Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer ; 130(5): 713-726, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819686

RESUMEN

BACKGROUND: Philadelphia chromosome (Ph)-like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. METHODS: Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. RESULTS: Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p < .05), male preponderance (p < .05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p < .05) in Ph-like ALL cases. CONCLUSIONS: This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. PLAIN LANGUAGE SUMMARY: Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)-like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Cromosoma Filadelfia , Hibridación Fluorescente in Situ , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Enfermedad Aguda
2.
Infect Genet Evol ; 112: 105445, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37217031

RESUMEN

CRISPR-Cas systems are the only RNA- guided adaptive immunity pathways that trigger the detection and destruction of invasive phages and plasmids in bacteria and archaea. Due to its prevalence and mystery, the Class 1 CRISPR-Cas system has lately been the subject of several studies. This review highlights the specificity of CRISPR-Cas system III-A in Mycobacterium tuberculosis, the tuberculosis-causing pathogen, for over twenty years. We discuss the difference between the several subtypes of Type III and their defence mechanisms. The anti-CRISPRs (Acrs) recently described, the critical role of Reverse transcriptase (RT) and housekeeping nuclease for type III CRISPR-Cas systems, and the use of this cutting-edge technology, its impact on the search for novel anti-tuberculosis drugs.


Asunto(s)
Bacteriófagos , Mycobacterium tuberculosis , Sistemas CRISPR-Cas , Mycobacterium tuberculosis/genética , Bacteriófagos/genética , Plásmidos/genética , Antituberculosos/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498938

RESUMEN

In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Neoplasias , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias/genética , Diferenciación Celular/genética , Retroelementos , Epigénesis Genética
4.
Front Virol ; 22022.
Artículo en Inglés | MEDLINE | ID: mdl-35957953

RESUMEN

The V179I substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is selected in humans or mouse models treated with certain nonnucleoside reverse transcriptase inhibitors (NNRTIs). While it is often observed together with other NNRTI resistance mutations, V179I does not confer drug resistance. To understand how V179I arises during NNRTI treatment, we characterized it in HIV-1 molecular clones with or without the NNRTI resistance mutations Y181C or Y181V. While V179I alone did not confer resistance to any NNRTIs tested, when present with Y181C/V it enhanced drug resistance to some NNRTIs by 3- to 8-fold. In replication competition experiments in the presence of the NNRTI rilpivirine (RPV), V179I modestly enhanced Y181C HIV-1 or Y181V HIV-1 replication compared to viruses without V179I. As V179I arises from a G to A mutation, we evaluated whether it could arise due to host APOBEC3 deaminase activity and be maintained in the presence of a NNRTI to provide a selective advantage for the virus. V179I was detected in some humanized mice treated with RPV and was associated with G to A mutations characteristic of APOBEC3 activity. In RPV selection experiments, the frequency of V179I in HIV-1 was accelerated in CD4+ T cells expressing higher APOBEC3F and APOBEC3G levels. Our results provide evidence that V179I in HIV-1 RT can arise due to APOBEC-mediated G to A hypermutation and can confer a selective advantage to drug-resistant HIV-1 isolates in the presence of some NNRTIs.

5.
Bioinformation ; 18(4): 371-380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36909690

RESUMEN

Genomic signatures of the protease and reverse transcriptase gene of HIV-1 from HIV infected North Indian patients who were under ART from 1 to ≤ 7 years were analyzed. The DNA from plasma samples of 9 patients and RNA from 57 patients were isolated and subjected to amplification for the protease and reverse transcriptase gene of HIV-1 subtype C. Then sequencing was carried out following the WHO dried blood spot protocol. The drug resistance mutation patterns were analyzed using the HIV Drug Resistance Database, Stanford University, USA. Lamivudine-associated drug-resistance mutations such as M184V/M184I, nevirapine-associated drug resistance mutations Y181C and H221Y, and efavirenz-associated drug resistance mutations M230I were observed in reverse transcriptase gene of archived DNA of two HIV-1 infected patients. No mutation was observed in the remaining 7 patients. Various computational tools and websites like viral epidemiological signature pattern analysis (VESPA), hyper mutation, SNAP version 2.1.1, and entropy were utilized for the analysis of the signature pattern of amino acids, hyper mutation, selection pressure, and Shannon entropy in the protease and reverse transcriptase gene sequences of the 9 archived DNA, 56 protease gene and 51 reverse transcriptase gene from the HIV-1 DNA amplified sequences of RNA. The HIV-1 Subtype-C (Gene bank accession number: AB023804) and first isolate HXB2 (Gene bank accession number: K03455.1) was taken as reference sequence. The signature amino acid sequences were identified in the protease and reverse transcriptase gene, no hyper mutation, highest entropy was marked in the amino acid positions and synonymous to non-synonymous nucleotide ratio was calculated in the protease and reverse transcriptase gene of 9 archived DNA sequences, 56 protease and 51 reverse transcriptase gene sequences of HIV-1 Subtype C isolates.

6.
Front Plant Sci ; 13: 1011565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589050

RESUMEN

Endogenous viral elements (EVEs) are viral sequences that have been integrated into the nuclear chromosomes. Endogenous pararetrovirus (EPRV) are a class of EVEs derived from DNA viruses of the family Caulimoviridae. Previous works based on a limited number of genome assemblies demonstrated that EPRVs are abundant in plants and are present in several species. The availability of genome sequences has been immensely increased in the recent years and we took advantage of these resources to have a more extensive view of the presence of EPRVs in plant genomes. We analyzed 278 genome assemblies corresponding to 267 species (254 from Viridiplantae) using tBLASTn against a collection of conserved domains of the Reverse Transcriptases (RT) of Caulimoviridae. We concentrated our search on complete and well-conserved RT domains with an uninterrupted ORF comprising the genetic information for at least 300 amino acids. We obtained 11.527 sequences from the genomes of 202 species spanning the whole Tracheophyta clade. These elements were grouped in 57 clusters and classified in 13 genera, including a newly proposed genus we called Wendovirus. Wendoviruses are characterized by the presence of four open reading frames and two of them encode for aspartic proteinases. Comparing plant genomes, we observed important differences between the plant families and genera in the number and type of EPRVs found. In general, florendoviruses are the most abundant and widely distributed EPRVs. The presence of multiple identical RT domain sequences in some of the genomes suggests their recent amplification.

7.
Leuk Lymphoma ; 63(3): 633-643, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34783280

RESUMEN

For the detection of BCR-ABL1-like ALL cases, two methodologies, specifically Gene expression profiling (GEP) or Next-generation targeted sequencing (NGS) and TaqMan based low-density (TLDA) card, are being used. NGS is very costly and TLDA is not widely commercially available. In this study, we quantified the expression of 8 selected overexpressed genes in 536 B-ALL cases. We identified 26.67% (143/536) BCR-ABL1-like ALLs using hierarchical clustering and principal component analysis. BCR-ABL1-like ALL cases were significantly older at presentation (p = 0.036) and had male preponderance (p = 0.047) compared to BCR-ABL1-negative ALL cases. MRD-positivity and induction failure were more commonest in BCR-ABL1-like ALL cases (30.55 vs.19.35% in BCR-ABL1-negative ALL cases). Lastly, we built a PHi-RACE classifier (sensitivity = 95.2%, specificity= 83.7%, AUC= 0.927) using logistic regression to detect BCR-ABL1-like ALL cases promptly at diagnosis. This classifier is beneficial for hematologists in quick decision making at baseline to start tailored treatment regimes.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Análisis por Conglomerados , Análisis Costo-Beneficio , Proteínas de Fusión bcr-abl/genética , Perfilación de la Expresión Génica , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
8.
Infect Genet Evol ; 89: 104706, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33418145

RESUMEN

To assess the heterogeneity of HBV reverse transcriptase (RT) quasispecies during 10 years of antiviral therapy and their association with antiviral efficacy. Nineteen patients with chronic hepatitis B (CHB) infection receiving nucleos(t)ide analogues (NAs) were enrolled. Based on the antiviral efficacy after 1 year of treatment, 5 patients were grouped into an early virologic response (EVR) group, while 8 patients were grouped into a late virologic response (LVR) group. Furthermore, 6 CHB patients that had undergone antiviral treatment for 10 years were grouped into a virologic breakthrough (VBT) group. The HBV RT from each patient were amplified, cloned, and sequenced. The complexity of the RT gene in the EVR group was significantly higher than that in the LVR (P = 0.0393) and VBT groups (P = 0.0141). Phylogenetic tree analysis showed that the average branch length of the EVR and LVR groups were significantly greater than that of VBT group (P < 0.001). The complexity (at the nucleotide level) of the RT quasispecies was negatively correlated with the corresponding HBV DNA load (P = 0.0163) at one year post-antiviral treatment. Moreover, both the LVR and VBT groups accumulated more deleterious mutations than the EVR group. After 1 year of NAs treatment, the increased HBV quasispecies complexity and evolutionary topologies, coupled with less deleterious mutations, are likely associated with a favorable efficacy during long-term antiviral treatment.


Asunto(s)
Antivirales/farmacología , Heterogeneidad Genética , Virus de la Hepatitis B/enzimología , ADN Polimerasa Dirigida por ARN/genética , Adolescente , Adulto , Alanina Transaminasa/sangre , ADN Viral/genética , Femenino , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Humanos , Masculino , Adulto Joven
9.
Eur J Pharmacol ; 884: 173327, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32726656

RESUMEN

AIDS, a serious fatal disease caused by the human immunodeficiency virus (HIV), is an epidemic disease for which no effective vaccine has been established. The current therapeutic interventions for AIDS have limited efficacy because they are unable to clear HIV infections and the continuous occurrence of resistant HIV strains. Therefore, the exploitation of new drugs to prevent the spread of AIDS remains a high priority. In this study, the effects of icariin and its metabolite anhydroicaritin on SIV/HIV replication were investigated. In CEM × 174 cells and PBMC cells, both icariin and anhydroicaritin can significantly inhibit HIV-1 or SIVmac251 replication. Furthermore, molecular docking studies revealed that icariin and anhydroicaritin can act on both HIV reverse transcriptase and protease but could not bind to integrase. Reverse transcriptase and protease inhibition biological assays showed that both icariin and anhydroicaritin could significantly inhibit only HIV reverse transcriptase. In summary, the two compounds can significantly inhibit HIV/SIV in vitro and their targets may be mainly involved with HIV reverse transcriptase.


Asunto(s)
Fármacos Anti-VIH/farmacología , Benzopiranos/farmacología , Flavonoides/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Adulto , Fármacos Anti-VIH/química , Benzopiranos/química , Línea Celular , Proteasa del VIH/metabolismo , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , VIH-1/crecimiento & desarrollo , Humanos , Masculino , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Conformación Proteica , Inhibidores de la Transcriptasa Inversa/química , Virus de la Inmunodeficiencia de los Simios/enzimología , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
10.
Genomics ; 112(1): 263-275, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30826442

RESUMEN

Aquaporins (AQPs) are water channel proteins that play a significant role in drought stress. Although the AQPs identified in multiple plant species, there is no detailed evolutionary and comparative study of AQPs regarding chickpea plant. The current study involved evolutionary analyses coupled with promoter and expression analyses of chickpea AQPs (CaAQPs). A total of 924 non-redundant AQPs were studied in 24 plant species including algae, mosses, lycophytes, monocots and dicots. Phylogenetic analysis demonstrated a clear divergence of eight AQP subfamilies (LIPs, SIPs, GIPs, NIPs, XIPs, PIPs, HIPs and TIPs). The comparative phylogenetic trees of AQP subfamilies among Arabidopsis, soybean, common bean, maize and chickpea demonstrated that the AQPs were highly species-specific. Interestingly, the dual NPA motif was conserved in all species. However, the ar/R selectivity filter signatures [W/T/S/N/G/A]-[V/S/L/I/A]-[S/G/A]-R (in NIPs), F-H-T-R (in PIPs), [H/N/Q/S]-[A/I/L/S/V]-[A/G]-[A/C/L/M/R/V] (in TIPs) and [V/I/L/M]-[V/I/A/F/M]-[A/S/F/C]-[N/F/L/I/A/S (in SIPs) were found in five species. Moreover, the Froger's positions (P1-P5) were found as [F/L/Y]-[S/T]-A-Y-[L/I/M/V/F] (in NIPs), [Q/E/M]-S-A-F-W (in PIPs), [A/L/S/T/V]-[A/C/N/S/T/V]-[P/R/S]-[Y/N/F]-[W/Q] (in TIPs) and [I/M/F]-[A/V]-[A/V]-Y-W (in SIPs). The MEME motif analyses showed that most of the motifs were specific to subfamily and subgroups. Tissue-specific expression profiling of CaAQPs revealed that CaTIPs and CaPIPs are highly expressed in most of the tissues, while CaNIPs and CaSIPs have low expression. In promoter analysis of CaAQPs, multiple stress-related cis-acting elements e.g. MYB, MYC, ABRE, etc. were found. Semi-quantitative RT-PCR analysis showed that CaPIP2;3 and CaNIP3;1 are positive regulator, while CaSIP1;1 and CaPIP2;1 have a negative role in drought tolerance. The findings and implications of this study are discussed in detail.


Asunto(s)
Acuaporinas/genética , Cicer/genética , Familia de Multigenes , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Acuaporinas/clasificación , Acuaporinas/metabolismo , Cicer/metabolismo , Sequías , Evolución Molecular , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Eur J Med Chem ; 166: 390-399, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739822

RESUMEN

The pharmacophore of active site inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated RNase H typically entails a flexible linker connecting the chelating core and the hydrophobic aromatics. We report herein that novel 3-hydroxypyrimidine-2,4-dione (HPD) subtypes with a nonflexible C-6 carbonyl linkage exhibited potent and selective biochemical inhibitory profiles with strong RNase H inhibition at low nM, weak to moderate integrase strand transfer (INST) inhibition at low µM, and no to marginal RT polymerase (pol) inhibition up to 10 µM. A few analogues also demonstrated significant antiviral activity without cytotoxicity. The overall inhibitory profile is comparable to or better than that of previous HPD subtypes with a flexible C-6 linker, suggesting that the nonflexible carbonyl linker can be tolerated in the design of novel HIV RNase H active site inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , Pirimidinonas/química , Pirimidinonas/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , VIH-1/efectos de los fármacos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Pirimidinonas/metabolismo , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Future Med Chem ; 11(2): 137-154, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30648904

RESUMEN

Acyclic nucleoside phosphonates represent a well-defined class of clinically used nucleoside analogs. All acyclic nucleoside phosphonates need intracellular phosphorylation before they can bind viral DNA polymerases. Recently, a novel class of alpha-carboxynucleoside phosphonates have been designed to mimic the natural 2'-deoxynucleotide 5'-triphosphate substrates of DNA polymerases. They contain a carboxyl group in the phosphonate moiety linked to the nucleobase through a cyclic or acyclic bridge. Alpha-carboxynucleoside phosphonates act as viral DNA polymerase inhibitors without any prior requirement of metabolic conversion. Selective inhibitory activity against retroviral reverse transcriptase and herpesvirus DNA polymerases have been demonstrated. These compounds have a unique mechanism of inhibition of viral DNA polymerases, and provide possibilities for further modifications to optimize and fine tune their antiviral DNA polymerase spectrum.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Nucleósidos/análogos & derivados , Nucleósidos/farmacología , Organofosfonatos/química , Organofosfonatos/farmacología , Animales , ADN Polimerasa Dirigida por ADN , Descubrimiento de Drogas , Exodesoxirribonucleasas/antagonistas & inhibidores , Herpes Simple/tratamiento farmacológico , Humanos , Modelos Moleculares , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Proteínas Virales/antagonistas & inhibidores , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Virus/enzimología
13.
Jpn J Infect Dis ; 70(6): 647-655, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29093313

RESUMEN

Mutations in the reverse transcriptase (RT) region of the hepatitis B virus (HBV) genome are an important factor in low therapeutic effectiveness. Nonetheless, the prevalence of these mutations in HBV strains isolated previously in Indonesia has not been systematically examined. Therefore, in this study, we investigated the profile of mutations in the RT region and the associations of these mutations with amino acid changes in the surface protein in the virus of treatment-naïve Indonesian HBV carriers. Overall, 96 sequences of the full-length Indonesian HBV genomes (genotype B, n = 54; genotype C, n = 42) were retrieved from the National Center for Biotechnology Information. Naturally occurring primary and/or compensatory drug resistance mutations were found in 6/54 (11.1%) genotype B strains and in 1/42 (2.4%) genotype C strains. The potential mutations underlying resistance to a nucleos(t)ide analog and/or pretreatment mutations were more frequent in both genotypes but more frequent in genotype C strains than in genotype B strains. The A-B interdomain region in the RT gene was more frequently mutated in genotype C than in genotype B (3.51 ± 2.53 vs. 1.08 ± 1.52, P < 0.001). Knowledge about the mutational profiles of the RT gene and changes in the surface protein may help clinicians to select the most appropriate antiviral drug and vaccination or HBV immunoglobulin regimen for management of HBV infection in Indonesia.


Asunto(s)
Portador Sano , Farmacorresistencia Viral , Virus de la Hepatitis B/genética , Hepatitis B/epidemiología , Hepatitis B/virología , Mutación , ADN Polimerasa Dirigida por ARN/genética , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Genoma Viral , Genotipo , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/clasificación , Virus de la Hepatitis B/enzimología , Humanos , Indonesia/epidemiología , Filogeografía , Prevalencia
14.
Methods Mol Biol ; 1400: 339-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895063

RESUMEN

Long INterspersed Element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that are required for retrotransposition. The L1 element amplification protocol (LEAP) assays the ability of L1 ORF2p to reverse transcribe L1 RNA in vitro. Ultracentrifugation or immunoprecipitation is used to isolate L1 ribonucleoprotein particle (RNP) complexes from cultured human cells transfected with an engineered L1 expression construct. The isolated RNPs are incubated with an oligonucleotide that contains a unique sequence at its 5' end and a thymidine-rich sequence at its 3' end. The addition of dNTPs to the reaction allows L1 ORF2p bound to L1 RNA to generate L1 cDNA. The resultant L1 cDNAs then are amplified using polymerase chain reaction (PCR) and the products are visualized by gel electrophoresis. Sequencing the resultant PCR products then allows product verification. The LEAP assay has been instrumental in determining how mutations in L1 ORF1p and ORF2p affect L1 reverse transcriptase (RT) activity. Furthermore, the LEAP assay has revealed that the L1 ORF2p RT can extend a DNA primer with mismatched 3' terminal bases when it is annealed to an L1 RNA template. As the LINE-1 biology field gravitates toward studying cellular proteins that regulate LINE-1, molecular genetic and biochemical approaches such as LEAP, in conjunction with the LINE-1-cultured cell retrotransposition assay, are essential to dissect the molecular mechanism of L1 retrotransposition.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Reacción en Cadena de la Polimerasa , Células HeLa , Humanos , Inmunoprecipitación/métodos , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa/métodos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/envenenamiento , Ultracentrifugación/métodos
15.
Antivir Chem Chemother ; 24(1): 3-18, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26149262

RESUMEN

BACKGROUND: A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. METHODS: A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. RESULTS: Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. CONCLUSION: The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Diseño de Fármacos , VIH-1/efectos de los fármacos , Uracilo/análogos & derivados , Urea/química , Urea/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Fármacos Anti-VIH/farmacología , Sitios de Unión , Línea Celular , Técnicas de Química Sintética , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , Simulación del Acoplamiento Molecular , Nevirapina/metabolismo , Conformación Proteica , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad , Uracilo/síntesis química , Uracilo/química , Uracilo/metabolismo , Uracilo/farmacología , Urea/síntesis química , Urea/metabolismo
16.
Mol Biol (Mosk) ; 49(3): 417-21, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26107894

RESUMEN

Cloning and sequencing of the partial reverse transcriptase gene (750 bp) of the Bov-B LINE retrotransposon have been held in parthenogenetic lizards Darevskia unisexualis and its assumed parental bisexual species D. nairensis and D.valentini. It was shown that the percentage of transcriptionally active copies of this gene, which does not contain a stop codon, is almost the same in the three species and is about 75%. The intragenomic divergence level of these sequences is low and was found to be 2.6% in D. unisexualis, 1.9% in D. nairensis, and 1.6% in D. valentini. The phylogenetic analysis shows the distribution of copies of D. unisexualis in each of the two clusters of RT sequences characteristic of D. nairensis and D. valentini. This result supports the view of the hybrid origin of D. unisexualis and does not exclude intraspecific hybridization between D. nairensis and D. valentini.


Asunto(s)
Genoma , Lagartos/genética , Filogenia , ADN Polimerasa Dirigida por ARN/genética , Proteínas de Reptiles/genética , Retroelementos , Animales , Armenia , Femenino , Dosificación de Gen , Variación Genética , Hibridación Genética , Lagartos/clasificación , Masculino , Partenogénesis/genética , ADN Polimerasa Dirigida por ARN/química , Proteínas de Reptiles/química
17.
Stem Cell Investig ; 1: 17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27358863

RESUMEN

BACKGROUND: Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS: Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS: The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS: This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.

18.
J Virol Methods ; 193(2): 341-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23773806

RESUMEN

Drug resistance to nucleoside analogs is a serious problem worldwide. Both drug resistance gene mutation detection and HBV genotyping are helpful for guiding clinical treatment. Total HBV DNA from 395 patients who were treated with single or multiple drugs including Lamivudine, Adefovir, Entecavir, Telbivudine, Tenofovir and Emtricitabine were sequenced using the HiSeq 2000 sequencing system and validated using the 3730 sequencing system. In addition, a mixed sample of HBV plasmid DNA was used to determine the cutoff value for HiSeq-sequencing, and 52 of the 395 samples were sequenced three times to evaluate the repeatability and stability of this technology. Of the 395 samples sequenced using both HiSeq and 3730 sequencing, the results from 346 were consistent, and the results from 49 were inconsistent. Among the 49 inconsistent results, 13 samples were detected as drug-resistance-positive using HiSeq but negative using 3730, and the other 36 samples showed a higher number of drug-resistance-positive gene mutations using HiSeq 2000 than using 3730. Gene mutations had an apparent frequency of 1% as assessed by the plasmid testing. Therefore, a 1% cutoff value was adopted. Furthermore, the experiment was repeated three times, and the same results were obtained in 49/52 samples using the HiSeq sequencing system. HiSeq sequencing can be used to analyze HBV gene mutations with high sensitivity, high fidelity, high throughput and automation and is a potential method for hepatitis B virus gene mutation detection and genotyping.


Asunto(s)
ADN Viral/genética , Farmacorresistencia Viral , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Hepatitis B Crónica/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Antivirales/uso terapéutico , ADN Viral/química , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B Crónica/tratamiento farmacológico , Humanos , Tasa de Mutación , Reproducibilidad de los Resultados
19.
Bioinformation ; 8(14): 678-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055609

RESUMEN

The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.

20.
Balkan J Med Genet ; 15(Suppl): 87-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24052751

RESUMEN

MicroRNAs (miRNAs) are small [∼21 nucleotide (nt)] non coding RNAs (ncRNAs) that regulate gene expression posttranscriptionally. About 3.0% of human genes encode for miRNAs, and up to 30.0% of human protein coding genes may be regulated by miRNAs. Currently, more than 2000 unique human mature microRNAs are known. MicroRNAs play a key role in diverse biological processes including development, cell proliferation, differentiation and apoptosis. These processes are commonly dysregulated in cancer, implicating miRNAs in carcinogenesis, where they act as tumor supressors or oncogenes. Several miRNAs are associated with breast cancer. Here we present our initial results of miRNA analyses of breast cancer tissues using quantitative real time-polymerase chain reaction (ReTi-PCR) (qPCR) involving stem-loop reverse transcriptase (RT) primers combined with TaqMan® PCR and miRNA microarray analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA