Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
World J Psychiatry ; 14(4): 563-581, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659601

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition characterized by oxidative stress and neuroinflammation. Tanshinone IIA (Tan-IIA), a bioactive compound isolated from Salvia miltiorrhiza plants, has shown potential neuroprotective effects; however, the mechanisms underlying such a function remain unclear. AIM: To investigate potential Tan-IIA neuroprotective effects in AD and to elucidate their underlying mechanisms. METHODS: Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology. To assess changes in oxidative stress and neuroinflammation, we performed enzyme-linked immunosorbent assay and western blotting. Additionally, the effect of Tan-IIA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Genetic changes related to the long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1)/microRNA (miRNA, miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction. RESULTS: In vivo, Tan-IIA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice. In vitro experiments showed that Tan-IIA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability, apoptosis, oxidative stress, and neuroinflammation. In this process, the lncRNA NEAT1 - a potential therapeutic target - is highly expressed in AD mice and downregulated via Tan-IIA treatment. Mechanistically, NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p, which activates nuclear factor kappa-B (NF-κB) signaling, leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein, which exacerbates AD. Tan-IIA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling. CONCLUSION: This study demonstrates that Tan-IIA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway, serving as a foundation for the development of innovative approaches for AD therapy.

2.
Cell Commun Signal ; 22(1): 85, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291468

RESUMEN

K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Moléculas de Adhesión de Célula Nerviosa , Cadherinas , Neoplasias Pulmonares/genética , Isoformas de Proteínas , Fosfatidilinositol 3-Quinasas/metabolismo , Pulmón/metabolismo , Neoplasias Pancreáticas/patología
3.
J Orthop Surg Res ; 18(1): 587, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559140

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) have been confirmed to be involved in cancer pathogenesis. However, the underlying mechanism of circRNA endothelin converting enzyme 1 (circECE1) in osteosarcoma (OS) development is still not understood. METHODS: The expression levels of circECE1, microRNA-588 (miR-588) and RAB3D, member RAS oncogene family (RAB3D) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. OS cell proliferation was assessed by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. OS cell apoptosis rate and metastasis were identified by flow cytometry and transwell assay. Dual-luciferase reporter analysis and RNA immunoprecipitation (RIP) assay were performed to confirm the interactions among circECE1, miR-588 and RAB3D. Xenograft tumor models were established to explore circECE1 function in vivo. Immunohistochemistry (IHC) assay was applied to analyze RAB3D level after circECE1 knockdown. RESULTS: In OS, circECE1 expression was higher than that in normal chondroma tissues. High levels of circECE1 were positively linked to OS cell viability, proliferation, migration and invasion, and negatively linked to OS cell apoptosis rate. It was found that circECE1 was a miR-588 sponge, and miR-588 inhibitor abrogated the influence of si-circECE1 on OS cells. MiR-588 targeted RAB3D to further regulate the pathological process of OS. Moreover, silencing circECE1 blocked OS tumor growth in vivo. CONCLUSION: We elucidated the function of a novel circECE1/miR-588/RAB3D axis in OS progression.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , ARN Circular , Proteínas de Unión al GTP rab3 , Animales , Humanos , Apoptosis/genética , Neoplasias Óseas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , MicroARNs/genética , Osteosarcoma/genética , ARN Circular/genética
4.
Chem Biodivers ; 20(9): e202300702, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37528701

RESUMEN

Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1-6 )(Pfx)2 ] (1-12), where L1-6 =2-benzylidenehydrazinecarbothioamide (L1 ), 2-benzylidene-N-methylhydrazinecarbothioamide (L2 ), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3 ), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4 ), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5 ) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6 ), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.


Asunto(s)
Complejos de Coordinación , Tiosemicarbazonas , Humanos , Cobre/química , Níquel/química , Simulación del Acoplamiento Molecular , Pefloxacina , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Ligandos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Estrógenos , Oxígeno
5.
Exp Ther Med ; 26(2): 389, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37456160

RESUMEN

Acute myeloid leukemia (AML) is a malignant disease that is mainly arisen from myeloid stem/progenitor cells. The pathogenesis of AML is complex. Ras-related protein member RAS oncogene GTPases (RAB) 34 protein has been reported to serve an important role in the development of cancer. However, to the best of our knowledge, the role of RAB34 in AML has not been previously reported. The GEPIA database was used to predict the expression levels of RAB34 in patients with AML. Reverse transcription-quantitative PCR and western blotting were used to detect the expression of RAB34 in AML cell lines. Cell transfection with short hairpin (sh)RNAs targeting RAB34 was used to interfere with RAB34 expression. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining were used to measure cell proliferation. Flow cytometry was used to investigate cell cycle distribution and apoptosis. Western blotting was used to assess the protein expression levels of RAB34 and E2F transcription factor 1 (E2F1), and cell cycle- and apoptosis-associated proteins, including Bcl-2, Bax, CDK4, CDK8 and cyclin D1. The potential binding between E2F1 and RAB34 was then verified by luciferase reporter and chromatin immunoprecipitation assays. Subsequently, cells were co-transfected with RAB34 shRNA and the E2F1 overexpression plasmid before cell proliferation, cell cycle and apoptosis were analyzed further. The expression of RAB34 was found to be significantly increased in AML cell lines. Knocking down RAB34 expression in AML cells was found to significantly inhibit cell proliferation, induce cell cycle arrest and promote apoptosis. E2F1 activated the transcription of RAB34 and E2F1 elevation reversed the impacts of RAB34 silencing on cell proliferation, cell cycle and apoptosis in AML. Therefore, these findings suggest that E2F1-mediated RAB34 upregulation may accelerate the malignant progression of AML.

6.
Oncotarget ; 14: 672-687, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37395750

RESUMEN

Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.


Asunto(s)
Genes ras , Neoplasias , Humanos , Proteínas ras/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mutación , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética
7.
Development ; 150(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37314174

RESUMEN

The human heart is poorly regenerative and cardiac tumors are extremely rare. Whether the adult zebrafish myocardium is responsive to oncogene overexpression and how this condition affects its intrinsic regenerative capacity remains unknown. Here, we have established a strategy of inducible and reversible expression of HRASG12V in zebrafish cardiomyocytes. This approach stimulated a hyperplastic cardiac enlargement within 16 days. The phenotype was suppressed by rapamycin-mediated inhibition of TOR signaling. As TOR signaling is also required for heart restoration after cryoinjury, we compared transcriptomes of hyperplastic and regenerating ventricles. Both conditions were associated with upregulation of cardiomyocyte dedifferentiation and proliferation factors, as well as with similar microenvironmental responses, such as deposition of nonfibrillar Collagen XII and recruitment of immune cells. Among the differentially expressed genes, many proteasome and cell-cycle regulators were upregulated only in oncogene-expressing hearts. Preconditioning of the heart with short-term oncogene expression accelerated cardiac regeneration after cryoinjury, revealing a beneficial synergism between both programs. Identification of the molecular bases underlying the interplay between detrimental hyperplasia and advantageous regeneration provides new insights into cardiac plasticity in adult zebrafish.


Asunto(s)
Oncogenes , Pez Cebra , Adulto , Humanos , Animales , Pez Cebra/genética , Hiperplasia , Oncogenes/genética , Miocitos Cardíacos , Ventrículos Cardíacos
8.
Psychiatry Res ; 323: 115185, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003170

RESUMEN

Major depressive disorder (MDD) is a major international public health issue; thus, investigating its underlying mechanisms and identifying suitable biomarkers to enable its early detection are imperative. Using data-independent acquisition-mass spectrometry-based proteomics, the plasma of 44 patients with MDD and 25 healthy controls was studied to detect differentially expressed proteins. Bioinformatics analyses, such as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, Protein-Protein Interaction network, and weighted gene co-expression network analysis were employed. Moreover, an ensemble learning technique was used to build a prediction model. A panel of two biomarkers, L-selectin and an isoform of the Ras oncogene family was identified. With an area under the receiver operating characteristic curve of 0.925 and 0.901 for the training and test sets, respectively, the panel was able to distinguish MDD from the controls. Our investigation revealed numerous potential biomarkers and a diagnostic panel based on several algorithms, which may contribute to the future development of a plasma-based diagnostic approach and better understanding of the molecular mechanisms of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Proteómica , Biomarcadores , Algoritmos , Aprendizaje Automático
9.
Life Sci ; 314: 121287, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526044

RESUMEN

AIMS: Photodynamic therapy (PDT) is a treatment modality for several cancers involving the administration of a tumour-localising photosensitiser (PS) and its subsequent activation by light, resulting in tumour damage. Ras oncogenes have been strongly associated with chemo- and radio-resistance. Based on the described roles of adhesion and cell morphology on drug resistance, we studied if the differences in shape, cell-extracellular matrix and cell-cell adhesion induced by Ras transfection, play a role in the resistance to PDT. MATERIALS AND METHODS: We employed the human normal breast HB4a cells transfected with H-RAS and a panel of five PSs. KEY FINDINGS: We found that resistance to PDT of the HB4a-Ras cells employing all the PSs, increased between 1.3 and 2.5-fold as compared to the parental cells. There was no correlation between resistance and intracellular PS levels or PS intracellular localisation. Even when Ras-transfected cells present lower adherence to the ECM proteins, this does not make them more sensitive to PDT or chemotherapy. On the contrary, a marked gain of resistance to PDT was observed in floating cells as compared to adhesive cells, accounting for the higher ability conferred by Ras to survive in conditions of decreased cell-extracellular matrix interactions. HB4a-Ras cells displayed disorganisation of actin fibres, mislocalised E-cadherin and vinculin and lower expression of E-cadherin and ß1-integrin as compared to HB4a cells. SIGNIFICANCE: Knowledge of the mechanisms of resistance to photodamage in Ras-overexpressing cells may lead to the optimization of the combination of PDT with other treatments.


Asunto(s)
Neoplasias de la Mama , Fotoquimioterapia , Humanos , Femenino , Adhesión Celular , Genes ras , Neoplasias de la Mama/patología , Fármacos Fotosensibilizantes/farmacología , Cadherinas
10.
Cancer Lett ; 546: 215850, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926818

RESUMEN

Oncogenic stress-induced senescence initially inhibits tumor initiation by blocking proliferation and by attracting immune cells to clear potentially harmful cells. If these cells are not eliminated they may resume proliferation upon loss-of-tumor suppressors, and be at risk of transformation. During tumor formation, depending on the sequence of events of gain-of-oncogenes and/or loss-of-tumor suppressors, cancer cells may emerge from senescent cells. Here, we show that these transformed cells after senescence (TS) display more aggressive tumorigenic features, with a greater capacity to migrate and a higher resistance to anti-tumoral drugs than cells having undergone transformation without senescence. Bulk transcriptomic analysis and single cell RNA sequencing revealed a signature unique to TS cells. A score of this signature was then generated and a high score was correlated with decreased survival of patients with lung adenocarcinoma, head-neck squamous cell carcinoma, adrenocortical carcinoma, liver hepatocellular carcinoma, skin cutaneous melanoma and low-grade glioma. Together, these findings strongly support that cancer cells arising from senescent cells are more dangerous, and that a molecular signature of these cells may be of prognostic value for some human cancers. It also raises questions about modeling human tumors, using cells or mice, without regards to the sequence of events leading to transformation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Melanoma , Neoplasias Cutáneas , Animales , Senescencia Celular , Humanos , Ratones , Fenotipo , Proteína p53 Supresora de Tumor , Melanoma Cutáneo Maligno
11.
JHEP Rep ; 4(4): 100440, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35287291

RESUMEN

Background & Aims: MicroRNAs (miRNAs) act as a regulatory mechanism on a post-transcriptional level by repressing gene transcription/translation and play a central role in the cellular stress response. Osmotic changes occur in a variety of diseases including liver cirrhosis and hepatic encephalopathy. Changes in cell hydration and alterations of the cellular volume are major regulators of cell function and gene expression. In this study, the modulation of hepatic gene expression in response to hypoosmolarity was studied. Methods: mRNA analyses of normo- and hypoosmotic perfused rat livers by gene expression arrays were used to identify miRNA and their potential target genes associated with cell swelling preceding cell proliferation. Selected miR-141-3p was also investigated in isolated hepatocytes treated with miRNA mimic, cell stretching, and after partial hepatectomy. Inhibitor perfusion studies were performed to unravel signalling pathways responsible for miRNA upregulation. Results: Using genome-wide transcriptomic analysis, it was shown that hypoosmotic exposure led to differential gene expression in perfused rat liver. Moreover, miR-141-3p was upregulated by hypoosmolarity in perfused rat liver and in primary hepatocytes. In concert with this, miR-141-3p upregulation was prevented after Src-, Erk-, and p38-MAPK inhibition. Furthermore, luciferase reporter assays demonstrated that miR-141-3p targets cyclin dependent kinase 8 (Cdk8) mRNA. Partial hepatectomy transiently upregulated miR-141-3p levels just after the initiation of hepatocyte proliferation, whereas Cdk8 mRNA was downregulated. The mechanical stretching of rat hepatocytes resulted in miR-141-3p upregulation, whereas Cdk8 mRNA tended to decrease. Notably, the overexpression of miR-141-3p inhibited the proliferation of Huh7 cells. Conclusions: Src-mediated upregulation of miR-141-3p was found in hepatocytes in response to hypoosmotic swelling and mechanical stretching. Because of its antiproliferative function, miR-141-3p may counter-regulate the proliferative effects triggered by these stimuli. Lay summary: In this study, we identified microRNA 141-3p as an osmosensitive miRNA, which inhibits proliferation during liver cell swelling. Upregulation of microRNA 141-3p, controlled by Src-, Erk-, and p38-MAPK signalling, results in decreased mRNA levels of various genes involved in metabolic processes, macromolecular biosynthesis, and cell cycle progression.

12.
Nano Lett ; 22(3): 1007-1016, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35044178

RESUMEN

As a dominant oncogenic protein, Ras is well-known to segregate into clusters on the plasma membrane for activating downstream signaling. However, current technologies for direct measurements of Ras clustering are limited to sophisticated high-resolution techniques like electron microscopy and fluorescence lifetime imaging. To further promote fundamental investigations and the related drug development, we hereby introduce a nanobar-based platform which effectively guides Ras clusters into quantifiable patterns in live cells that is resolvable under conventional microscopy. Major Ras isoforms, K-Ras, H-Ras, and N-Ras, were differentiated, as well as their highly prevalent oncogenic mutants G12V and G13D. Moreover, the isoform specificity and the sensitivity of a Ras inhibitor were successfully characterized on nanobars. We envision that this nanobar-based platform will serve as an effective tool to read Ras clustering on the plasma membrane, enabling a novel avenue both to decipher Ras regulations and to facilitate anti-Ras drug development.


Asunto(s)
Nanoestructuras , Transducción de Señal , Proteínas ras , Membrana Celular/química , Células Cultivadas , Análisis por Conglomerados , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
13.
J Biol Chem ; 297(6): 101353, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34717958

RESUMEN

Within the superfamily of small GTPases, Ras appears to be the master regulator of such processes as cell cycle progression, cell division, and apoptosis. Several oncogenic Ras mutations at amino acid positions 12, 13, and 61 have been identified that lose their ability to hydrolyze GTP, giving rise to constitutive signaling and eventually development of cancer. While disruption of the Ras/effector interface is an attractive strategy for drug design to prevent this constitutive activity, inhibition of this interaction using small molecules is impractical due to the absence of a cavity to which such molecules could bind. However, proteins and especially natural Ras effectors that bind to the Ras/effector interface with high affinity could disrupt Ras/effector interactions and abolish procancer pathways initiated by Ras oncogene. Using a combination of computational design and in vitro evolution, we engineered high-affinity Ras-binding proteins starting from a natural Ras effector, RASSF5 (NORE1A), which is encoded by a tumor suppressor gene. Unlike previously reported Ras oncogene inhibitors, the proteins we designed not only inhibit Ras-regulated procancer pathways, but also stimulate anticancer pathways initiated by RASSF5. We show that upon introduction into A549 lung carcinoma cells, the engineered RASSF5 mutants decreased cell viability and mobility to a significantly greater extent than WT RASSF5. In addition, these mutant proteins induce cellular senescence by increasing acetylation and decreasing phosphorylation of p53. In conclusion, engineered RASSF5 variants provide an attractive therapeutic strategy able to oppose cancer development by means of inhibiting of procancer pathways and stimulating anticancer processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias Pulmonares/genética , Células A549 , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Genes Supresores de Tumor , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Genes (Basel) ; 12(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681018

RESUMEN

In recent years, there has been tremendous enthusiasm with respect to detailing the genetic basis of many neoplasms, including conjunctival melanoma (CM). We aim to analyze five proteins associated with CM, namely BRAF, NRAS, c-KIT, NF1, and PTEN. We evaluated each protein for its intrinsically disordered protein regions (IDPRs) and its protein-protein interactions (PPI) with the Predictor of Natural Disordered Protein Regions (PONDR®) and the Search Tool for the Retrieval of Interacting Genes (STRING®). Our PONDR® analysis found high levels of IDPRs in all five proteins with mutations linked to CM. The highest levels of IDPRs were in BRAF (45.95%), followed by PTEN (31.76%), NF1 (22.19%), c-KIT (21.82%), and NRAS (14.81%). Our STRING analysis found that each of these five proteins had more predicted interactions then expected (p-value < 1.0 × 10-16). Our analysis demonstrates that the mutations linked to CM likely affected IDPRs and possibly altered their highly complex PPIs. Quantifying IDPRs in BRAF, NRAS, c-KIT, NF1, and PTEN and understanding these protein regions are important processes as IDPRs can be possible drug targets for novel targeted therapies for treating CM.


Asunto(s)
Neoplasias de la Conjuntiva/genética , Proteínas Intrínsecamente Desordenadas/genética , Melanoma/genética , Conformación Proteica , Neoplasias de la Conjuntiva/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/ultraestructura , Humanos , Proteínas Intrínsecamente Desordenadas/ultraestructura , Melanoma/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Mutación/genética , Neurofibromina 1/genética , Neurofibromina 1/ultraestructura , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/ultraestructura , Mapas de Interacción de Proteínas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/ultraestructura , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/ultraestructura , Transducción de Señal
15.
Mar Biotechnol (NY) ; 23(4): 517-528, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34241714

RESUMEN

Cell line development from shrimp is not a novel venture as researchers across the globe have been trying to have crustacean cell lines over 30 years. The reason for not attaining a crustacean or precisely a shrimp cell line is believed to be the replicative senescence and the inability to maintain telomere length in vitro. Moreover, spontaneous in vitro transformations do not happen in shrimp cells. Oncogenic induction in primary cell culture is one of the ways to attain in vitro transformation by way of disrupting the mechanisms which involve cellular senescence. In this context, a recombinant baculovirus with shrimp viral promoter IHHNV-P2 was used for the transduction aimed at immortalization. An oncogene, H-ras, was successfully amplified and cloned in to the baculoviral vector, downstream to shrimp viral promoter IHHNV-P2 and upstream to GFP. Recombinant baculovirus with H-ras was generated and used for transduction into shrimp lymphoid cells during early dividing stage. Accordingly, fibroblast-like primary cell culture got developed, and H-ras and GFP expression could be confirmed. The study suggests that the simple method of incubating recombinant baculovirus with minced tissue enables in vitro transduction during early dividing stage of the cells, and the transduction efficiency gets enhanced by adding 5 mM sodium butyrate to the culture medium.


Asunto(s)
Línea Celular , Penaeidae/fisiología , Transducción Genética/métodos , Animales , Baculoviridae , Carcinógenos , Linfocitos/fisiología , Penaeidae/genética
16.
Genes (Basel) ; 12(5)2021 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34065672

RESUMEN

Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome enrichment, and protein interaction methods. KLK6-high cases had a distinct spectrum of mutations in titin (TTN), APC, K-RAS, and MUC16 genes. Differentially expressed genes (DEGs) found in the KLK6-overexpressing CRCs were associated with cell signaling, extracellular matrix organization, and cell communication regulatory pathways. The top KLK6-interaction partners were found to be the members of kallikrein family (KLK7, KLK8, KLK10), extracellular matrix associated proteins (keratins, integrins, small proline rich repeat, S100A families) and TGF-ß, FOS, and Ser/Thr protein kinase signaling pathways. Expression of selected KLK6-associated genes was validated in a subset of paired normal and tumor CRC patient-derived organoid cultures. The performed analyses identified KLK6 itself and a set of genes, which are co-expressed with KLK6, as potential clinical biomarkers for the management of the CRC disease.


Asunto(s)
Neoplasias Colorrectales/genética , Redes Reguladoras de Genes , Calicreínas/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Antígeno Ca-125/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Conectina/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Calicreínas/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Transcriptoma , Células Tumorales Cultivadas , Regulación hacia Arriba
17.
Biomolecules ; 11(2)2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562401

RESUMEN

RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.


Asunto(s)
Genes ras , Simulación por Computador , Humanos , Estructura Molecular , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisión , Unión Proteica , Transducción de Señal
18.
Can J Physiol Pharmacol ; 99(3): 284-293, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33635146

RESUMEN

The Wnt/ß-catenin pathway, which interferes with cell proliferation, differentiation, and autophagy, is commonly dysregulated in colorectal cancer (CRC). Mutation of the RAS oncogene is the most prevalent genetic alteration in CRC and has been linked to activation of protein kinase B (AKT) signaling. Phosphorylation of ß-catenin at Ser 552 by AKT contributes to ß-catenin stability, transcriptional activity, and increase of cell proliferation. Casein kinase 1 alpha (CK1α) is an enzyme that simultaneously regulates Wnt/ß-catenin and AKT. The link of the AKT and Wnt pathway to autophagy in RAS-mutated CRC cells has not well identified. Therefore, we investigated how pharmacological CK1α inhibition (D4476) is involved in regulation of autophagy, Wnt/ß-catenin, and AKT pathways in RAS-mutated CRC cell lines. qRT-PCR and immunoblotting experiments revealed that phospho-AKT (S473) and phospho-ß-catenin (S552) are constitutively increased in RAS-mutated CRC cell lines, in parallel with augmented CK1α expression. The results also showed that D4476 significantly reduced the AKT/phospho-ß-catenin (S552) axis concomitantly with autophagy flux inhibition in RAS-mutated CRC cells. Furthermore, D4476 significantly induced apoptosis in RAS-mutated CRC cells. In conclusion, our results indicate that CK1α inhibition reduces autophagy flux and promotes apoptosis by interfering with the AKT/phospho-ß-catenin (S552) axis in RAS-mutated CRC cells.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias Colorrectales/genética , Genes ras/genética , Proteína Oncogénica v-akt/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , beta Catenina/efectos de los fármacos , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HCT116 , Humanos , Mutación , Fosforilación , beta Catenina/antagonistas & inhibidores
19.
Cancers (Basel) ; 12(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096593

RESUMEN

The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.

20.
Exp Ther Med ; 20(5): 44, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32952635

RESUMEN

Rab1A protein has been identified to be highly expressed in a number of malignant tumor tissues and to participate in the regulation of tumor development, but no data concerning bladder cancer have been described at present. The present study measured the expression of Rab1A in bladder cancer tissues and cell lines, and analyzed its clinical significance for patients with bladder cancer. A total of 153 pairs of bladder cancer tumor tissues and adjacent cancer healthy tissues were included in the present study. Western blot analysis and immunohistochemistry were used to measure the expression of Rab1A protein in normal bladder and bladder cancer cell line, and bladder cancer and normal adjacent tissues. SPSS 20.0 software was used for statistical analysis and mapping of survival curves in patients with bladder cancer. The expression levels of Rab1A protein in normal bladder cells and tissues was significantly decreased compared with that in bladder cancer cells and tissues, and it was significantly associated with tumor size, histological grade, tumor-node-metastasis (TNM) stage, lymph node metastasis and remote metastasis in 153 patients with bladder cancer. Cox regression analysis demonstrated that the expression of Rab1A protein in bladder cancer tissues was an independent risk factor for prognosis (overall risk=0.549; 95% confidence interval=0.139-0.916). The 5-year survival rate of patients with bladder cancer with high expression levels of Rab1A protein was 48.613%, which was significantly decreased compared with the rate of patients with low expression 75.31% (P<0.05). The expression of Rab1A in bladder cancer tissues and cell lines was upregulated, and its expression increased with increasing TNM stages. It was also associated with the metastasis of tumor cells and negatively affected the survival time of patients with bladder cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA