Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Accid Anal Prev ; 203: 107617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772193

RESUMEN

The rapid detection of internal rail defects is critical to maintaining railway safety, but this task faces a significant challenge due to the limited computational resources of onboard detection systems. This paper presents YOLOv8n-LiteCBAM, an advanced network designed to enhance the efficiency of rail defect detection. The network designs a lightweight DepthStackNet backbone to replace the existing CSPDarkNet backbone. Further optimization is achieved through model pruning techniques and the incorporation of a novel Bidirectional Convolutional Block Attention Module (BiCBAM). Additionally, inference acceleration is realized via ONNX Runtime. Experimental results on the rail defect dataset demonstrate that our model achieves 92.9% mAP with inference speeds of 136.79 FPS on the GPU and 38.36 FPS on the CPU. The model's inference speed outperforms that of other lightweight models and ensures that it meets the real-time detection requirements of Rail Flaw Detection (RFD) vehicles traveling at 80 km/h. Consequently, the YOLOv8n-LiteCBAM network is with some potential for industrial application in the expedited detection of internal rail defects.


Asunto(s)
Vías Férreas , Seguridad , Humanos , Redes Neurales de la Computación , Algoritmos
2.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430540

RESUMEN

The rapid development of high-speed and heavy-haul railways caused rapid rail defects and sudden failure. This requires more advanced rail inspection, i.e., real-time accurate identification and evaluation for rail defects. However, existing applications cannot meet future demand. In this paper, different types of rail defects are introduced. Afterwards, methods that have the potential to achieve rapid accurate detection and evaluation of rail defects are summarized, including ultrasonic testing, electromagnetic testing, visual testing, and some integrated methods in the field. Finally, advice on rail inspection is given, such as synchronously utilizing the ultrasonic testing, magnetic flux leakage, and visual testing for multi-part detection. Specifically, synchronously using the magnetic flux leakage and visual testing technologies can detect and evaluate surface and subsurface defects, and UT is used to detect internal defects in the rail. This will obtain full rail information, to prevent sudden failure, then ensure train ride safety.

3.
Sensors (Basel) ; 23(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299966

RESUMEN

Wheel burn can affect the wheel-rail contact state and ride quality. With long-term operation, it can cause rail head spalling or transverse cracking, which will lead to rail breakage. By analyzing the relevant literature on wheel burn, this paper reviews the characteristics, mechanism of formation, crack extension, and NDT methods of wheel burn. The results are as follows: Thermal-induced, plastic-deformation-induced, and thermomechanical-induced mechanisms have been proposed by researchers; among them, the thermomechanical-induced wheel burn mechanism is more probable and convincing. Initially, the wheel burns appear as an elliptical or strip-shaped white etching layer with or without deformation on the running surface of the rails. In the latter stages of development, this may cause cracks, spalling, etc. Magnetic Flux Leakage Testing, Magnetic Barkhausen Noise Testing, Eddy Current Testing, Acoustic Emission Testing, and Infrared Thermography Testing can identify the white etching layer, and surface and near-surface cracks. Automatic Visual Testing can detect the white etching layer, surface cracks, spalling, and indentation, but cannot detect the depth of rail defects. Axle Box Acceleration Measurement can be used to detect severe wheel burn with deformation.


Asunto(s)
Quemaduras , Humanos , Quemaduras/diagnóstico , Aceleración , Acústica , Plásticos , Probabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA