RESUMEN
Macroplastic litter causes detrimental effects on freshwater biota affecting human health. Despite the significant role of rivers in transporting plastic waste, most plastics remain in fluvial ecosystems, accumulating in infrastructure, river sediment, and (riverbank) vegetated areas. However, the entrapment of plastics by riparian vegetation was overlooked, particularly in upper and middle river courses. For the first time, we aimed to quantify the entrapment of plastics by riparian vegetation along the entire river course. Sampling riparian areas in the upper, middle, and lower river courses in central Italy, we found 1,548 macrolitter items, with vegetation entrapping 93.9% of total litter. Riverbank and riparian plastics acted as long-term indicators of river plastics. We emphasized the trapping efficiency at the species level highlighting that the best plastic trapper species were trees, shrubs and reeds (Populus spp., Salix spp., Rubus ulmifolius, Phragmites australis, and Ficus carica), blocking 85.4% of the total macrolitter entrapped by plants. Plastic pieces, bags, bandages, sanitary items, and packaging were among the most trapped types. Furthermore, vegetation in the lower river course exhibited greater plastic entrapment compared to the upper and middle courses, following the fact that all the river courses contribute to plastic pollution. Recognizing the potential of riparian vegetation as a valuable ecosystem service in trapping macroplastics, further research should explore the characteristics and structures of riparian communities involved in this process. By developing eco-safe practices and mitigation strategies based on these findings, we might contribute significantly to managing, conserving, and restoring riverine ecosystems.
RESUMEN
Isotopic evidence of groundwater and stream water is frequently used to investigate water exchanges with groundwater. Monthly sampling of rain, stream water, and groundwater was conducted at Tims Branch watershed in South Carolina for the oxygen and hydrogen stable isotope (δ2H and δ18O) measurement, as well as pH and oxidation-reduction potential (ORP). Together with a mass balance perspective, it was determined that it takes a few weeks to one month for groundwater in the hyporheic zone to fully exchange with stream water. From hydrodynamic modelling, we show that substantial (up to 70â %) groundwater exchange occurs at gaining and losing sites. Groundwater exfiltration, i.e. inflow into stream water, contributes up to 4â % to stream water, with the remainder from upstream exfiltration. A 2-4â % per day renewal rate of adjacent groundwater would indirectly indicate a groundwater residence time in the order of half a month to a full month (assuming either a well-mixed case or large dispersion rate in pulse flow case), in agreement with a greatly reduced variability of δ2H and δ18O of groundwater compared to stream water and rain. This reduced variability of stable isotope signal from groundwater confirms our hypothesis that riparian groundwater mixing at Tims Branch is more of a mixed type rather than a pulse flow type. A monthly time scale is sufficient for groundwater to become anoxic at exit points into stream water resulting in the episodic production of natural organic matter- and iron-rich flocs upon oxidation.
RESUMEN
Riparian forests are crucial for biodiversity, but dam construction for hydroelectric power disrupts these ecosystems, causing habitat loss and altering river dynamics. Our study investigates the impacts of dams on tree diversity in the southern Brazilian Atlantic Forest. We sampled trees along riverbanks and uplands across 15 dam-affected fragments, analysing the relationship between habitat loss (i.e. loss of riparian zones by permanent flooding due to dam filling), elevation difference, fragment size, and dam implementation time with alpha and beta diversity using mixed models and redundancy analyses. Habitat loss had a more significant impact on beta diversity, leading to shifts in species composition and reduced uniqueness of communities as the impact's intensity, spatial extent, and duration increased. Alpha diversity only increased in response to local elevation differences between plots located on uplands and riverbanks. Our sampling design can be applied to other inadequately monitored systems to provide insights into beta diversity, a component often neglected in dam licensing and mitigation processes. Our findings reveal a transient local heterogenisation, transitioning into regional homogenisation due to dam-induced habitat loss in riparian forests of the Brazilian Atlantic Forest.
Asunto(s)
Biodiversidad , Ecosistema , Bosques , Ríos , Brasil , Conservación de los Recursos Naturales/métodos , ÁrbolesRESUMEN
A new species, Miconiagaragoana, from riparian environments of the northern Cordillera Oriental of Colombia, is described. This is the second species exclusive to rheophytic conditions that grows in the Andean forest in Colombia and is characterized by the presence of stellate-lepidote trichomes on young structures and inflorescences, terminal inflorescences, 4-merous (rarely 5-merous) flowers, oblong-subulate anthers with an apical pore and 2-locular ovary. The differences with other rheophytic species occurring in Colombia are noted and it is argued that it is related to other Andean species with bluish-green ripe fruits such as M.squamulosa and M.symplocoidea. This new species is so far known only from Colombia and its threat category is suggested as Critically Endangered" (CR).
ResumenSe describe una nueva especie, Miconiagaragoana, de ambientes riparios del norte de la Cordillera Oriental de Colombia. Esta es la segunda especie exclusiva de condición reofitica que crece en bosques andinos de Colombia y se caracteriza por la presencia de cubiertas de tricomas estrellado-lepidotos en las estructuras jóvenes e inflorescencias, inflorescencias terminales, flores 4-meras /raras veces 5-meras), anteras oblongo-subuladas con un poro apical y ovario 2-locular. Se establecen las diferencias con otras especies reofíticas presentes en Colombia y se argumenta que está relacionada con especies de andinas de frutos maduros color verde-azuloso como M.squamulosa y M.symplocoidea. Esta nueva especie hasta ahora se conoce sólo de Colombia y se sugiere su categoría de amenaza como En Peligro Crítico (CR).
RESUMEN
Riparian ecosystems are essential carbon dioxide (CO2) sources, which considerably promotes climate warming. However, the other greenhouse gas fluxes (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the riparian ecosystems have not been well studied, and it remains unclear whether and how these GHG fluxes respond to extreme weather, fertilization and hydrological alterations associated with reservoir management. Here, we assessed the impacts of hydrological alterations (i.e., flooding frequency) and fertilization (nitrogen and/or phosphorus) induced by human activities (hydroengineering construction and agricultural activities) on GHG fluxes, and further investigated the underlying mechanisms in two contrasting years (normal vs. extreme rainfall years) in a reservoir riparian zone dominated by grasses. The significant combined effects of extreme rainfall events and human activities (hydrological alterations and fertilization) on the GHGs were observed. Continuous flooding reduced CO2 emissions by 24% but increased CH4 emissions by â¼4 times in a normal rainfall year. In addition, nitrogen fertilization promoted CO2 emissions by 37%. However, these phenomena were not observed in the year with extreme rainfall events, which made the flooding levels homogeneous across the treatments. Furthermore, we found that CO2 fluxes were driven by the soil moisture, nutrient content, aboveground biomass, and root carbon content, while CH4 and N2O fluxes were merely driven by the soil properties (pH, moisture, and nutrient content). This study provides valuable insights into the crucial role of extreme rainfall events, hydrological alteration, and fertilization in regulating GHG fluxes in riparian ecosystems, as well as supports the integration of these changes in GHG emission models.
RESUMEN
Why nonnative invasive plant species commonly co-occur, despite their competitive superiority and propensity to displace native species, remains a paradox in invasion biology. Negative interactions among competitively dominant invaders are potentially alleviated by two understudied mechanisms: seasonal priority effects, where phenological separation weakens the effect of competition on species with early phenology; and indirect facilitation, where competition between two species is mitigated by a third species. Although phenological separation has been speculated as a mechanism for explaining co-occurrence patterns of invasive plants, it has never been directly tested. In a greenhouse experiment, we tested the effect of phenological separation on direct and indirect interactions between three co-occurring invasive plant species found in the riparian forests of North America. These species have distinct natural phenological separation with reproduction in early spring (Ficaria verna), mid-spring (Alliaria petiolata), and late summer (Microstegium vimineum). When phenology was experimentally synchronized, direct pairwise interactions among invasive species were overwhelmingly negative, asymmetric, and unlikely to promote co-occurrence. However, increasing phenological separation generated seasonal priority effects, which weakened the effect of competition on species with early phenology. Furthermore, the addition of a third species generated indirect facilitative effects, which balanced competitive outcomes among the two weakest competitors. Based on these findings, we conclude that phenological separation modulates the strength of both seasonal priority effects and indirect facilitation within species interaction networks and may promote the co-occurrence of three common invasive species within this study system. We articulate how future studies can test the external validity of these findings in more complex environmental conditions and with a larger range of invasive plants.
Asunto(s)
Especies Introducidas , Estaciones del AñoRESUMEN
Riparian sediment (RS) is a translational zone separating aquatic and terrestrial ecosystems. To this date, the bioplastic's UV ageing and biodegradation features in these contaminated sediments remain unknown. It is a considerable concern to investigate whether a food packaging film can interact with RS and riparian sediment-derived Dissolved Organic Matter (RS-DOM) during biodegradation and UV ageing respectively, after disposal in a natural environmental setting. To address this research gap, for the first time, this study investigates the biodegradation and UV ageing of starch/PPst/GTR films intended for food packaging applications in RS and RS-DOM respectively. The findings revealed that RS comprises major fulvic acid DOM components. Remarkably, research demonstrates the leaching of humic acid-like DOM from the film promotes aromaticity and humification as UV ageing progresses from the third to the tenth day. Comparable DOM samples were darkly analysed, revealing aromatic proteins I and II. Furthermore, an elevated carbonyl carboxyl index confirmed significant degradation of films during UV ageing. Lesser humification, aromaticity, and higher biological activity were confirmed by a HI < 10 and BIX > 0.6 respectively. In comprehension, these findings reveal that the starch/PPst/GTR food packaging film will have a lesser adverse environmental impact after disposal, offering a hopeful outlook for the future of bioplastics.
RESUMEN
Ecological integrity is fundamental to human life and ecosystems, so its assessment and management are crucial. This concept assesses ecosystem health by examining physico-chemical and biological characteristics, riparian vegetation and macroinvertebrate communities. In recent decades, water resources have undergone significant changes due to various factors that have contributed to the physical, chemical and biological pollution of water. To address this problem, a specific model has been developed using the Partial Least Squares Path Modelling methodology to analyse and quantify the main factors affecting the ecological integrity of the Spanish part of the Guadiana River (Spain). The variables analysed at the different sampling points in the catchment include forest cover, anthropogenic pressure, water quality and biological integrity. Water quality and biological integrity, in turn, constitute the concept of ecological integrity. The model predicts 60.3 % of the physico-chemical water quality and 56.6 % of the biological integrity, showing that ¨Forest cover¨ negatively impacts water quality (W = -0.476) by reducing pollution, while ¨Anthropogenic Pressure¨ positively impacts it (W = 0.680) by increasing pollution. Based on the modelling, three future scenarios were designed, from the lowest to the highest pressure considering changes in riparian forest quality based on QBR and changes in the number of reservoirs: a favourable scenario with high riparian forest quality and no reservoirs; an intermediate scenario with good riparian forest quality and no change in the number of reservoirs; and an unfavourable scenario, characterised by very poor riparian forest quality and an increase in the number of reservoirs. In this context, the importance of the conservation and enhancement of riparian vegetation as a nature-based solution is highlighted, as well as the pressure generated by industrial activity and agricultural practices on the ecological integrity of the study area. The favourable scenario, with very good quality riparian vegetation, improves water quality by up to 85 %, positively impacting the ecological integrity of the river. In contrast, the unfavourable scenario, with extremely degraded riparian forest, would decrease water quality by up to 62 %, negatively affecting ecological integrity. Modelling and future scenarios is an essential tool in the decision-making process to improve environmental governance and water security. In addition, the PLS-PM methodology allows the identification and quantification of relationships between complex variables, providing a solid basis for the design of effective environmental management strategies.
RESUMEN
Amphibians, the most threatened vertebrates globally, face risks due to climate change, habitat loss, and fragmentation. Their sensitivity to environmental changes highlights their importance as ecological indicators. Temporary rivers, influenced by geological, climatic, and anthropogenic factors, play a critical role in shaping biodiversity and community structure. Some species of amphibians may be adapted to these temporary waters, a fact reflected in their life cycles and various biological traits. However, to develop effective conservation strategies for amphibians, it is essential to address the knowledge gaps surrounding the complex interactions between biological dynamics and fluvial habitat conditions. In this study, we investigated how trophic interactions between amphibians and other aquatic organisms (diatoms, macroinvertebrates, and fish), coupled with environmental factors (water availability and riparian structure), can affect amphibian abundance and diversity in temporary rivers. The study was conducted in a Mediterranean river network located in Sant Llorenç del Munt i l'Obac Natural Park (Catalonia, Spain). Our expectations were that habitats suitable for egg deposition, lacking predators (e.g. tadpole-predators and fish), and abundant in food sources would likely support higher amphibian abundance and diversity. However, water availability was identified as a crucial factor shaping abundance and diversity in the studied amphibian communities, even if it correlated with fish presence, and especially impacting amphibian species usually linked to permanent water bodies. Concerning biotic interactions, while our results suggested that amphibian populations in temporary rivers are more dependent on top-down than bottom-up interactions, the presence of aquatic predators was not as conclusive as expected, suggesting that in temporary rivers the fish-avoiding amphibian species can survive using microhabitats or breeding opportunities linked to natural river dynamics. Overall, our findings highlight the importance of considering multi-trophic interactions, hydroperiod and habitat heterogeneity in temporary river ecosystems for effective amphibian conservation.
Asunto(s)
Anfibios , Biodiversidad , Ríos , Animales , Anfibios/fisiología , España , Ecosistema , Monitoreo del Ambiente , Conservación de los Recursos Naturales , PecesRESUMEN
Riparian zones play a crucial role in reducing nitrate pollution in both terrestrial and aquatic environments. Complex deposition action and dynamic hydrological processes will change the grain size distribution of riparian sediments, affect the residence time of substances, and have a cascade effect on the biogeochemical process of nitrate nitrogen (NO3--N). However, simultaneous studies on NO3--N transformation and the potential drivers in riparian zones are still lacking, especially neglecting the effect of sediment grain size (SGS). To fill this knowledge gap, we first systematically identified and quantified NO3--N biogeochemical processes in the riparian zone by integrating molecular biotechnology, 15N stable isotope tracing, and microcosmic incubation experiments. We then evaluated the combined effects of environmental variables (including pH, dissolved organic carbon (DOC), oxidation reduction potential, SGS, etc.) on NO3--N transformation through Random Forest and Structural Equation Models. The results demonstrated that NO3--N underwent five microbial-mediated processes, with denitrification, dissimilatory nitrate reduction to ammonium (DNRA) dominated the NO3--N attenuation (69.4 % and 20.1 %, respectively), followed by anaerobic ammonia oxidation (anammox) and nitrate-dependent ferric oxidation (NDFO) (8.4 % and 2.1 %, respectively), while nitrification dominated the NO3--N production. SGS emerged as the most critical factor influencing NO3--N transformation (24.96 %, p < 0.01), followed by functional genes (nirS, nrfA) abundance, DOC, and ammonia concentrations (14.12 %, 16.40 %, 13.08 %, p < 0.01). SGS influenced NO3--N transformation by regulating microbial abundance and nutrient concentrations. RF predicted that a 5 % increase in the proportion of fine grains (diameter < 50 µm) may increase the NO3--N transformation rate by 3.8 %. This work highlights the significance of integrating machine learning and geochemical analysis for a comprehensive understanding of nitrate biogeochemical processes in riparian zones, contributing valuable references for future nitrogen management strategies.
RESUMEN
Riparian zones play a vital role in the river ecosystem. Solutes in vertical riparian zones are transported being by alternating hydraulic gradients between river water and groundwater, due to natural or human activities. This study investigates the impacts of porous sediments and alternating rate of surface water-groundwater on nitrogen removal in the riparian zone through experiments based on the field sampled. The experimental results, combined with dimensionless numbers (Péclet and Damköhler) and Partial Least Squares-Path Modeling, analyze the nitrogen fate responding to hydrodynamics changes. The results show that increased sediment porosity contributes to the ammonium removal, particularly when the oxygen content of river water is low, with the removal rate up to 72.57%. High ammonium content and dissolved organic carbon (DOC) in rural rivers lead to a constant low-oxygen condition (4 mg/L) during surface water-groundwater alternation, and promote denitrification. This threatens groundwater with ammonium pollution and causes accumulation at the top of vertical riparian zones during upwelling, potentially causing secondary river pollution. However, increasing the alternating rate hinders the nitrate denitrification and drastically changes in the redox environment of the riparian zone, despite contributing to ammonium removal. Rapid oxygen consumption during aerobic metabolism and nitrification in groundwater-surface water exchange created favorable conditions for denitrification. Floodplains sediment porosity is unfavorable for nitrification. This study improves understanding of coupled hydrologic and solute processes in vertical riparian zones, informing strategies for optimizing nitrogen attenuation and riparian zone construction.
RESUMEN
Darwin's two opposing hypotheses, proposing that non-native species closely or distantly related to native species are more likely to succeed, are known as 'Darwin's Naturalization Conundrum'. Recently, invasion ecologists have sought to unravel these hypotheses. Studies that incorporate rich observational data in disturbed ecosystems that integrate phylogenetic and functional perspectives have potential to shed light on the conundrum. Using 313 invaded plant communities including 46 invasive plant species and 531 native plant species across the Three Gorges Reservoir Area in China, we aim to evaluate the coexistence mechanisms of invasive and native plants by integrating phylogenetic and functional dimensions at spatial and temporal scales. Our findings revealed that invasive plants tended to co-occur more frequently with native plant species that were phylogenetically distant but functionally similar in the reservoir riparian zone. Furthermore, our study demonstrated that the filtering of flood-dry-flood cycles played a significant role in deepening functional similarities of native communities and invasive-native species over time. Our study highlights the contrasting effects of phylogenetic relatedness and functional similarity between invasive and native species in highly flood-disturbed habitats, providing new sights into Darwin's Naturalization Conundrum.
RESUMEN
Microbial communities in desert riparian forest ecosystems have developed unique adaptive strategies to thrive in harsh habitats shaped by prolonged exposure to abiotic stressors. However, the influence of drought stress on the functional and metabolic characteristics of soil rhizosphere microorganisms remains unknown. Therefore, this study aimed to investigate the effects of drought stress on soil biogeochemistry and metabolism and analyze the relationship between the biogeochemical cycle processes and network of differentially-expressed metabolites. Using metagenomics and metabolomics, this study explored the microbial functional cycle and differential metabolic pathways within desert riparian forests. The predominant biogeochemical cycles in the study area were the Carbon and Nitrogen cycles, comprising 78.90 % of C, N, Phosphorus, Sulfur and Iron cycles. Drought led to increased soil C fixation, reduced C degradation and methane metabolism, weakened denitrification, and decreased N fixation. Furthermore, drought can disrupt iron homeostasis and reduce its absorption. The differential metabolic pathways of drought stress include flavonoid biosynthesis, arachidonic acid metabolism, steroid hormone biosynthesis, and starch and sucrose degradation. Network analysis of functional genes and metabolism revealed a pronounced competitive relationship between the C cycle and metabolic network, whereas the Fe cycle and metabolic network promoted each other, optimizing resource utilization. Partial least squares analysis revealed that drought hindered the expression and metabolic processes and functional genes, whereas the rhizosphere environment facilitated metabolic expression and the functional genes. The rhizosphere effect primarily promoted metabolic processes indirectly through soil enzyme activities. The integrated multi-omics analysis further revealed that the effects of drought and the rhizosphere play a predominant role in shaping soil functional potential and the accumulation of metabolites. These insights deepen our comprehension of desert riparian forest ecosystems and offer strong support for the functionality of nutrient cycling and metabolite dynamics.
RESUMEN
Soil and water characteristics in micro basins with different land uses/land cover (LULC) can influence riparian vegetation diversity, stream water quality, and benthic diatom diversity. We analyzed 18 streams in the upper part of the La Antigua River basin, México, surrounded by cloud forests, livestock pastures, and coffee plantations. Concentrations of P, C, and N were elevated in the humus of forested streams compared to other land uses. In contrast, cations, ammonium, and total suspended solids (TSS) of water streams were higher in pastures and coffee plantations. These results indicate that LULC affects stream chemistry differently across land uses. Vegetation richness was highest (86-133 spp.) in forest streams and lowest in pastures (46-102), whereas pasture streams had the greatest richness of diatoms (9-24), likely due to higher light and temperatures. Some soil and water characteristics correlated with both true diversity and taxonomic diversity; soil carbon exchange capacity (CEC) correlated with vegetation diversity (r = 0.60), while water temperature correlated negatively (r = - 0.68). Diatom diversity was related to soil aluminum (r = - 0.59), magnesium (r = 0.57), water phosphorus (r = 0.88), and chlorophyll (r = 0.75). These findings suggest that land use affects riparian vegetation, while physical and chemical changes influence diatom diversity in stream water and soil. The lack of correlation between vegetation and diatom diversity indicates that one cannot predict the other. This research is an essential first step in understanding how land use changes impact vegetation and diatom diversity in mountain landscapes, providing valuable insights for environmental monitoring and conservation efforts in tropical cloud forests.
Asunto(s)
Biodiversidad , Diatomeas , Monitoreo del Ambiente , Bosques , Suelo , México , Suelo/química , Ríos/química , Plantas , Fósforo/análisisRESUMEN
The impact of elevated CO2 levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO2 on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location. However, the direct effects of elevated CO2 levels on microbial activity and function in riparian zone sediments remain unclear. In this study, three riparian sediments with different pollution risk levels of heavy metals and nutrients were selected to explore the direct response of microbial communities and functions to elevated CO2 excluding plants. The results showed that the short-term effects of elevated CO2 did not change the diversity of the bacterial and fungal communities, but altered the composition of their communities. Additionally, differences were observed in the responses of microbial functions to elevated CO2 levels among the three regions. Elevated CO2 promoted the activities of nitrification and denitrification enzymes and led to significant increases in N2O release in the three sediments, with the greatest increase of 76.09 % observed in the Yuyangshan Bay (YYS). Microbial carbon metabolism was promoted by elevated CO2 in YYS but was significantly inhibited by elevated CO2 in Gonghu Bay and Meiliang Bay. Moreover, TOC, TN, and Pb contents were identified as key factors contributing to the different microbial responses to elevated CO2 in sediments with different heavy metal and nutrient pollution. In conclusion, this study provides in-depth insights into the responses of bacteria and fungi in polluted riparian sediments to elevated CO2, which helps elucidate the complex interactions between microbial activity and environmental stressors.
RESUMEN
Due to widespread atmospheric deposition of mercury (Hg), all aquatic food webs are contaminated with toxic methyl mercury (MeHg). At high concentrations, MeHg poses a health hazard to wildlife and humans. Spiders feeding in riparian habitats (hereafter referred to as riparian spiders) have been proposed as sentinels of MeHg contamination of aquatic systems. Riparian spiders are exposed to MeHg through their diets, and the concentration of MeHg in spiders is positively related to the proportion of MeHg-contaminated emergent aquatic insects in their diets. The use of spiders as sentinels is complex because their MeHg concentrations can vary, not only among ecosystems but also between different spider taxa and as a function of spider body size. The objective of the present study was to examine how the level of ecosystem contamination, spider taxon, and spider body size interact to influence MeHg concentrations in four genera of riparian spiders from two rivers with different levels of Hg contamination. We collected four genera of riparian spiders (Tetragnatha sp., Larinioides sp., Pardosa sp., and Rabidosa sp.) from two sites along both the Clear Fork of the Trinity River and the West Fork of the Trinity River (Fort Worth, TX, USA). We analyzed concentrations of MeHg in different body sizes of spiders from each genus. We found that MeHg contamination of the river ecosystem, spider taxon, and spider body size were important determinants of MeHg concentration in riparian spiders. The results suggest that any of the four taxa of riparian spiders from the present study could be used as sentinels of aquatic MeHg contamination, but they should not be used interchangeably because of the interdependence between the effects of ecosystem contamination level, spider taxon, and body size. Future studies utilizing riparian spiders as sentinels of biomagnifying aquatic contaminants (e.g., MeHg, polychlorinated biphenyls) should consider the potentially complex interaction effects between ecosystem contamination level, spider taxon, and spider body size. Environ Toxicol Chem 2024;43:2169-2175. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Asunto(s)
Tamaño Corporal , Monitoreo del Ambiente , Mercurio , Ríos , Arañas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Ríos/química , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Especies CentinelaRESUMEN
Natural river landscapes can be biodiversity hotspots but are one of the most human altered ecosystems with habitats significantly damaged around the world, and a third of fish populations threatened with extinction. While riparian ecosystems have been negatively altered by anthropogenic activities, effective planning and restoration strategies can reverse negative impacts by improving habitat quality. However, restoring rivers requires appropriate data on current riparian health while also considering priorities for different stakeholders. To address this, a Geographic Information System (GIS) was used to create a new and transferable restoration priority model based on a section of the river Linth in Switzerland as a case study. The restoration priority model is founded on connectivity, river condition, national priority species and species hotspots. Landscape change of the riparian zone was analyzed using aerial imagery and landscape metrics. Almost a quarter of rivers within the study area were considered high or very high restoration priority, with many aquatic species set to benefit from restoration. From 1946 to 2019, the riparian landscape became highly fragmented due to significant growth in impervious surfaces and a concomitant loss of agricultural land. The GIS model provides a tool by which environmental agencies can manage natural features over large scales, while also planning priorities and targeting conservation strategies to the areas of greatest need.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Sistemas de Información Geográfica , Ríos , Conservación de los Recursos Naturales/métodos , Suiza , Animales , Modelos Teóricos , PecesRESUMEN
The normal operation of the Three Gorges Reservoir, which involves periodic water storage and discharge, has led to strong disturbances in environmental conditions that alter soil microbial habitats in the riparian zones. Riparian zones are an important part of controlling pollution in the Three Gorges Reservoir area, since they act as a final ecological barrier that intercepts pollutants. Meanwhile, monitoring the health of microbial communities in the riparian zone is crucial for maintaining the ecological security of the reservoir area. We specifically investigate the Daning River, which are tributaries of the Three Gorges Reservoir and have typical riparian zones. Soil samples from these areas were subjected to high-throughput sequencing of 16S rRNA genes and 18S rRNA genes, in order to obtain the characteristics of the present microbial communities under strong disturbances in the riparian zones. We studied the characteristics and distribution patterns of microbial communities and their relationship with soil physicochemical properties. The study results indicate that microbial communities exhibit high diversity and evenness, and spatial heterogeneity is present. The ASV dataset contains many sequences not assigned to known genera, suggesting the presence of new fungal genera in the riparian zone. Redundancy analysis (RDA) revealed that pH and NH 4 + -N were the primary environmental factors driving bacterial community variation in the riparian zone, while pH, total carbon (TC) content, and NO 3 - -N were identified as the main drivers of soil archaeal community variation.
Asunto(s)
ARN Ribosómico 16S , Ríos , Microbiología del Suelo , Ríos/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , China , ARN Ribosómico 18S/genética , Suelo/química , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Biodiversidad , Microbiota/genética , Ecosistema , Archaea/genética , Archaea/clasificación , Archaea/aislamiento & purificaciónRESUMEN
Human-induced disturbances such as dam construction and regulation have led to widespread alterations in hydrological processes and thus substantially influence plant characteristics in the hydro-fluctuation zones (HFZs). To reveal utilization of limited resources and mechanisms of inter-specific competition and species co-existence of plant communities based on niche breadth and overlap under the different HFZs of the Three Gorges Reservoir (TGR) in China, we conducted a field investigation with 368 quadrats on the effects of hydrological alterations on plant diversity and niche characteristics. The results showed anti-seasonal flooding precipitated the gradual disappearance of the original diverse niches, resulting in the reduction of plant species richness and functional diversity and more obvious competition among plant species with similar resource requirements. Annuals, perennials and shrubs accounted for 71.23%, 27.39% and 1.37%, respectively, suggesting that annuals and flood-tolerant riparian herbs were favored under such novel flooding conditions. A consistent increase in species number, Shannon-Wiener diversity index and Simpson dominance index with altitude was inconsistent with hump-shaped diversity-disturbance relationship of the intermediate disturbance hypothesis, while the opposite trend was observed for the Pielou evenness index. This species distribution pattern might be caused by several synergetic attributes (e.g., the submergence depth, plant tolerant capacity to flooding, life form, dispersal mode and inter-specific competition). Vegetation types shifted from xerophytes to mesophytes and eventually to hygrophytes with the increasing flooding time in the HFZs. Hydrological alterations proved to be the paramount driver of vegetation distribution in the different HFZs. The niche analysis provided the first insights on the mechanisms of resource utilization and inter-specific competition, of which annuals could germinate quickly after soil drainage to achieve the greatest competitive advantages and occupy a larger niche space than other plants. Vegetation was still in the early stage of primary succession in the novel riparian forests. Therefore, vegetation restoration strategies should be biased towards herbaceous plants, due to annuals with better environmental adaptability, supplemented by shrubs and small trees. To establish a complete reference system for vegetation restoration, natural vegetation monitory plots in the different succession stages should be established in the different HFZs of the TGR, and their environmental conditions, community structures and inter-specific relationships further analyzed.
RESUMEN
Carbon (C), nitrogen (N), and phosphorus (P) are essential nutrients that promote plant growth and development and maintain the stability of ecosystem structure and function. Analyzing the C, N, and P characteristics of plant leaves aids in understanding the plant's nutrient status and nutrient limitation. Seasonal water-level fluctuations in riparian zones lead to various ecological problems, such as reduced biodiversity and decreased ecosystem stability. Therefore, comprehending the stoichiometric characteristics of riparian zone plants and their nutrient response to plant traits is important for a deeper insight into riparian zone forest ecosystems. This study analyzed the C, N, and P contents of the leaves of 44 woody plants in the riparian zone of the Dahuofang Reservoir to investigate the stoichiometric characteristics of C, N, and P of trees in the region. The results showed that the average C content of the leaves in woody plants was 446.9 g kg-1; the average N content was 28.42 g kg-1; and the average P content was 2.26 g kg-1. Compared to global and regional scales, woody plants in the riparian zone of the Dahuofang Reservoir exhibited higher N and P contents but lower N:P ratios. Compared to other riparian zones, woody plant leaves in the riparian zone of Dahuofang Reservoir had relatively high N content and N:P ratios. Variations in plant stoichiometric characteristics across different life forms were minimal, with only tree leaf P content significantly lower than its in shrubs. There was no significant correlation between leaf C, N, and P in woody plants, while specific leaf area showed a negative correlation with leaf C content. Trees in the riparian zone have high leaf N and P content and are primarily N-limited during the growing season. This study reveals the stoichiometric characteristics of leaves of woody plants in the riparian zone, which can contribute to an in-depth understanding of leaf stoichiometric patterns and the factors influencing them among plant life types in the riparian zone.