Prog Biophys Mol Biol ; 180-181: 83-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37137357

RESUMEN

Could nature be harnessing quantum mechanics in cilia to optimize the sensitivity of the mechanism of left-right symmetry breaking during development in vertebrates? I evaluate whether mechanosensing - i.e., the detection of a left-right asymmetric signal through mechanical stimulation of sensory cilia, as opposed to biochemical signalling - might be functioning in the embryonic left-right organizer of the vertebrate bodyplan through quantum mechanics. I conclude that there is a possible role for quantum biology in mechanosensing in cilia. The system may not be limited by classical thermal noise, but instead by quantum noise, with an amplification process providing active cooling.


Asunto(s)
Cilios , Vertebrados , Animales , Cilios/fisiología , Transducción de Señal
15.
Biosystems ; 223: 104820, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442739

RESUMEN

If all aspects of the mind-brain relationship were adequately explained by classical physics, then there would be no need to propose alternatives. But faced with possibly unresolvable puzzles like qualia and free will, other approaches are required. In alignment with a suggestion by Heisenberg in 1958, we propose a model whereby the world consists of two elements: Ontologically real Possibles that do not obey Aristotle's law of the excluded middle, and ontologically real Actuals that do. Based on this view, which bears resemblance to von Neumann's 1955 proposal (von Neumann, 1955), and more recently by Stapp and others (Stapp, 2007; Rosenblum and Kuttner, 2006), measurement that is registered by an observer's mind converts Possibles into Actuals. This quantum-oriented approach raises the intriguing prospect that some aspects of mind may be quantum, and that mind may play an active role in the physical world. A body of empirical evidence supports these possibilities, strengthening our proposal that the mind-brain relationship may be partially quantum.


Asunto(s)
Encéfalo , Física , Modelos Neurológicos , Estado de Conciencia , Teoría Cuántica
16.
Bioengineering (Basel) ; 11(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38247887

RESUMEN

The impact of magnetic fields on cellular function is diverse but can be described at least in part by the radical pair mechanism (RPM), where magnetic field intervention alters reactive oxygen species (ROS) populations and downstream cellular signaling. Here, cellular migration within three-dimensional scaffolds was monitored in an applied oscillating 1.4 MHz radiofrequency (RF) magnetic field with an amplitude of 10 µT and a static 50 µT magnetic field. Given that cellular bioenergetics can be altered based on applied RF magnetic fields, this study focused on a magnetic field configuration that increased cellular respiration. Results suggest that RF accelerated cell clustering and elongation after 1 day, with increased levels of clustering and cellular linkage after 7 days. Cell distribution analysis within the scaffolds revealed that the clustering rate during the first day was increased nearly five times in the RF environment. Electron microscopy provided additional topological information and verified the development of fibrous networks, with a cell-derived matrix (CDM) visualized after 7 days in samples maintained in RF. This work demonstrates time-dependent cellular migration that may be influenced by quantum biology (QB) processes and downstream oxidative signaling, enhancing cellular migration behavior.

17.
Entropy (Basel) ; 26(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38248146

RESUMEN

The study of noise assisted-transport in quantum systems is essential in a wide range of applications, from near-term NISQ devices to models for quantum biology. Here, we study a generalized XXZ model in the presence of stochastic collision noise, which allows describing environments beyond the standard Markovian formulation. Our analysis through the study of the local magnetization, the inverse participation ratio (IPR) or its generalization, and the inverse ergodicity ratio (IER) showed clear regimes, where the transport rate and coherence time could be controlled by the dissipation in a consistent manner. In addition, when considering various excitations, we characterized the interplay between collisions and system interactions, identifying regimes in which transport was counterintuitively enhanced when increasing the collision rate, even in the case of initially separated excitations. These results constitute an example of an essential building block for the understanding of quantum transport in structured noisy and warm-disordered environments.

18.
Front Physiol ; 14: 1349013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283282

RESUMEN

Quantum biology studies span multiple disciplines including physics, engineering, and biology with the goal of understanding the quantum underpinnings of living systems. Recent findings have brought wide attention to the role of quantum mechanisms in the function and regulation of biological processes. Moreover, a number of activities have been integral in building a vibrant quantum biology community. Due to the inherent interdisciplinary nature of the field, it is a challenge for quantum biology researchers to integrate and advance findings across the physical and biological disciplines. Here we outline achievable approaches to developing a shared platform-including the establishment of standardized manipulation tools and sensors, and a common scientific lexicon. Building a shared community framework is also crucial for fostering robust interdisciplinary collaborations, enhancing knowledge sharing, and diversifying participation in quantum biology. A unified approach promises not only to deepen our understanding of biological systems at a quantum level but also to accelerate the frontiers of medical and technological innovations.

20.
Artículo en Inglés | MEDLINE | ID: mdl-36269404

RESUMEN

Sensitivity to the earth's magnetic field is the least understood of the major sensory systems, despite being virtually ubiquitous in animals and of widespread interest to investigators in a wide range of fields from behavioral ecology to quantum physics. Although research on the use of magnetic cues by migratory birds, fish, and sea turtles is more widely known, much of our current understanding of the functional properties of vertebrate magnetoreception has come from research on amphibians. Studies of amphibians established the presence of a light-dependent magnetic compass, a second non-light-dependent mechanism involving particles of magnetite and/or maghemite, and an interaction between these two magnetoreception mechanisms that underlies the "map" component of homing. Simulated magnetic displacement experiments demonstrated the use of a high-resolution magnetic map for short-range homing to breeding ponds requiring a sampling strategy to detect weak spatial gradients in the magnetic field despite daily temporal variation at least an order of magnitude greater. Overall, reliance on a magnetic map for short-range homing places greater demands on the underlying sensory detection, processing, and memory mechanisms than comparable mechanisms used by long-distance migrants. Moreover, unlike sea turtles and migratory birds, amphibians are exceptionally well suited to serve as model organisms in which to characterize the molecular and biophysical mechanisms underlying the light-dependent 'quantum compass'.


Asunto(s)
Magnetismo , Tortugas , Animales , Aves/fisiología , Campos Magnéticos , Tortugas/fisiología , Peces , Migración Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA