Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
Más filtros

Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39365674

RESUMEN

Thyroid hormone dysfunction is frequently observed in patients with chronic illnesses including heart failure which increases risk of adverse events. This study examined effects of thyroid hormones (TH) on cardiac T-tubule (TT) integrity, Ca2+ sparks, and nanoscale organization of ion channels in excitation-contraction (EC)-coupling, including L-type calcium channel (Cav1.2), ryanodine receptor-type 2 (RyR2), and junctophilin-2 (Jph2). TH deficiency was established in adult female rats by propyl-thiouracil (PTU) ingestion for 8 weeks; followed by randomization to continued PTU without or with oral triiodo-L-thyronine (T3; 10 ug/kg/d) for two additional weeks (PTU+T3). Confocal microscopy of isolated cardiomyocytes (CM) showed significant misalignment of TTs, and increased Ca2+ sparks in thyroid-deficient CMs. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) analysis of STochastic Optical Reconstruction Microscopy (STORM) images showed decreased (p<0.0001) RyR2 cluster number per cell area in PTU CMs compared to euthyroid (EU) control myocytes, and this was normalized by T3-treatment. Cav1.2 channels and Jph2 localized within 210 nm radius of the RyR2 clusters were significantly reduced in PTU myocytes, and these values were increased with T3 treatment. A significant percentage of the RyR2 clusters in the PTU myocytes had neither Cav1.2 or Jph2, suggesting fewer functional clusters in EC-coupling. Nearest neighbor distances between RyR2 clusters were greater (p<0.001) in PTU cells compared to EU and T3-treated CMs that corresponds to disarray of TTs at the sarcomere z-discs. These results support a regulatory role of T3 in the nanoscale organization of RyR2 clusters and co-localization of Cav1.2 and Jph2 in optimizing EC-coupling.

3.
Heart Rhythm ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366435

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia disorder associated with potentially lethal arrhythmias. Most CPVT cases are caused by inherited variants in the ryanodine receptor type-2 (RYR2) gene. OBJECTIVE: To investigate the structure activity relationship of tetracaine derivatives and test a lead compound in a mouse model of CPVT. METHODS: We synthesized >200 tetracaine derivatives and characterized 11 of those. The effects of these compounds on Ca2+ handling in cardiomyocytes from R176Q/+ mice was tested using confocal microscopy. The effects of lead compound MSV1302 on arrhythmia inducibility and cardiac contractility were tested using programmed electrical stimulation and echocardiography, respectively. Plasma and microsomal stability and cytotoxicity assays were also performed. RESULTS: Ca2+ imaging revealed that 4 of 11 compounds suppressed sarcoplasmic reticulum Ca2+ leak through mutant RyR2. Two compounds selected for further testing exhibited an EC50 of 146 nM (MSV1302) and 49 nM (MSV1406), respectively. While neither compound altered baseline ECG intervals, only MSV1302 suppressed stress- and pacing-induced ventricular tachycardia in vivo in R176Q/+ mice. Echocardiography revealed that the lead compound MSV1302 did not negatively impact cardiac inotropy and chronotropy. Finally, compound MSV1302 did not block INa, ICa,L, or IKr, exhibited excellent stability in plasma and microsomes, and was not cytotoxic. CONCLUSION: Structure activity relationship studies of second generation tetracaine derivatives identified lead compound MSV1302 with a favorable pharmacokinetic profile. MSV1302 normalized aberrant RyR2 activity in vitro and in vivo, without altering cardiac inotropy, chronotropy or off-target effects on other ion channels. This compound may be a strong candidate for future clinical studies to determine its efficacy in CPVT patients.

4.
J Biol Chem ; 300(10): 107734, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233227

RESUMEN

Ryanodine receptors (RyRs) are large Ca2+ release channels residing in the endoplasmic or sarcoplasmic reticulum membrane. Three isoforms of RyRs have been identified in mammals, the disfunction of which has been associated with a series of life-threatening diseases. The need for large amounts of native tissue or eukaryotic cell cultures limits advances in structural studies of RyRs. Here, we report a method that utilizes nanobodies to purify RyRs from only 5 mg of total protein. The purification process, from isolated membranes to cryo-EM grade protein, is achieved within 4 h on the bench, yielding protein usable for cryo-EM analysis. This is demonstrated by solving the structures of rabbit RyR1, solubilized in detergent, reconstituted into lipid nanodiscs or liposomes, and bovine RyR2 reconstituted in nanodisc, and mouse RyR2 in detergent. The reported method facilitates structural studies of RyRs directed toward drug development and is useful in cases where the amount of starting material is limited.

5.
Circulation ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253856

RESUMEN

BACKGROUND: The docking protein IRS2 (insulin receptor substrate protein-2) is an important mediator of insulin signaling and may also regulate other signaling pathways. Murine hearts with cardiomyocyte-restricted deletion of IRS2 (cIRS2-KO) are more susceptible to pressure overload-induced cardiac dysfunction, implying a critical protective role of IRS2 in cardiac adaptation to stress through mechanisms that are not fully understood. There is limited evidence regarding the function of IRS2 beyond metabolic homeostasis regulation, particularly in the context of cardiac disease. METHODS: A retrospective analysis of an electronic medical record database was conducted to identify patients with IRS2 variants and assess their risk of cardiac arrhythmias. Arrhythmia susceptibility was examined in cIRS2-KO mice. The underlying mechanisms were investigated using confocal calcium imaging of ex vivo whole hearts and isolated cardiomyocytes to assess calcium handling, Western blotting to analyze the involved signaling pathways, and pharmacological and genetic interventions to rescue arrhythmias in cIRS2-KO mice. RESULTS: The retrospective analysis identified patients with IRS2 variants of uncertain significance with a potential association to an increased risk of cardiac arrhythmias compared with matched controls. cIRS2-KO hearts were found to be prone to catecholamine-sensitive ventricular tachycardia and reperfusion ventricular tachycardia. Confocal calcium imaging of ex vivo whole hearts and single isolated cardiomyocytes from cIRS2-KO hearts revealed decreased Ca²+ transient amplitudes, increased spontaneous Ca²+ sparks, and reduced sarcoplasmic reticulum Ca²+ content during sympathetic stress, indicating sarcoplasmic reticulum dysfunction. We identified that overactivation of the AKT1/NOS3 (nitric oxide synthase 3)/CaMKII (Ca2+/calmodulin-dependent protein kinase II)/RyR2 (type 2 ryanodine receptor) signaling pathway led to calcium mishandling and catecholamine-sensitive ventricular tachycardia in cIRS2-KO hearts. Pharmacological AKT inhibition or genetic stabilization of RyR2 rescued catecholamine-sensitive ventricular tachycardia in cIRS2-KO mice. CONCLUSIONS: Cardiac IRS2 inhibits sympathetic stress-induced AKT/NOS3/CaMKII/RyR2 overactivation and calcium-dependent arrhythmogenesis. This novel IRS2 signaling axis, essential for maintaining cardiac calcium homeostasis under stress, presents a promising target for developing new antiarrhythmic therapies.

6.
J Physiol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316734

RESUMEN

During exercise or stress, the sympathetic system stimulates cardiac contractility via ß-adrenergic receptor (ß-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca2+/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca2+ signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A). These mice did not exhibit an overt phenotype. Heart morphology and haemodynamic parameters were not altered. However, they had a higher susceptibility to arrhythmias. We performed confocal Ca2+ imaging and electrophysiology experiments. Isoprenaline was used to stimulate ß-ARs. Measurements of Ca2+ waves and latencies in myocytes revealed an increased propensity for spontaneous Ca2+ releases in DKI myocytes, both in control conditions and during ß-AR stimulation. In DKI cells, waves were initiated from a lower threshold concentration of Ca2+ inside the sarcoplasmic reticulum, suggesting higher Ca2+ sensitivity of the RyRs. The refractoriness of Ca2+ spark triggering depends on the Ca2+ sensitivity of the RyR2. We found that RyR2-S2808A/S2814A channels were more Ca2+ sensitive in control conditions. Isoprenaline further shortened RyR refractoriness in DKI cardiomyocytes. Together, our results suggest that ablation of both the RyR2-Ser2808 and RyR2-S2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. Given that the DKI cells present a full response to isoprenaline, the data suggest that phosphorylation of Ser2030 might be sufficient for ß-AR-mediated sensitization of RyRs. KEY POINTS: Phosphorylation of cardiac sarcoplasmic reticulum Ca2+-release channels (ryanodine receptors, RyRs) is involved in the regulation of cardiac function. Ablation of both the RyR2-Ser2808 and RyR2-Ser2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. The intra-sarcoplasmic reticulum Ca2+ threshold for spontaneous Ca2+ wave generation is lower in RyR2-double-knock-in cells. The RyR2 from double-knock-in cells exhibits increased Ca2+ sensitivity. Phosphorylation of Ser2808 and Ser2814 might be important for basal activity of the channel. Phosphorylation of Ser2030 might be sufficient for a ß-adrenergic response.

7.
Biophys Rep (N Y) ; : 100183, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341600

RESUMEN

The type 2 ryanodine receptor (RyR2) is the major Ca2+ release channel required for Ca2+-induced Ca2+ release (CICR) and cardiac excitation-contraction coupling. The cluster organization of RyR2 at the dyad is critical for efficient CICR. Despite its central role in cardiac Ca2+ signaling, the mechanisms that control CICR are not fully understood. As a single RyR2 Ca2+ flux dictates local CICR that underlies Ca2+ spark, RyR2 density in a cluster and therefore the distance between RyR2s should have a profound impact on local CICR. Here, we studied the effect of RyR2 expression level ([RyR2]) on CICR activation, termination, and amplitude. The ER-targeted Ca2+ sensor RCEPIA-1er was used to directly measure the endoplasmic reticulum (ER) [Ca2+] (Ca2+]ER) in T-Rex-293 SERCA2a stable cell line expressing human RyR2. Cells co-expressing RyR2 and SERCA2a produced periodic [Ca2+]ER depletions in the form of spontaneous Ca2+ waves due to propagating CICR. For each studied cell, [Ca2+]ER at which Ca2+ waves are activated and terminated was analyzed as a function of [RyR2]. CICR parameters, such as [Ca2+]ER activation, termination, and amplitude, were inversely proportional to [RyR2] at low-intermediate levels. Increasing sensitivity of RyR2 to cytosolic Ca2+ lowered [Ca2+]ER at which CICR is activated and terminated. Decreasing the sensitivity of RyR2 to cytosolic Ca2+ had the opposite effect on CICR. These results suggest that RyR2 density in the release cluster should have a significant impact on local CICR activation and termination. Since SR Ca2+ load is evenly distributed throughout the SR network, clusters with higher RyR2 density would have a higher probability to initiate spontaneous CICR.

8.
Br J Anaesth ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304470

RESUMEN

BACKGROUND: As the primary Ca2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, triggering agents including halogenated volatile anaesthetics bias RyR1 to an open state resulting in uncontrolled Ca2+ release, increased sarcomere tension, and heat production. Propofol does not trigger MH and is commonly used for patients at risk of MH. The atomic-level interactions of any anaesthetic with RyR1 are unknown. METHODS: RyR1 opening was measured by [3H]ryanodine binding in heavy SR vesicles (wild type) and single-channel recordings of MH mutant R615C RyR1 in planar lipid bilayers, each exposed to propofol or the photoaffinity ligand analogue m-azipropofol (AziPm). Activator-mediated wild-type RyR1 opening as a function of propofol concentration was measured by Fura-2 Ca2+ imaging of human skeletal myotubes. AziPm binding sites, reflecting propofol binding, were identified on RyR1 using photoaffinity labelling. Propofol binding affinity to a photoadducted site was predicted using molecular dynamics (MD) simulation. RESULTS: Both propofol and AziPm decreased RyR1 opening in planar lipid bilayers (P<0.01) and heavy SR vesicles, and inhibited activator-induced Ca2+ release from human skeletal myotube SR. Several putative propofol binding sites on RyR1 were photoadducted by AziPm. MD simulation predicted propofol KD values of 55.8 µM and 1.4 µM in the V4828 pocket in open and closed RyR1, respectively. CONCLUSIONS: Propofol demonstrated direct binding and inhibition of RyR1 at clinically plausible concentrations, consistent with the hypothesis that propofol partially mitigates MH by inhibition of induced Ca2+ flux through RyR1.

9.
Front Neurol ; 15: 1365314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220738

RESUMEN

Background: The ryanodine receptor 3 (RYR3) is involved in skeletal muscle contraction by releasing calcium from the sarcoplasmic reticulum and subsequent T-tubule depolarization. It is also expressed in the brain, and variants in the RYR3 gene can lead to congenital myopathy type 20 (MIM: #620310). Methods: We retrospectively analyzed the clinical characteristics and prognosis of a case of West syndrome, developmental and epileptic encephalopathy (DEE) caused by a missense variant in the RYR3 gene. We also reviewed and summarized the literature on epilepsy cases caused by RYR3 gene variants. Results: A 10-month-old female child with delayed psychomotor development and recurrent spasm-like seizures was diagnosed with infantile spasm syndrome and DEE. Treatment with various antiepileptic drugs resulted in initial improvement but ultimately failed to control the seizures. Whole-exome sequencing revealed a novel heterozygous variant c.10943C > T/p.T3648M in the RYR3 gene, and genome-wide sequencing ruled out other potentially pathogenic variants. Three previous reports have described RYR3 variants causing DEE, two of which were attributed to de novo heterozygous variants, and one was a compound heterozygote. Conclusion: The present case of DEE caused by a RYR3 heterozygous variant is consistent with previous rare cases of epilepsy caused by RYR3 gene variants in terms of pathogenesis and clinical features, but significantly different from congenital myopathy type 20. Our findings provide important evidence for the diagnosis of RYR3-related DEE, and we hypothesize that RYR3 gain-of-function variants resulting in "leaky" Ca2+ release channels may be a molecular genetic feature leading to DEE rather than myopathy.

10.
J Econ Entomol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255412

RESUMEN

Insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is a major constraint on the global production of cruciferous crops. For effective management of insecticide resistance, it is necessary to develop a molecular detection tool for predicting insecticide resistance levels based on the mutation frequency of target sites. In this study, a susceptible strain (SHggt) of P. xylostella was subjected to chlorantraniliprole and tetraniliprole selection under laboratory conditions to obtain the CHLSel and TETSel strains, respectively, to determine their resistance development, cross-resistance and mutation frequencies of the P. xylostella ryanodine receptor (PxRyR). In addition, the tetraniliprole resistance and the mutation frequencies of the PxRyR from 7 field populations were evaluated. Continuous selection over 30 generations resulted in resistance ratios (RRs) of 7,073.2-fold and 6,971.0-fold for the CHLSel and TETSel strains, respectively, and thousandfold increases in cross-resistance to unexposed diamides, e.g., cyantraniliprole and flubendiamide, were observed. For the field populations, three out of seven populations have developed more than thousandfold resistance to tetraniliprole. Among the three investigated target site mutations in PxRyR, only I4790K was detected in both laboratory-selected strains. However, 2 mutations, I4790K and G4946E, were detected in field populations. A positive correlation between RRs and K allele frequencies was observed in the laboratory-selected/relaxed strains and field populations of P. xylostella. These results suggest a possible link between the development of anthranilic diamide resistance and the frequency of the PxRyR I4790K mutation, which can be used to develop effective strategies for diamide resistance management in P. xylostella.

12.
Am J Physiol Cell Physiol ; 327(3): C830-C843, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099424

RESUMEN

ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.


Asunto(s)
Adenosina Trifosfato , Calcio , Células Caliciformes , Canal Liberador de Calcio Receptor de Rianodina , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Células Caliciformes/efectos de los fármacos , Células Caliciformes/metabolismo , Ratas , Células Cultivadas , Conjuntiva/metabolismo , Conjuntiva/efectos de los fármacos , Agonistas Purinérgicos/farmacología , Ratas Sprague-Dawley , Señalización del Calcio/efectos de los fármacos , Humanos , Masculino , Fosfolipasas de Tipo C/metabolismo
13.
Pest Manag Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148493

RESUMEN

BACKGROUND: RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing. Owing to its high specificity, this technology is being developed for use in dsRNA-based biopesticides for control of pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive. Ryanodine receptors (RyRs) are intracellular calcium channels regulating calcium ion (Ca2+) release. The chemical pesticide class of diamides functions agonistically against lepidopteran RyR, resulting in uncontrolled Ca2+ release, feeding cessation and death. Resistance to diamides has emerged in T. absoluta, derived from RyR point mutations. RESULTS: RNAi was used to target RyR transcripts of T. absoluta. Data presented here demonstrate the systemic use of exogenous T. absoluta RyR-specific (TaRy) dsRNA in tomato plants (Solanum lycopersicum) to significantly downregulate expression of the target gene, resulting in significant insect mortality and reduced leaf damage. Using a leaflet delivery system, daily dosing of 3 µg TaRy dsRNA for 72 h resulted in 50% downregulation of the target gene and 50% reduction in tomato leaf damage. Corrected larval mortality and adult emergence were reduced by 38% and 33%, respectively. TaRy dsRNA demonstrated stability in tomato leaves ≤72 h after dosing. CONCLUSIONS: This work identifies TaRy as a promising target for RNAi control of this widespread crop pest. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

14.
MMW Fortschr Med ; 166(Suppl 5): 9-15, 2024 08.
Artículo en Alemán | MEDLINE | ID: mdl-39112835

RESUMEN

The first symptoms of catecholaminergic polymorphic ventricular tachycardia (CPVT) usually occur in childhood and adolescence. 60% of patients experience syncope before the age of 40. Sudden cardiac death (SCD) is the first symptom of the disease in 30-50% of patients with CPVT. Early diagnosis is therefore crucial for the patient's prognosis. The diagnosis of CPVT is confirmed by a normal resting ECG, exclusion of structural heart disease, detection of bidirectional or polymorphic ventricular tachycardia (VT) in the stress ECG and/or detection of a pathogenic mutant in a gene associated with CPVT. Up to 60% of CPVT patients carry changes in the RYR2 gene. This gene encodes the cardiac ryanodine receptor, the most important Ca2+-releasing channel of the sarcoplasmic reticulum, which plays a central role in the contraction and relaxation of the heart muscle. If the function of the ryanodine receptor is impaired, too much calcium enters the cells, which triggers life-threatening arrhythmias. The overactive ryanodine receptor is therefore the main target for gene therapy methods. Even though the development of gene therapy is progressing, there is still no causal therapy available and it is all the more important to make a diagnosis as early as possible, which enables appropriate behavior and adequate symptomatic therapy. The decisive factor here is the evaluation of the genetic analysis in the context of the clinical findings. Based on this, recommendations can be made for preventive measures and the avoidance of specific triggers that could lead to life-threatening arrhythmias.


Asunto(s)
Muerte Súbita Cardíaca , Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/genética , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Canal Liberador de Calcio Receptor de Rianodina/genética , Adolescente , Niño , Electrocardiografía , Adulto , Pronóstico , Adulto Joven
15.
J Agric Food Chem ; 72(36): 19948-19956, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186810

RESUMEN

The key mutations, such as the Gly-4891-Glu substitution and the Ile-4734 multiple substitutions within the ryanodine receptors (RyR), are linked to diamide resistance in fall armyworm (FAW), Spodoptera frugiperda. In this study, we found that FAW remained sensitive to cyantraniliprole and chlorantraniliprole, while its sensitivity to flubendiamide was reduced. Moreover, a low level of heterozygous mutation at I4743 was observed. To facilitate the detection procedure of these mutations, a simple and efficient loop-mediated isothermal amplification (LAMP) protocol was developed for operation. The reaction for detecting the G4891E and I4743 single or multiple mutations was carried out at 68 °C for 85 min and 68 °C for 85 min or 68 °C for 65 min, respectively. These LAMP reactions can be easily observed via visualization of the color change from pink to yellow. This assay provides a simple, convenient, and effective means of detecting mutations in the RyR of FAW for pest management purposes.


Asunto(s)
Proteínas de Insectos , Mutación , Técnicas de Amplificación de Ácido Nucleico , Canal Liberador de Calcio Receptor de Rianodina , Spodoptera , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Spodoptera/genética , Spodoptera/efectos de los fármacos , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Insecticidas/farmacología , ortoaminobenzoatos/farmacología , Benzamidas/farmacología , Sulfonas/farmacología , Pirazoles/farmacología , Resistencia a los Insecticidas/genética , Fluorocarburos , Ftalimidas , Técnicas de Diagnóstico Molecular
16.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000424

RESUMEN

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Productos Finales de Glicación Avanzada , Miocitos Cardíacos , Productos Finales de Glicación Avanzada/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Ratones
17.
Artículo en Inglés | MEDLINE | ID: mdl-38972622

RESUMEN

Endocrine-disrupting chemicals (EDCs) are toxic pollutants generated by artificial activities. Moreover, their hormone-like structure induces disturbances, such as mimicking or blocking metabolic activity. Previous studies on EDCs have focused on the adverse effect of the endocrine system in vertebrates, with limited investigations conducted on ion channels in invertebrates. Thus, in this study, we investigated the potential adverse effects of exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) at the molecular level on the ryanodine receptor (RyR), a calcium ion channel receptor in Macrophthalmus japonicus. In the phylogenetic analysis, the RyR amino acid sequences in M. japonicus clustered with those in the Crustacean and formed separated branches for RyR in insects and mammals. When exposed to 1 µg L-1 BPA, a significant increase in RyR mRNA expression was observed in the gills on day 1, although a similar level to the control group was observed from day 4 to day 7. However, the RyR expression due to DEHP exposure decreased on days 1 and 4, although it increased on day 7 following exposure to 10 µg L-1. The RyR expression pattern in the hepatopancreas increased for up to 4 days, depending on the BPA concentration. However, there was a tendency for the expression to decrease gradually after the statistical significance increased during the early stage of DEHP exposure (D1). Hence, the transcriptional alterations in the M. japonicus RyR gene observed in the study suggest that exposure toxicities to EDCs, such as BPA and DEHP, have the potential to disrupt calcium ion channel signaling in the gills and hepatopancreas of M. japonicus crabs.


Asunto(s)
Compuestos de Bencidrilo , Braquiuros , Disruptores Endocrinos , Fenoles , Canal Liberador de Calcio Receptor de Rianodina , Contaminantes Químicos del Agua , Animales , Disruptores Endocrinos/toxicidad , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Braquiuros/efectos de los fármacos , Braquiuros/genética , Braquiuros/metabolismo , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Filogenia , Dietilhexil Ftalato/toxicidad , Branquias/metabolismo , Branquias/efectos de los fármacos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Secuencia de Aminoácidos
18.
Circ Res ; 135(5): 554-574, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011635

RESUMEN

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Disferlina , Ratones Noqueados , Miocitos Cardíacos , Retículo Sarcoplasmático , Animales , Disferlina/metabolismo , Disferlina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Humanos , Ratones , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Ratones Endogámicos C57BL , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proliferación Celular , Células Cultivadas , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina
19.
Mol Ther Nucleic Acids ; 35(3): 102259, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39071953

RESUMEN

More than 700 pathogenic or probably pathogenic variations have been identified in the RYR1 gene causing various myopathies collectively known as "RYR1-related myopathies." There is no treatment for these myopathies, and gene therapy stands out as one of the most promising approaches. In the context of a dominant form of central core disease due to a RYR1 mutation, we aimed at showing the functional benefit of inactivating specifically the mutated RYR1 allele by guiding CRISPR-Cas9 cleavages onto frequent single-nucleotide polymorphisms (SNPs) segregating on the same chromosome. Whole-genome sequencing was used to pinpoint SNPs localized on the mutant RYR1 allele and identified specific CRISPR-Cas9 guide RNAs. Lentiviruses encoding these guide RNAs and the SpCas9 nuclease were used to transduce immortalized patient myoblasts, inducing the specific deletion of the mutant RYR1 allele. The efficiency of the deletion was assessed at DNA and RNA levels, and at the functional level after monitoring calcium release induced by the stimulation of the RyR1-channel. This study provides in cellulo proof of concept regarding the benefits of mutant RYR1 allele deletion, in the case of a dominant RYR1 mutation, from both a molecular and functional perspective, and could apply potentially to 20% of all patients with a RYR1 mutation.

20.
Front Cardiovasc Med ; 11: 1357315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041002

RESUMEN

Creation of disease models utilizing hiPSCs in combination with CRISPR/Cas9 gene editing enable mechanistic insights into differential pharmacological responses. This allows translation of efficacy and safety findings from a healthy to a diseased state and provides a means to predict clinical outcome sooner during drug discovery. Calcium handling disturbances including reduced expression levels of the type 2 ryanodine receptor (RYR2) are linked to cardiac dysfunction; here we have created a RYR2 deficient human cardiomyocyte model that mimics some aspects of heart failure. RYR2 deficient cardiomyocytes show differential pharmacological responses to L-type channel calcium inhibitors. Phenotypic and proteomic characterization reveal novel molecular insights with altered expression of structural proteins including CSRP3, SLMAP, and metabolic changes including upregulation of the pentose phosphate pathway and increased sensitivity to redox alterations. This genetically engineered in vitro cardiovascular model of RYR2 deficiency supports the study of pharmacological responses in the context of calcium handling and metabolic dysfunction enabling translation of drug responses from healthy to perturbed cellular states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA