Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180085

RESUMEN

Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.


Asunto(s)
Salmonidae , Animales , Especialización , Riñón , Replicación Viral
2.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36409607

RESUMEN

The vaccine effectiveness (VE) of the A/H1N1pdm09 component of the 2017-18 quadrivalent live attenuated influenza vaccine (QLAIV) was improved by performing rational haemagglutinin (HA) mutagenesis. Introducing N125D, D127E, D222G and R223Q substitutions into the HA protein of A/Slovenia/2903/2015 (A/SLOV15) enhanced replicative fitness in primary human nasal epithelial cells (hNECs). This allowed A/SLOV15 to overcome inter-strain competition in QLAIV, resulting in improved VE.During strain development for the 2021-22 QLAIV formulation, A/H1N1pdm09 LAIV viruses containing wild-type (WT) HA and neuraminidase (NA) sequences were found to replicate poorly in embryonated eggs and hNECs. We aimed to enhance replicative fitness via the HA mutagenesis approach that was performed previously for A/SLOV15. Therefore, combinations of these four mutations were introduced into the HA protein of representative 6B.1A-5a.2 viruses, A/Victoria/2570/2019 and A/Victoria/1/2020 (A/VIC1). Replicative fitness of A/VIC1 V7 was improved ~30-fold in eggs and ~300-fold in hNECs relative to its parent, without compromising other critical LAIV characteristics.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Vacunas contra la Influenza/genética , Virus de la Viruela Vacuna , Estaciones del Año , Vacunas Atenuadas/genética , Hemaglutininas
3.
mBio ; 12(4): e0085021, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34225487

RESUMEN

Since its emergence in 2019, circulating populations of the new coronavirus (CoV) continuously acquired genetic diversity. At the end of 2020, a variant named 20I/501Y.V1 (lineage B.1.1.7) emerged and replaced other circulating strains in several regions. This phenomenon has been poorly associated with biological evidence that this variant and the original strain exhibit different phenotypic characteristics. Here, we analyze the replication ability of this new variant in different cellular models using for comparison an ancestral D614G European strain (lineage B1). Results from comparative replication kinetics experiments in vitro and in a human reconstituted bronchial epithelium showed no difference. However, when both viruses were put in competition in human reconstituted bronchial epithelium, the 20I/501Y.V1 variant outcompeted the ancestral strain. All together, these findings demonstrate that this new variant replicates more efficiently and may contribute to a better understanding of the progressive replacement of circulating strains by the severe acute respiratory CoV-2 (SARS-CoV-2) 20I/501Y.V1 variant. IMPORTANCE The emergence of several SARS-CoV-2 variants raised numerous questions concerning the future course of the pandemic. We are currently observing a replacement of the circulating viruses by the variant from the United Kingdom known as 20I/501Y.V1, from the B.1.1.7 lineage, but there is little biological evidence that this new variant exhibits a different phenotype. In the present study, we used different cellular models to assess the replication ability of the 20I/501Y.V1 variant. Our results showed that this variant replicates more efficiently in human reconstituted bronchial epithelium, which may explain why it spreads so rapidly in human populations.


Asunto(s)
COVID-19/transmisión , Aptitud Genética/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/genética , Replicación Viral/genética , Animales , COVID-19/patología , Células CACO-2 , Línea Celular , Chlorocebus aethiops , Humanos , Mucosa Respiratoria/virología , Células Vero , Carga Viral
4.
J Biol Chem ; 295(40): 13862-13874, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32747444

RESUMEN

Inhibitors against the NS3-4A protease of hepatitis C virus (HCV) have proven to be useful drugs in the treatment of HCV infection. Although variants have been identified with mutations that confer resistance to these inhibitors, the mutations do not restore replicative fitness and no secondary mutations that rescue fitness have been found. To gain insight into the molecular mechanisms underlying the lack of fitness compensation, we screened known resistance mutations in infectious HCV cell culture with different genomic backgrounds. We observed that the Q41R mutation of NS3-4A efficiently rescues the replicative fitness in cell culture for virus variants containing mutations at NS3-Asp168 To understand how the Q41R mutation rescues activity, we performed protease activity assays complemented by molecular dynamics simulations, which showed that protease-peptide interactions far outside the targeted peptide cleavage sites mediate substrate recognition by NS3-4A and support protease cleavage kinetics. These interactions shed new light on the mechanisms by which NS3-4A cleaves its substrates, viral polyproteins and a prime cellular antiviral adaptor protein, the mitochondrial antiviral signaling protein MAVS. Peptide binding is mediated by an extended hydrogen-bond network in NS3-4A that was effectively optimized for protease-MAVS binding in Asp168 variants with rescued replicative fitness from NS3-Q41R. In the protease harboring NS3-Q41R, the N-terminal cleavage products of MAVS retained high affinity to the active site, rendering the protease susceptible for potential product inhibition. Our findings reveal delicately balanced protease-peptide interactions in viral replication and immune escape that likely restrict the protease adaptive capability and narrow the virus evolutionary space.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Hepacivirus/fisiología , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Replicación Viral/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Línea Celular Tumoral , Humanos , Mutación Missense , Serina Proteasas/química , Serina Proteasas/genética , Serina Proteasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
5.
Vet Microbiol ; 243: 108614, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32273026

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals, which severely decreases livestock productivity. FMD virus (FMDV), the causative agent, initiates infection by interaction with integrin cellular receptors on pharyngeal epithelium cells, causing clinical signs one to four days after transmission to a susceptible host. However, some Southern African Territories (SAT) viruses have been reported to cause mild or subclinical infections that may go undiagnosed in field conditions and are likely to be more common than previously expected. The studies presented here demonstrate that not all SAT2 viruses are equally virulent in cattle. The two SAT2 viruses, ZIM/5/83 and ZIM/7/83, were both highly attenuated in cattle, as evidenced by the mild clinical signs observed after needle challenge, while two incongruent SAT2 viruses showed significantly different clinical signs in challenged cattle. We then explored the ability of the SAT2 viruses to infect different cell types with defined receptors that are utilised by FMDV and found differences in their ability to lyse cells in culture and to compete in a controlled cell culture environment. The population sequence variation between ZIM/5/83 and ZIM/7/83 revealed multiple sites of single nucleotide variants of low frequency between the predominant virus populations, as could be expected from the genome of an RNA virus. An assessment of the biophysical stability of SAT2 virions during acidification indicated that the SAT2 virus EGY/09/12 was more resilient to acidification than the ZIM/5/83 and ZIM/7/83 viruses; however, whether this difference relates to differences in virulence in vivo is unclear. This study is a consolidated view of the key findings of SAT2 viruses studied over a 14-year period involving many different experiments.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/patogenicidad , Fiebre Aftosa/virología , Variación Genética , Fenotipo , África Austral , Animales , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Cricetinae , Virus de la Fiebre Aftosa/clasificación , Aptitud Genética , Concentración de Iones de Hidrógeno , Ganado/virología , Polimorfismo de Nucleótido Simple , Serogrupo , Temperatura
6.
Braz. j. infect. dis ; 24(1): 13-24, Feb. 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1089334

RESUMEN

ABSTRACT Dengue has been a significant public health problem in Colombia since the simultaneous circulation of the four dengue virus serotypes. The replicative fitness of dengue is a biological feature important for virus evolution and contributes to elucidating the behavior of virus populations and viral pathogenesis. However, it has not yet been studied in Colombian isolates. This study aimed to compare the replicative fitness of the four dengue virus serotypes and understand the association between the serotypes, their in vitro infection ability, and their replication in target cells. We used three isolates of each DENV serotype to infect Huh-7 cells at an MOI of 0.5. The percentage of infected cells was evaluated by flow cytometry, cell viability was evaluated by MTT assay, and the pathogenicity index was calculated as a ratio of both parameters. The replicative fitness was measured by the number of viral genome copies produced using quantitative PCR and the production of infectious viral progeny was measured by plaque assay. We showed that Huh-7 cells were susceptible to infection with all the different strain isolates. Nevertheless, the biological characteristics, such as infectious ability and cell viability, were strain-dependent. We also found different degrees of pathogenicity between strains of the four serotypes, representative of the heterogeneity displayed in the circulating population. When we analyzed the replicative fitness using the mean values obtained from RT-qPCR and plaque assay for the different strains, we found serotype-dependent behavior. The highest mean values of replicative fitness were obtained for DENV-1 (log 4.9 PFU/ml) and DENV-4 (log 5.28 PFU/ml), followed by DENV-2 (log 3.9 PFU/ml) and DENV-3 (log 4.31 PFU/ml). The internal heterogeneity of the replicative fitness within each serotype could explain the simultaneous circulation of the four DENV serotypes in Colombia.


Asunto(s)
Humanos , Replicación Viral/genética , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Serogrupo , Ensayo de Placa Viral , Valores de Referencia , Sales de Tetrazolio , Factores de Tiempo , ARN Viral/genética , Línea Celular , Supervivencia Celular , Células Cultivadas , Colombia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Citometría de Flujo , Formazáns , Hígado/citología
7.
Braz J Infect Dis ; 24(1): 13-24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31843340

RESUMEN

Dengue has been a significant public health problem in Colombia since the simultaneous circulation of the four dengue virus serotypes. The replicative fitness of dengue is a biological feature important for virus evolution and contributes to elucidating the behavior of virus populations and viral pathogenesis. However, it has not yet been studied in Colombian isolates. This study aimed to compare the replicative fitness of the four dengue virus serotypes and understand the association between the serotypes, their in vitro infection ability, and their replication in target cells. We used three isolates of each DENV serotype to infect Huh-7 cells at an MOI of 0.5. The percentage of infected cells was evaluated by flow cytometry, cell viability was evaluated by MTT assay, and the pathogenicity index was calculated as a ratio of both parameters. The replicative fitness was measured by the number of viral genome copies produced using quantitative PCR and the production of infectious viral progeny was measured by plaque assay. We showed that Huh-7 cells were susceptible to infection with all the different strain isolates. Nevertheless, the biological characteristics, such as infectious ability and cell viability, were strain-dependent. We also found different degrees of pathogenicity between strains of the four serotypes, representative of the heterogeneity displayed in the circulating population. When we analyzed the replicative fitness using the mean values obtained from RT-qPCR and plaque assay for the different strains, we found serotype-dependent behavior. The highest mean values of replicative fitness were obtained for DENV-1 (log 4.9 PFU/ml) and DENV-4 (log 5.28 PFU/ml), followed by DENV-2 (log 3.9 PFU/ml) and DENV-3 (log 4.31 PFU/ml). The internal heterogeneity of the replicative fitness within each serotype could explain the simultaneous circulation of the four DENV serotypes in Colombia.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/patogenicidad , Serogrupo , Replicación Viral/genética , Línea Celular , Supervivencia Celular , Células Cultivadas , Colombia , Citometría de Flujo , Formazáns , Humanos , Hígado/citología , ARN Viral/genética , Valores de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sales de Tetrazolio , Factores de Tiempo , Ensayo de Placa Viral
8.
AIDS Res Ther ; 14: 15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28331526

RESUMEN

BACKGROUND: Progression rates from initial HIV-1 infection to advanced AIDS vary significantly among infected individuals. A distinct subgroup of HIV-1-infected individuals-termed viremic non-progressors (VNP) or controllers-do not seem to progress to AIDS, maintaining high CD4+ T cell counts despite high levels of viremia for many years. Several studies have evaluated multiple host factors, including immune activation, trying to elucidate the atypical HIV-1 disease progression in these patients; however, limited work has been done to characterize viral factors in viremic controllers. METHODS: We analyzed HIV-1 isolates from three VNP individuals and compared the replicative fitness, near full-length HIV-1 genomes and intra-patient HIV-1 genetic diversity with viruses from three typical (TP) and one rapid (RP) progressor individuals. RESULTS: Viremic non-progressors and typical patients were infected for >10 years (range 10-17 years), with a mean CD4+ T-cell count of 472 cells/mm3 (442-529) and 400 cells/mm3 (126-789), respectively. VNP individuals had a less marked decline in CD4+ cells (mean -0.56, range -0.4 to -0.7 CD4+/month) than TP patients (mean -10.3, -8.2 to -13.1 CD4+/month). Interestingly, VNP individuals carried viruses with impaired replicative fitness, compared to HIV-1 isolates from the TP and RP patients (p < 0.05, 95% CI). Although analyses of the near full-length HIV-1 genomes showed no clear patterns of single-nucleotide polymorphisms (SNP) that could explain the decrease in replicative fitness, both the number of SNPs and HIV-1 population diversity correlated inversely with the replication capacity of the viruses (r = -0.956 and r = -0.878, p < 0.01, respectively). CONCLUSION: It is likely that complex multifactorial parameters govern HIV-1 disease progression in each individual, starting with the infecting virus (phenotype, load, and quasispecies diversity) and the intrinsic ability of the host to respond to the infection. Here we analyzed a subset of viremic controller patients and demonstrated that similar to the phenomenon observed in patients with a discordant response to antiretroviral therapy (i.e., high CD4+ cell counts with detectable plasma HIV-1 RNA load), reduced viral replicative fitness seems to be linked to slow disease progression in these antiretroviral-naïve individuals.


Asunto(s)
Aptitud Genética , Infecciones por VIH/virología , Sobrevivientes de VIH a Largo Plazo , VIH-1/aislamiento & purificación , VIH-1/fisiología , Replicación Viral , Adulto , Estudios de Cohortes , Variación Genética , Genoma Viral , VIH-1/clasificación , VIH-1/genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN
9.
AIDS Res Ther ; 13(1): 41, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27906032

RESUMEN

BACKGROUND: New simian-human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. RESULTS: Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env's in the pool, a feature also observed in the HIV establishing new infections in humans. CONCLUSION: Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Macaca mulatta/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Línea Celular , Genes env , Glicosilación , Células HEK293 , Infecciones por VIH/virología , Humanos , Mutación , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA