Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 298: 120764, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089604

RESUMEN

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific symptoms and risk factors. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following TBIs. Repetitive mild TBIs (rmTBI) compound these issues, resulting in cumulative and long-term brain damage in the brain. In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI by employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI). Our hypothesis is that the effects of rmTBI are worsened in aged animals, with this group showing more pronounced alterations in brain connectivity and white matter structure. Utilizing the closed-head impact model of engineered rotational acceleration (CHIMERA) model, we conducted rmTBIs or sham (control) procedures on young (2.5-3-months-old) and aged (22-months-old) male and female mice to model high-risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposhigh-risking effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean diffusivity, radial diffusivity, axial diffusivity, and fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Neuroinflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in injured aged animals compared to sham aged. These findings offer insight into the interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBI.

2.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230167, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988188

RESUMEN

OBJECTIVE: Loneliness reportedly increases the risk of dementia, especially Alzheimer's disease (AD). The authors' previous study demonstrated associations between loneliness and structural abnormalities observed in early-stage AD. The present study examined associations between the brain's functional characteristics and loneliness among older adults with concerns about cognitive decline. METHODS: This single-center study included 43 participants (13 with amnestic mild cognitive impairment and 30 with normal cognition). Participants were assessed with the revised University of California Los Angeles (UCLA) Loneliness Scale and underwent resting-state functional MRI. Functional images were preprocessed with the CONN toolbox. The selected seeds were within brain regions reportedly associated with loneliness. One-sample general linear model analysis was performed to examine regressions of UCLA Loneliness Scale scores and functional connectivity between the seeds and regions of interest. RESULTS: The revised UCLA Loneliness Scale scores were positively correlated with functional connectivity between the right hippocampus and left lateral parietal lobe and were negatively correlated with functional connectivity between the left amygdala and left frontal operculum and between the left amygdala and right supramarginal gyrus. Analyses were adjusted for age, sex, and education and scores on the Mini-Mental State Examination and Clinical Dementia Rating scale. CONCLUSIONS: Loneliness was associated with abnormal function of the hippocampus, parts of the parietal lobe and frontal cortex, and the amygdala. These findings may suggest a possible correlation between loneliness and neurological changes associated with dementia.

3.
Brain Commun ; 6(4): fcae235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051026

RESUMEN

Speech, voice and communication changes are common in Parkinson's disease. HiCommunication is a novel group intervention for speech and communication in Parkinson's disease based on principles driving neuroplasticity. In a randomized controlled trial, 95 participants with Parkinson's disease were allocated to HiCommunication or an active control intervention. Acoustic analysis was performed pre-, post- and six months after intervention. Intention-to-treat analyses with missing values imputed in linear multilevel models and complimentary per-protocol analyses were performed. The proportion of participants with a clinically relevant increase in the primary outcome measure of voice sound level was calculated. Resting-state functional MRI was performed pre- and post-intervention. Spectral dynamic causal modelling and the parametric empirical Bayes methods were applied to resting-state functional MRI data to describe effective connectivity changes in a speech-motor-related network of brain regions. From pre- to post-intervention, there were significant group-by-time interaction effects for the measures voice sound level in text reading (unstandardized b = 2.3, P = 0.003), voice sound level in monologue (unstandardized b = 2.1, P = 0.009), Acoustic Voice Quality Index (unstandardized b = -0.5, P = 0.016) and Harmonics-to-Noise Ratio (unstandardized b = 1.3, P = 0.014) post-intervention. For 59% of the participants, the increase in voice sound level after HiCommunication was clinically relevant. There were no sustained effects at the six-month follow-up. In the effective connectivity analysis, there was a significant decrease in inhibitory self-connectivity in the left supplementary motor area and increased connectivity from the right supplementary motor area to the left paracentral gyrus after HiCommunication compared to after the active control intervention. In conclusion, the HiCommunication intervention showed promising effects on voice sound level and voice quality in people with Parkinson's disease, motivating investigations of barriers and facilitators for implementation of the intervention in healthcare settings. Resting-state brain effective connectivity was altered following the intervention in areas implicated, possibly due to reorganization in brain networks.

4.
Neuroradiology ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046517

RESUMEN

INTRODUCTION: Patients with Parkinson's Disease (PD) commonly experience Olfactory Dysfunction (OD). Our exploratory study examined hippocampal volumetric and resting-state functional magnetic resonance imaging (rs-fMRI) variations in a Healthy Control (HC) group versus a cognitively normal PD group, further categorized into PD with No/Mild Hyposmia (PD-N/MH) and PD with Severe Hyposmia (PD-SH). METHODS: We calculated participants' relative Total Hippocampal Volume (rTHV) and performed Spearman's partial correlations, controlled for age and gender, to examine the correlation between rTHV and olfactory performance assessed by the Odor Stick Identification Test for the Japanese (OSIT-J) score. Mann-Whitney U tests assessed rTHV differences across groups and subgroups, rejecting the null hypothesis for p < 0.05. Furthermore, a seed-based rs-fMRI analysis compared hippocampal connectivity differences using a one-way ANCOVA covariate model with controls for age and gender. RESULTS: Spearman's partial correlations indicated a moderate positive correlation between rTHV and OSIT-J in the whole study population (ρ = 0.406; p = 0.007), PD group (ρ = 0.493; p = 0.008), and PD-N/MH subgroup (ρ = 0.617; p = 0.025). Mann-Whitney U tests demonstrated lower rTHV in PD-SH subgroup compared to both HC group (p = 0.013) and PD-N/MH subgroup (p = 0.029). Seed-to-voxel rsfMRI analysis revealed reduced hippocampal connectivity in PD-SH subjects compared to HC subjects with a single cluster of voxels. CONCLUSIONS: Although the design of the study do not allow to make firm conclusions, it is reasonable to speculate that the progressive involvement of the hippocampus in PD patients is associated with the progression of OD.

5.
CNS Neurosci Ther ; 30(7): e14874, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056398

RESUMEN

OBJECTIVE: This study explores the correlation between asymmetrical brain functional activity, gray matter asymmetry, and the severity of early-stage Parkinson's disease (PD). METHODS: Ninety-three early-stage PD patients (ePD, H-Y stages 1-2.5) were recruited, divided into 47 mild (ePD-mild, H-Y stages 1-1.5) and 46 moderate (ePD-moderate, H-Y stages 2-2.5) cases, alongside 43 matched healthy controls (HCs). The study employed the Hoehn and Yahr (H-Y) staging system for disease severity assessment and utilized voxel-mirrored homotopic connectivity (VMHC) for analyzing brain functional activity asymmetry. Asymmetry voxel-based morphometry analysis (VBM) was applied to evaluate gray matter asymmetry. RESULTS: The study found that, relative to HCs, both PD subgroups demonstrated reduced VMHC values in regions including the amygdala, putamen, inferior and middle temporal gyrus, and cerebellum Crus I. The ePD-moderate group also showed decreased VMHC in additional regions such as the postcentral gyrus, lingual gyrus, and superior frontal gyrus, with notably lower VMHC in the superior frontal gyrus compared to the ePD-mild group. A negative correlation was observed between the mean VMHC values in the superior frontal gyrus and H-Y stages, UPDRS, and UPDRS-III scores. No significant asymmetry in gray matter was detected. CONCLUSIONS: Asymmetrical brain functional activity is a significant characteristic of PD, which exacerbates as the disease severity increases, resembling the dissemination of Lewy bodies across the PD neurological framework. VMHC emerges as a potent tool for characterizing disease severity in early-stage PD.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Índice de Severidad de la Enfermedad , Lateralidad Funcional/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-39074556

RESUMEN

BACKGROUND: Anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) causes long-lasting cognitive deficits associated with altered functional connectivity. Eigenvector centrality (EC) mapping represents a powerful new method for data-driven voxel-wise and time-resolved estimation of network importance - beyond changes in classical 'static' functional connectivity. METHODS: To assess changes in functional brain network organization, we applied EC mapping in 73 patients with NMDARE and 73 matched healthy controls. Areas with significant group differences were further investigated using (i) spatial clustering analyses, (ii) time series correlation to assess synchronicity between the hippocampus and cortical brain regions, and (iii) correlation with cognitive and clinical parameters. RESULTS: Dynamic, time-resolved EC showed significantly higher variability in 13 cortical areas (p(FWE)<0.05) in patients with NMDARE compared to HC. Areas with dynamic EC group differences were spatially organized in centrality clusters resembling resting-state networks. Importantly, variability of dynamic EC in the frontotemporal cluster was associated with impaired verbal episodic memory in patients (r=-0.25, p=0.037). EC synchronicity between the hippocampus and the medial prefrontal cortex was reduced in patients compared to HC (p(FWE)<0.05, t(max)=3.76), and associated with verbal episodic memory in patients (r=0.28, p=0.019). Static EC analyses showed group differences in only one brain region (left intracalcarine cortex). CONCLUSIONS: Widespread changes in network dynamics and reduced hippocampal-medial prefrontal synchronicity were associated with verbal episodic memory deficits and may thus represent a functional neural correlate of cognitive dysfunction in NMDARE. Importantly, dynamic EC detected substantially more network alterations than traditional static approaches, highlighting the potential of this method to explain long-term deficits in NMDARE.

7.
J Affect Disord ; 362: 425-436, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004312

RESUMEN

BACKGROUND: Studies comparing the brain functions of major depressive disorder (MDD) and social anxiety disorder (SAD) at the regional and network levels remain scarce. This study aimed to elucidate their pathogenesis using neuroimaging techniques and explore biomarkers that can differentiate these disorders. METHODS: Resting-state fMRI data were collected from 48 patients with MDD, 41 patients with SAD, and 82 healthy controls. Differences in the amplitude of low-frequency fluctuations (ALFF) among the three groups were examined to identify regions showing abnormal regional spontaneous activity. A seed-based functional connectivity (FC) analysis was conducted using ALFF results as seeds and different connections were identified between regions showing abnormal local spontaneous activity and other regions. The correlation between abnormal brain function and clinical symptoms was analyzed. RESULTS: Patients with MDD and SAD exhibited similar abnormal ALFF and FC in several brain regions; notably, FC between the right superior frontal gyrus (SFG) and the right posterior supramarginal gyrus (pSMG) in patients with SAD was negatively correlated with depressive symptoms. Furthermore, patients with MDD showed higher ALFF in the right SFG than HCs and those with SAD. LIMITATION: Potential effects of medications, comorbidities, and data type could not be ignored. CONCLUSION: MDD and SAD showed common and distinct aberrant brain function patterns at the regional and network levels. At the regional level, we found that the ALFF in the right SFG was different between patients with MDD and those with SAD. At the network level, we did not find any differences between these disorders.


Asunto(s)
Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Fobia Social , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Masculino , Femenino , Adulto , Fobia Social/fisiopatología , Fobia Social/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto Joven , Mapeo Encefálico/métodos , Persona de Mediana Edad , Lóbulo Parietal/fisiopatología , Lóbulo Parietal/diagnóstico por imagen
8.
Brain Behav Immun Health ; 38: 100799, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021436

RESUMEN

Introduction: Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods: Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results: Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions: We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.

9.
Mov Disord ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881298

RESUMEN

BACKGROUND: Stepwise functional connectivity (SFC) detects whole-brain functional couplings of a selected region of interest at increasing link-step topological distances. OBJECTIVE: This study applied SFC to test the hypothesis that stepwise architecture propagating from the disease epicenter would shape patterns of brain atrophy in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). METHODS: Thirty-six patients with PSP-RS and 44 age-matched healthy control subjects underwent brain magnetic resonance imaging on a 3-T scanner. The disease epicenter was defined as the peak of atrophy observed in an independent cohort of 13 cases with postmortem confirmation of PSP pathology and used as seed region for SFC analysis. First, we explored SFC rearrangements in patients with PSP-RS, as compared with age-matched control subjects. Subsequently, we tested SFC architecture propagating from the disease epicenter as a determinant of brain atrophy distribution. RESULTS: The disease epicenter was identified in the left midbrain tegmental region. Compared with age-matched control subjects, patients with PSP-RS showed progressively widespread decreased SFC of the midbrain with striatal and cerebellar regions through direct connections and sensorimotor cortical regions through indirect connections. A correlation was found between average link-step distance from the left midbrain in healthy subjects and brain volumes in patients with PSP-RS (r = 0.38, P < 0.001). CONCLUSIONS: This study provides comprehensive insights into the topology of functional network rearrangements in PSP-RS and demonstrates that the brain architectural topology, as described by SFC propagating from the disease epicenter, shapes the pattern of atrophic changes in PSP-RS. Our findings support the view of a network-based pathology propagation in this primary tauopathy. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

10.
Alzheimers Dement (Amst) ; 16(2): e12595, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860031

RESUMEN

INTRODUCTION: Aging is often associated with cognitive decline. Understanding neural factors that distinguish adults in midlife with superior cognitive abilities (Positive-Agers) may offer insight into how the aging brain achieves resilience. The goals of this study are to (1) introduce an optimal labeling mechanism to distinguish between Positive-Agers and Cognitive Decliners, and (2) identify Positive-Agers using neuronal functional connectivity networks data and demographics. METHODS: In this study, principal component analysis initially created latent cognitive trajectories groups. A hybrid algorithm of machine learning and optimization was then designed to predict latent groups using neuronal functional connectivity networks derived from resting state functional magnetic resonance imaging. Specifically, the Optimal Labeling with Bayesian Optimization (OLBO) algorithm used an unsupervised approach, iterating a logistic regression function with Bayesian posterior updating. This study encompassed 6369 adults from the UK Biobank cohort. RESULTS: OLBO outperformed baseline models, achieving an area under the curve of 88% when distinguishing between Positive-Agers and cognitive decliners. DISCUSSION: OLBO may be a novel algorithm that distinguishes cognitive trajectories with a high degree of accuracy in cognitively unimpaired adults. Highlights: Design an algorithm to distinguish between a Positive-Ager and a Cognitive-Decliner.Introduce a mathematical definition for cognitive classes based on cognitive tests.Accurate Positive-Ager identification using rsfMRI and demographic data (AUC = 0.88).Posterior default mode network has the highest impact on Positive-Aging odds ratio.

11.
Neuroimage Clin ; 43: 103621, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38823249

RESUMEN

Greater physical activity and better sleep are associated with reduced risk of cognitive decline and dementia among older adults, but little is known about their combined associations with measures of brain function and neuropathology. This study investigated potential independent and interactive cross-sectional relationships between actigraphy-estimated total volume of physical activity (TVPA) and sleep patterns [i.e., total sleep time (TST), sleep efficiency (SE)] with resting-state functional magnetic resonance imaging (rs-fMRI) measures of large scale network connectivity and positron emission tomography (PET) measures of amyloid-ß. Participants were 135 non-demented older adults from the BIOCARD study (116 cognitively normal and 19 with mild cognitive impairment; mean age = 70.0 years). Using multiple linear regression analyses, we assessed the association between TVPA, TST, and SE with connectivity within the default-mode, salience, and fronto-parietal control networks, and with network modularity, a measure of network segregation. Higher TVPA and SE were independently associated with greater network modularity, although the positive relationship of SE with modularity was only present in amyloid-negative individuals. Additionally, higher TVPA was associated with greater connectivity within the default-mode network, while greater SE was related to greater connectivity within the salience network. In contrast, longer TST was associated with lower network modularity, particularly among amyloid-positive individuals, suggesting a relationship between longer sleep duration and greater network disorganization. Physical activity and sleep measures were not associated with amyloid positivity. These data suggest that greater physical activity levels and more efficient sleep may promote more segregated and potentially resilient functional networks and increase functional connectivity within specific large-scale networks and that the relationship between sleep and functional networks connectivity may depend on amyloid status.

12.
Neuroscience ; 551: 316-322, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38843985

RESUMEN

APOE ε4 is risk for cognitive decline even in normal aging, but its effect on the whole-brain functional connectivity (FC) among time in young adults remain elusive. This study aimed to validate the time-by-APOE ε4 interaction on brain FC of this specific population. Longitudinal changes in neuropsychological assessments and resting-state functional magnetic resonance imaging in 26 ε4 carriers and 26 matched non-ε4 carriers were measured for about 3 years. Whole-brain FC was calculated, and a full factorial design was used to compare the difference among groups. Two-sample t test was used for post-hoc analysis. Pearson's correlation analysis was conducted to investigate the relationships between FC and cognitive tests. Of 26 specially appointed ROIs, left superior temporal gyrus (TG) was most sensitive to the effect of time-by-gene interaction. Specifically, the alteration of FC was distributed between the left TG and right TG with GRF correction (voxel-P < 0.001, cluster-P < 0.05), and decreased in ε4 carriers while increased in non-ε4. The main effect of gene showed ε4 carriers has lower FC between left TG and right middle frontal gyrus as compared with non-ε4 both at baseline and follow-up study; ε4 carriers has lower FC between left TG and right supramarginal as compared with non-ε4 at baseline, but no difference in follow-up study. The time-by-APOE ε4 interaction on brain FC was demonstrated at a young age, and left TG was the earliest affected brain regions. The young adult ε4 carriers experience decreased FC among time in the absence overt clinical symptoms.


Asunto(s)
Apolipoproteína E4 , Encéfalo , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Adulto Joven , Estudios de Seguimiento , Adulto , Pruebas Neuropsicológicas , Heterocigoto , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Estudios Longitudinales
13.
Behav Brain Funct ; 20(1): 15, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902791

RESUMEN

BACKGROUND: The Default Mode Network (DMN) is a central neural network, with recent evidence indicating that it is composed of functionally distinct sub-networks. Methylphenidate (MPH) administration has been shown before to modulate impulsive behavior, though it is not yet clear whether these effects relate to MPH-induced changes in DMN connectivity. To address this gap, we assessed the impact of MPH administration on functional connectivity patterns within and between distinct DMN sub-networks and tested putative relations to variability in sub-scales of impulsivity. METHODS: Fifty-five right-handed healthy adults underwent two resting-state functional MRI (rs-fMRI) scans, following acute administration of either MPH (20 mg) or placebo, via a randomized double-blind placebo-controlled design. Graph modularity analysis was implemented to fractionate the DMN into distinct sub-networks based on the impact of MPH (vs. placebo) on DMN connectivity patterns with other neural networks. RESULTS: MPH administration led to an overall decreased DMN connectivity, particularly with the auditory, cinguloopercular, and somatomotor networks, and increased connectivity with the parietomedial network. Graph analysis revealed that the DMN could be fractionated into two distinct sub-networks, with one exhibiting MPH-induced increased connectivity and the other decreased connectivity. Decreased connectivity of the DMN sub-network with the cinguloopercular network following MPH administration was associated with elevated impulsivity and non-planning impulsiveness. CONCLUSION: Current findings highlight the intricate effects of MPH administration on DMN rs-fMRI connectivity, uncovering its opposing impact on distinct DMN sub-divisions. MPH-induced dynamics in DMN connectivity patterns with other neural networks may account for some of the effects of MPH administration on impulsive behavior.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Red en Modo Predeterminado , Imagen por Resonancia Magnética , Metilfenidato , Red Nerviosa , Humanos , Metilfenidato/farmacología , Metilfenidato/administración & dosificación , Adulto , Masculino , Imagen por Resonancia Magnética/métodos , Femenino , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Red en Modo Predeterminado/efectos de los fármacos , Red en Modo Predeterminado/diagnóstico por imagen , Adulto Joven , Método Doble Ciego , Red Nerviosa/efectos de los fármacos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Conducta Impulsiva/efectos de los fármacos , Conectoma/métodos , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología
14.
J Neurosurg Spine ; : 1-11, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905708

RESUMEN

OBJECTIVE: Cervical spondylotic myelopathy (CSM) stands as the most prevalent form of spinal cord injury, frequently prompting various changes in both the brain and spinal cord. However, the precise nature of these changes within the brains and spinal cords of CSM patients experiencing hand clumsiness (HCL) symptoms has remained elusive. The authors aimed to scrutinize these alterations and explore potential links between these changes and the onset of HCL symptoms. METHODS: Using the modified Japanese Orthopaedic Association (mJOA) scale, the authors classified CSM patients into two groups: those without HCL and those with HCL. The authors performed voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (FC) evaluations in the brain. Additionally, they used the Spinal Cord Toolbox to calculate the fractional anisotropy (FA) of spinal cord tracts. The analysis also encompassed an examination of the correlation of these measures with improvements in mJOA scores. RESULTS: Significant disparities in zALFF values surfaced in the right calcarine, right cuneus, right precuneus, right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), and right superior parietal gyrus (SPG) between healthy controls (HC), patients without HCL, and patients with HCL, primarily within the visual cortex. In the patient group, patients with HCL displayed reduced FC between the right calcarine, right MOG, right SOG, right SPG, right SFG, bilateral MFG, and left median cingulate and paracingulate gyri when compared with patients without HCL. Moreover, significant differences in FA values of the corticospinal tract (CST) and reticulospinal tract (REST) at the C2 level emerged among HC, patients without HCL, and patients with HCL. Notably, zALFF, FC, and FA values in specific brain regions and spinal cord tracts exhibited correlations with mJOA upper-extremity scores. Additionally, FA values of the CST and REST correlated with zALFF values in the right calcarine, right MOG, right SOG, and right SPG. CONCLUSIONS: Alterations within brain regions associated with the visual cortex, the fronto-parietal-occipital attention network, and spinal cord pathways appear to play a substantial role in the emergence and progression of HCL symptoms. Furthermore, the existence of a potential connection between the spinal cord and the brain suggests that this link might be related to the clinical symptoms of CSM.

15.
Neuroimage Clin ; 43: 103627, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38843759

RESUMEN

Neuroimaging studies on healthy subjects described the causal effective connectivity of cerebellar-cerebral social mentalizing networks, revealing the presence of closed-loops. These studies estimated effective connectivity by applying Dynamic Causal Modeling on task-related fMRI data of healthy subjects performing mentalizing tasks. Thus far, few studies have applied Dynamic Causal Modeling to resting-state fMRI (rsfMRI) data to test the effective connectivity within the cerebellar-cerebral mentalizing network in the absence of experimental manipulations, and no study applied Dynamic Causal Modeling on fMRI data of patients with cerebellar disorders typically showing social cognition deficits. Thus, in this research we applied spectral Dynamic Causal Modeling, to rsfMRI data of 13 patients affected by spinocerebellar ataxia type 2 (SCA2) and of 23 matched healthy subjects. Specifically, effective connectivity was tested between acknowledged mentalizing regions of interest: bilateral cerebellar Crus II, dorsal and ventral medial prefrontal cortex, bilateral temporo-parietal junctions and precuneus. SCA2 and healthy subjects shared some similarities in cerebellar-cerebral mentalizing effective connectivity at rest, confirming the presence of closed-loops between cerebellar and cerebral mentalizing regions in both groups. However, relative to healthy subjects, SCA2 patients showed effective connectivity variations mostly in cerebellar-cerebral closed loops, namely weakened inhibitory connectivity from the cerebellum to the cerebral cortex, but stronger inhibitory connectivity from the cerebral cortex to the cerebellum. The present study demonstrated that effective connectivity changes affect a function-specific mentalizing network in SCA2 patients, allowing to deepen the direction and strength of the causal effective connectivity mechanisms driven by the cerebellar damage associated with SCA2.

16.
J Psychiatr Res ; 176: 218-231, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889552

RESUMEN

Cocaine use is a major public health problem with serious negative consequences at both the individual and societal levels. Cocaine use disorder (CUD) is associated with cognitive and emotional impairments, often manifesting as alterations in brain functional connectivity (FC). This study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine dynamic FC in 38 male participants with CUD and 31 matched healthy controls. Using group spatial independent component analysis (group ICA) combined with sliding window approach, we identified two recurring distinct connectivity states: the strongly-connected state (state 1) and weakly-connected state (state 2). CUD patients exhibited significant increased mean dwell and fraction time in state 1, and increased transitions from state 2 to state 1, demonstrated significant strongly-connected state tendency. Our analysis revealed abnormal FC patterns that are state-dependent and state-shared in CUD patients. This study observed hyperconnectivity within the default mode network (DMN) and between DMN and other networks, which varied depending on the state. Furthermore, after adjustment for multiple comparisons, we found significant correlations between these altered dynamic FCs and clinical measures of impulsivity and borderline personality disorder. The disrupted FC and repetitive effects of precuneus and angular gyrus across correlations suggested that they might be the important hub of neural circuits related behaviorally and mentally in CUD. In summary, our study highlighted the potential of these disrupted FC as neuroimaging biomarkers and therapeutic targets, and provided new insights into the understanding of the neurophysiologic mechanisms of CUD.


Asunto(s)
Trastornos Relacionados con Cocaína , Conectoma , Conducta Impulsiva , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Masculino , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Adulto , Conducta Impulsiva/fisiología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Trastorno de Personalidad Limítrofe/fisiopatología , Trastorno de Personalidad Limítrofe/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Adulto Joven
17.
Neuroimage Clin ; 43: 103632, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38889524

RESUMEN

BACKGROUND: Childhood maltreatment (CM) is a major risk factor for the development of major depressive disorder (MDD). To gain more knowledge on how adverse childhood experiences influence the development of brain architecture, we studied functional connectivity (FC) alterations of neural networks of depressed patients with, or without the history of CM. METHODS: Depressed patients with severe childhood maltreatment (n = 18), MDD patients without maltreatment (n = 19), and matched healthy controls (n = 20) were examined with resting state functional MRI. History of maltreatment was assessed with the 28-item Childhood Trauma Questionnaire. Intra- and inter-network FC alterations were evaluated using FMRIB Software Library and CONN toolbox. RESULTS: We found numerous intra- and inter-network FC alterations between the maltreated and the non-maltreated patients. Intra-network FC differences were found in the default mode, visual and auditory networks, and cerebellum. Network modelling revealed several inter-network FC alterations connecting the default mode network with the executive control, salience and cerebellar networks. Increased inter-network FC was found in maltreated patients between the sensory-motor and visual, cerebellar, default mode and salience networks. LIMITATIONS: Relatively small sample size, cross-sectional design, and retrospective self-report questionnaire to assess adverse childhood experiences. CONCLUSIONS: Our findings confirm that severely maltreated depressed patients display numerous alterations of intra- and inter-network FC strengths, not only in their fronto-limbic circuits, but also in sensory-motor, visual, auditory, and cerebellar networks. These functional alterations may explain that maltreated individuals typically display altered perception and are prone to develop functional neurological symptom disorder (conversion disorder) in adulthood.

18.
Neurotherapeutics ; 21(4): e00375, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824101

RESUMEN

Deep brain stimulation (DBS) targeting the ventral intermediate (Vim) nucleus of the thalamus is an effective treatment for essential tremor (ET). We studied 15 â€‹ET patients undergoing DBS to a major input/output tract of the Vim, the dentato-rubro-thalamic tract (DRTt), using resting state functional MRI (rsfMRI) to evaluate connectivity differences between DBS ON and OFF and elucidate significant regions most influential in impacting tremor control and/or concomitant gait ataxia. Anatomical/functional 1.5T MRIs were acquired and replicated for each DBS state. Tremor severity and gait ataxia severity were scored with DBS ON at optimal stimulation parameters and immediately upon DBS OFF. Whole brain analysis was performed using dual regression analysis followed by randomized permutation testing for multiple correction comparison. Regions of interest (ROI) analysis was also performed. All 15 patients had tremor improvement between DBS ON/OFF (p â€‹< â€‹0.001). Whole brain analysis revealed significant connectivity changes between states in the left pre-central gyrus and left supplemental motor area. Group analysis of ROIs revealed that, with threshold p â€‹< â€‹0.05, in DBS ON vs. OFF both tremor duration and tremor improvement were significantly correlated to changes in connectivity. A sub-group analysis of patients with greater ataxia had significantly decreased functional connectivity between multiple ROIs in the cortex and cerebellum when DBS was ON compared to OFF. Stimulation of the DRTt and concordant improvement of tremor resulted in connectivity changes seen in multiple regions outside the motor network; when combined with both structural and electrophysiologic connectivity, this may help to serve as a biomarker to improve DBS targeting and possibly predict outcome.

19.
Neuroimage ; 297: 120709, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936650

RESUMEN

INTRODUCTION: The extended practice of meditation may reduce the influence of state fatigue by changing neurocognitive processing. However, little is known about the preventive effects of one-session brief focused attention meditation (FAM) on state fatigue in healthy participants or its potential neural mechanisms. This study examined the preventive effects of one-session brief FAM on state fatigue and its neural correlates using resting-state functional MRI (rsfMRI) measurements. METHODS: We randomly divided 56 meditation-naïve participants into FAM and control groups. After the first rsfMRI scan, each group performed a 10-minute each condition while wearing a functional near-infrared spectroscopy (fNIRS) device for assessing brain activity. Subsequently, following a second rsfMRI scan, the participants completed a fatigue-inducing task (a Go/NoGo task) for 60 min. We evaluated the temporal changes in the Go/NoGo task performance of participants as an indicator of state fatigue. We then calculated changes in the resting-state functional connectivity (rsFC) of the rsfMRI from before to after each condition and compared them between groups. We also evaluated neural correlates between the changes in rsFC and state fatigue. RESULTS AND DISCUSSION: The fNIRS measurements indicated differences in brain activity during each condition between the FAM and control groups, showing decreased medial prefrontal cortex activity and decreased functional connectivity between the medial prefrontal cortex and middle frontal gyrus. The control group exhibited a decrement in Go/NoGo task performance over time, whereas the FAM group did not. These results, thus, suggested that FAM could prevent state fatigue. Compared with the control group, the rsFC analysis revealed a significant increase in the connectivity between the left dorsomedial prefrontal cortex and right superior parietal lobule in the FAM group, suggesting a modification of attention regulation by cognitive effort. In the control group, increased connectivity was observed between the bilateral posterior cingulate cortex and left inferior occipital gyrus, which might be associated with poor attention regulation and reduced higher-order cognitive function. Additionally, the change in the rsFC of the control group was related to state fatigue. CONCLUSION: Our findings suggested that one session of 10-minute FAM could prevent behavioral state fatigue by employing cognitive effort to modify attention regulation as well as suppressing poor attention regulation and reduced higher-order cognitive function.


Asunto(s)
Atención , Fatiga , Imagen por Resonancia Magnética , Meditación , Humanos , Masculino , Femenino , Adulto , Atención/fisiología , Fatiga/prevención & control , Fatiga/fisiopatología , Adulto Joven , Descanso/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Conectoma/métodos , Mapeo Encefálico/métodos
20.
Front Hum Neurosci ; 18: 1339324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835646

RESUMEN

Background: Normative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state-network-informed evaluation in pediatric cerebral palsy. Methods: Cross-spectral dynamic causal modeling of resting-state-fMRI was investigated in 50 neurotypically developing 5- to 13-year-old children. Fully connected six-node network models per hemisphere included primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging informed the model; Purdue Pegboard Test scores of hand motor behavior were the covariate at the group level to determine the effective-connectivity-functional behavior relationship. Results: Although both hemispheres exhibited similar effective connectivity of motor cortico-basal ganglia-cerebellar networks, magnitudes were slightly greater on the right, except for left-sided connections of the striatum which were more numerous and of opposite polarity. Inter-nodal motor network effective connectivity remained consistent and robust across subjects. Age had a greater impact on connections to the contralateral cerebellum, bilaterally. Motor behavior, however, affected different connections in each hemisphere, exerting a more prominent effect on the left modulatory connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Discussion: This study revealed a consistent pattern of directed resting-state effective connectivity in healthy children aged 5-13 years within the motor network, encompassing cortical, subcortical, and cerebellar regions, correlated with motor skill proficiency. Both hemispheres exhibited similar effective connectivity within motor cortico-basal ganglia-cerebellar networks reflecting inter-nodal signal direction predicted by other modalities, mainly differing from task-dependent studies due to network differences at rest. Notably, age-related changes were more pronounced in connections to the contralateral cerebellum. Conversely, motor behavior distinctly impacted connections in each hemisphere, emphasizing its role in modulating left sided connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Motor network effective connectivity was correlated with motor behavior, validating its physiological significance. This study is the first to evaluate a normative effective connectivity model for the pediatric motor network using resting-state functional MRI correlating with behavior and serves as a foundation for identifying abnormal findings and optimizing targeted interventions like deep brain stimulation, potentially influencing future therapeutic approaches for children with movement disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA