Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.830
Filtrar
Más filtros

Intervalo de año de publicación
1.
Zoolog Sci ; 41(4): 351-362, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093281

RESUMEN

Praesagittifera naikaiensis is an acoel flatworm that inhabits the sandy beaches in the intertidal zone of the Seto Inland Sea. This species carries Tetraselmis sp., a green unicellular chlorophyte, as a symbiont in its body, and depends on algal photosynthetic products to survive. However, the eggs of P. naikaiensis contain no symbiotic algae, and juvenile P. naikaiensis acquire symbionts from the surrounding environment through horizontal transfer after hatching, thereby establishing new symbiotic relationships in each generation. Other acoel species, Symsagittifera spp., also inhabit the Seto Inland Sea shores and acquire symbiotic green algae via horizontal transfers. To characterize their symbionts, these acoels were collected from a wide area of the Seto Inland Sea and partial nucleotide sequences of the chloroplast ribulose diphosphate carboxylase large subunit (rbcL) of the symbiotic algae were determined and used for molecular phylogenetic analysis. Symbionts of both P. naikaiensis and Symsagittifera spp. belonged to the genus Tetraselmis but were phylogenetically distant, and both species established symbiotic relationships with different symbionts even when they were sympatric. To test whether each species selects specific algae in the environment for symbiosis, we established algal strains from P. naikaiensis and Symsagittifera sp. symbionts and conducted uptake experiments on aposymbiotic juveniles of P. naikaiensis. The results suggest that symbiotic algae from Symsagittifera could be taken up by P. naikaiensis juveniles, but were unable to establish a normal symbiotic relationship with the juveniles.


Asunto(s)
Chlorophyta , Simbiosis , Animales , Chlorophyta/fisiología , Platelmintos/fisiología , Platelmintos/genética , Filogenia , Especificidad de la Especie
2.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091845

RESUMEN

Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.

3.
J Colloid Interface Sci ; 677(Pt A): 369-377, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096705

RESUMEN

In the domain of electrocatalytic NO3- reduction (NO3-RR) for the treatment of low-concentration nitrate-containing domestic or industrial wastewater, the conversion of NO3- into NH4+ holds significant promise for resource recovery. Nevertheless, the central challenge in this field revolves around the development of catalysts exhibiting both high catalytic activity and selectivity. To tackle this challenge, we design a two-step hydrothermal combine with carbonization process to fabricate a cobalt-doped Fe-based MOF (MIL-101) catalyst at 800 °C temperatures. The aim was to fully leverage cobalt's demonstrated high selectivity in NO3- electroreduction and enhance activity by promoting electron transfer through the d-band of Fe. The results indicate that the synthesized catalyst inherits multiple active sites from its precursor, with the co-doping process optimized through the topological properties of the MOF. Elemental analysis and oxidation state testing were employed to scrutinize the fundamental characteristics of this catalyst type and comprehend how these features may influence its efficiency. Electrochemical analysis revealed that, even under conditions of low NO3- concentration, the Cox@MIL-Fe catalyst achieved an impressive nitrate conversion rate of 98 % at -0.9 V vs. RHE. NH4+ selectivity was notably high at 87 %, and the by-product NO2- levels remained at a minimal threshold. The Faradaic efficiency for NH4+ reached 74 %, with ammonia yield approaching 0.08 mmol h-1 cm-2. This study furnishes indispensable research data for the design of Fe-based electrocatalysts for nitrate reduction, offering profound insights into the modulation of catalysts to play a pivotal role in the electroreduction of nitrate ions.

4.
Angew Chem Int Ed Engl ; : e202412828, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103315

RESUMEN

A cobalt-catalyzed intramolecular Markovnikov hydroalkoxycarbonylation and hydroaminocarbonylation of unactivated alkenes has been developed, enabling highly chemo- and regioselective synthesis of α-alkylated γ-lactones and α-alkylated γ-lactams in good yields. The mild reaction conditions allow use of mono-, di- and trisubstituted alkenes bearing a variety of functional groups. Preliminary mechanistic studies suggest the reaction proceeds through a CO-mediated hydrogen atom transfer (HAT) and radical-polar crossover (RPC) process, in which a cationic acylcobalt(IV) complex is proposed as the key intermediate.

5.
Cogn Neurodyn ; 18(4): 2061-2075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104690

RESUMEN

Vibration is an indispensable part of the tactile perception, which is encoded to oscillatory synaptic currents by receptors and transferred to neurons in the brain. The A2 and B1 neurons in the drosophila brain postsynaptic to the vibration receptors exhibit selective preferences for oscillatory synaptic currents with different frequencies, which is caused by the specific voltage-gated Na+ and K+ currents that both oppose the variations in membrane potential. To understand the peculiar role of the Na+ and K+ currents in shaping the filtering property of A2 and B1 neurons, we develop a linearized modeling framework that allows to systematically change the activation properties of these ionic channels. A data-driven conductance-based biophysical model is used to reproduce the frequency filtering of oscillatory synaptic inputs. Then, this data-driven model is linearized at the resting potential and its frequency response is calculated based on the transfer function, which is described by the magnitude-frequency curve. When we regulate the activation properties of the Na+ and K+ channels by changing the biophysical parameters, the dominant pole of the transfer function is found to be highly correlated with the fluctuation of the active current, which represents the strength of suppression of slow voltage variation. Meanwhile, the dominant pole also shapes the magnitude-frequency curve and further qualitatively determines the filtering property of the model. The transfer function provides a parsimonious description of how the biophysical parameters in Na+ and K+ channels change the inhibition of slow variations in membrane potential by Na+ and K+ currents, and further illustrates the relationship between the filtering properties and the activation properties of Na+ and K+ channels. This computational framework with the data-driven conductance-based biophysical model and its linearized model contributes to understanding the transmission and filtering of vibration stimulus in the tactile system.

6.
Angew Chem Int Ed Engl ; : e202410474, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087314

RESUMEN

Product selectivity of solar-driven CO2 reduction and H2O oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO2 catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H). The *H is generated via the activation of H2O on monatomic Pt sites and migrate towards Au clusters with a strong capacity for CO2 adsorption. Under concentrated solar irradiation, selectivity of the (100) facet towards CO is 100%, and the selectivity of the (110) and (111) facets towards CH4 is 33.5% and 97.6%, respectively. Notably, the CH4 yield on the (111) facet is as high as 369.4 µmol/g/h, and the solar-to-chemical energy efficiency of 0.23% is 33.8 times higher than that under non-concentrated solar irradiation. The impacts of high-density flux photon and thermal effects on carriers and *H migration at the microscale are comprehensively discussed. This study provides a new avenue for tuning the spatial distance between active sites to achieve optimal product selectivity.

7.
Angew Chem Int Ed Engl ; : e202414172, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140616

RESUMEN

Phosphiranes are weak Lewis bases reacting with only a limited number of electrophiles to produce the corresponding phosphiranium ions. These salts are recognized for their propensity to undergo reactions with oxygen pronucleophiles at the phosphorus site, leading to the formation of phosphine oxide adducts. Building on a thorough mechanistic understanding, we have developed an unprecedented approach that enables the selective reaction of carboxylic acids, and other nucleophiles, at the carbon site of phosphiranes. This method involves the photochemical generation of highly reactive carbenes, which react with 1-mesitylphosphirane to yield ylides. The latter undergoes a stepwise reaction with carboxylic acids, resulting in the production of the desired phosphines. In addition to DFT calculations, we have successfully isolated and fully characterized the key intermediates involved in the reaction.

8.
Anal Bioanal Chem ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145860

RESUMEN

Berries are a rich source of natural antioxidant compounds, which are essential to profile, as they add to their nutritional value. However, the complexity of the matrix and the structural diversity of these compounds pose challenges in extraction and chromatographic separation. By relying on multivariate curve resolution alternating least squares (MCR-ALS) ability to extract components from complex spectral mixtures, our study evaluates the contributions of various extraction techniques to interference, extractability, and quantifying different groups of overlapping compounds using liquid chromatography diode array detection (LC-DAD) data. Additionally, the combination of these methods extends its applicability to evaluate polyphenol degradation in stored berry smoothies, where evolving factor analysis (EFA) is also used to elucidate degradation products. Results indicate that among the extraction techniques, ultrasonication-assisted extraction employing 1% formic acid in methanol demonstrated superior extractability and selectivity for the different phenolic compound groups, compared with both pressurized liquid extraction and centrifugation of the fresh berry smoothie. Employing MCR-ALS on the LC-DAD data enabled reliable estimation of total amounts of compound classes with high spectral overlaps. Degradation studies revealed significant temperature-dependent effects on anthocyanins, with at least 50% degradation after 7 months of storage at room temperature, while refrigeration and freezing maintained fair stability for at least 12 months. The EFA model estimated phenolic derivatives as the main possible degradation products. These findings enhance the reliability of quantifying polyphenolic compounds and understanding their stability during the storage of berry products.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39145897

RESUMEN

The creation of synthetic materials that emulate the complexity of natural systems, such as enzymes, remains a challenge in biomimicry. Here, we present a simple yet effective strategy to introduce substrate selectivity and dynamic responsiveness into an enzyme-mimetic supramolecular material. We achieved this by anchoring γ-cyclodextrin to a fluorene-modified Lys/Cu2+ assembly, which mimics copper-dependent oxidase. The binding affinity among the components was examined using 1H NMR, isothermal titration calorimetry (ITC), and theoretical simulation. The γ-cyclodextrin acts as a host, forming a complex with the fluorenyl moiety and aromatic substrates of specific sizes. This ensures the proximity of the substrate reactive groups to the copper center, leading to size-selective enhancement of aromatic substrate oxidation, particularly favoring biphenyl substrates. Notably, α- and ß-cyclodextrins do not exhibit this effect, and the native oxidase lacks this selectivity. Additionally, the binding affinity of the aromatic substrate to the catalyst can be dynamically tuned by adding α-cyclodextrin or by irradiating with different wavelengths in the presence of competitive azo-guests, resulting in switched oxidative activities. This approach offers a new avenue for designing biomimetic materials with tailorable active site structures and catalytic properties.

10.
Front Chem ; 12: 1439581, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130799

RESUMEN

The M/SSZ-39 catalysts (M = In, Co, Cu, Fe) with different metal species and metal loadings were synthesized using the wet impregnation method on a small-pore SSZ-39 molecular sieve. X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-dehydrogenation and hydrogen temperature program reduction (H2-TPR) were employed to characterize the effects of various metal components and metal loadings on the performance of CH4 selective catalytic reduction of NO reaction (CH4-SCR). The characterization results showed that the In/SSZ-39 catalyst exhibited significantly higher catalytic activity compared to the Cu-, Co-, and Fe/SSZ-39 catalysts, suggesting that indium (In) is a more suitable active ingredient for the CH4-SCR reaction. The xIn/SSZ-39 (x = 1, 2, 3, x represents the In loadings of 1.0 wt%, 2.0 wt% and 3.0 wt%) catalysts, with different In loadings, all present excellent CH4-SCR performance. By varying the In loadings, the type of In species present in the catalyst can be regulated, thus enhancing DeNOx activity and CH4 selectivity in the CH4-SCR reaction. At a low temperature of 400 °C and a low CH4/NO feed ratio (CH4/NO = 1), the 3In/SSZ-39 catalyst, featuring highly active InOx clusters, achieves the best low-temperature CH4-SCR performance, with a high NO conversion rate of up to 90% and a CH4 selectivity of up to 74.2%.

11.
Chemistry ; : e202402162, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133892

RESUMEN

An efficient approach for the synthesis of substituted aryl naphthoquinones via a Pd(II)-catalyzed template-assisted m-C(sp2)-H bond functionalization reaction of arylmethane sulfonates have been demonstrated. The method involves usage of less expensive and abundant pharmacologically important scaffold naphthoquinone. A wide range of arylmethane sulfonates were examined and found to be compatible with the protocol. The protocol has also been further extended to the synthesis of various substituted aryl maleimide scaffolds. A plausible reaction mechanism has also been proposed to account for the selective distal m-C(sp2)-H bond functionalization reaction.

12.
Proc Natl Acad Sci U S A ; 121(33): e2403903121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116127

RESUMEN

Connexin hemichannels were identified as the first members of the eukaryotic large-pore channel family that mediate permeation of both atomic ions and small molecules between the intracellular and extracellular environments. The conventional view is that their pore is a large passive conduit through which both ions and molecules diffuse in a similar manner. In stark contrast to this notion, we demonstrate that the permeation of ions and of molecules in connexin hemichannels can be uncoupled and differentially regulated. We find that human connexin mutations that produce pathologies and were previously thought to be loss-of-function mutations due to the lack of ionic currents are still capable of mediating the passive transport of molecules with kinetics close to those of wild-type channels. This molecular transport displays saturability in the micromolar range, selectivity, and competitive inhibition, properties that are tuned by specific interactions between the permeating molecules and the N-terminal domain that lies within the pore-a general feature of large-pore channels. We propose that connexin hemichannels and, likely, other large-pore channels, are hybrid channel/transporter-like proteins that might switch between these two modes to promote selective ion conduction or autocrine/paracrine molecular signaling in health and disease processes.


Asunto(s)
Conexinas , Humanos , Conexinas/metabolismo , Conexinas/genética , Transporte Iónico , Animales , Mutación , Iones/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-39116297

RESUMEN

As a key device for solar energy conversion, solar absorbers play a critical role in improving the operating temperature of concentrated solar power (CSP) systems. However, solar absorbers with high spectral selectivity and good thermal stability at high temperatures in air are still scarce. This study presents a novel surface reconstruction strategy to improve the spectral selectivity of La0.5Sr0.5CoO3-δ (LSC5) for enhanced CSP application. The strategy could efficiently enhance the solar absorptance due to the existence of a high-absorption thin layer composed of nanoparticles on the LSC5 surface. Meanwhile, the crystal facet with low emittance on the LSC5 surface was exposed. Thus, the LSC5 that underwent surface reconstruction achieved a higher solar absorptance (∼0.75) and lower infrared emittance (∼0.19) compared to the original LSC5 (0.63/0.21), representing an improvement of nearly 32%. Additionally, the surface reconstructed LSC5 demonstrated a lower infrared thermographic temperature and a higher solar-thermal conversion equilibrium temperature compared to those of LSC5 and SiC. Moreover, the reconstructed LSC5 could maintain stable performance up to 800 °C in air, which might simplify the complexity of the CSP systems. The surface reconstruction strategy provided a new method to optimize the spectral selectivity of high-temperature stable ceramics, contributing to advancements in solar energy conversion technologies.

14.
Bioresour Technol ; : 131229, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117240

RESUMEN

Microbes used for the recovery of rare earth elements (REEs) from mining wastewater indicated traces of Escherichia coli (E. coli, 2149.6 µg/g), Bacillus sphaericus (1636.6 µg/g), Bacillus mycoides (1469.3 µg/g), and Bacillus cereus (1083.9 µg/g). Of these, E. coli showed an affinity for REEs than non-REEs (Mn and Zn). The amount of heavy REEs adsorbed (1511.1 µg/g) on E. coli was higher than light REEs (638.0 µg/g) due to the process of increasing adsorption with decreasing ionic radius. Additionally, E. coli demonstrated stability in the recovery of REEs from mining wastewater, as evidenced by 4 cycles. SEM-EDS, XPS and FTIR showed that REEs had a disruptive effect on cells, REEs absorbed and desorbed on the cell surface including ion exchange with ions such as Na+, ligand binding with functional groups like -NH2. Finally, the cost assessment confirmed the economically feasible of E. coli in recovery of REEs from mining wastewater.

15.
Biosens Bioelectron ; 264: 116624, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121616

RESUMEN

Fluorescence imaging technology is a versatile and essential tool in the field of biomedical research. To obtain excellent imaging results, the precise labeling of fluorescent probes is an important prerequisite. Nevertheless, the labeling selectivity of most fluorescent probes is not satisfactory, new design concepts are desperately needed. In this context, two isomeric lipid droplets (LDs) fluorescent probes Lipi-Cz-1 and Lipi-Cz-2 have been sophisticatedly developed with TICT and ICT-emitting characteristic, respectively. The more environmentally sensitive TICT-emitting Lipi-Cz-1 exhibits a significantly enhanced labeling selectivity in LDs imaging compared to the ICT-emitting Lipi-Cz-2, sufficiently illustrating the effectiveness of TICT-emitting characteristic in improving labeling selectivity. Additionally, Lipi-Cz-1 displays high photostability and biocompatibility. These advantages enable Lipi-Cz-1 to be finely applied in multimode fluorescence imaging, e.g. time-lapse 3D confocal imaging to monitor changes of the number and size of LDs during starvation, two-photon 3D imaging to compare the variations of LDs in various liver tissues, and STED super-resolution imaging to visualize the nanoscale LDs with the resolution of 65 nm. Overall, these imaging findings validate the effectiveness of the new strategy for improving the labeling selectivity.

16.
J Biol Chem ; : 107649, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122011

RESUMEN

Amaryllidaceae alkaloids (AAs) are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized, however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a non-regiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host Nicotiana benthamiana.

17.
Anal Chim Acta ; 1319: 342958, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122273

RESUMEN

BACKGROUND: The limited extraction selectivity caused by the single extraction selection mechanism of solid phase extraction (SPE) technology is one of the bottlenecks restricting its development. The development of environmentally sensitive materials provides a new opportunity to solve this problem. Based on this, we developed the sulfobetaine methacrylate hydrogel with abundant pore structure, a large number of adsorption sites and especially temperature responsiveness, and used as adsorbent for the extraction of pesticide residues in lychees. RESULTS: The new hydrogel adsorbent was prepared by free radical copolymerization with sulfobetaine methacrylate as monomer, and used for the extraction of benzoylurea insecticides from lychees. Interestingly, the hydrogel showed an almost opposite temperature-selective extraction trend for different benzoylurea insecticides with similar structure and polarity, and opposite hydrophilicity, which may be caused by the temperature-sensitive and the special action site of the hydrogel, and the change of the diffusion of aqueous solution. In addition, the analysis method of three hydrophilic benzoylurea insecticides by sulfobetaine methacrylate hydrogel-SPE-HPLC was established. Under optimal conditions, the low limits of detection (0.030 µg L-1) and quantification (0.10 µg L-1), and the wide linear ranges (0.10-50.0 µg L-1) were achieved. Its application in lychee samples were also tested, and the satisfactory results were obtained, with the spiked recoveries from 80.79 % to 108.31 %. SIGNIFICANCE: This was a great breakthrough in the selective extraction of similar targets. These properties, combined with low-cost, biodegradable raw materials and convenient, green synthesis method make the sulfobetaine methacrylate hydrogel a very promising solid phase adsorbent. Temperature-responsive selective mode can greatly enrich the selective extraction mechanism and promote its development and application in complex actual samples.

18.
ACS Nano ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126711

RESUMEN

The electrocatalytic carbon dioxide reduction reaction (ECRR) is promising in converting environmentally harmful CO2 into useful chemicals, but the large-scale application of this technology is seriously limited by its low efficiency and selectivity. Cu-based electrocatalysts displayed attractive ability in converting CO2 to multiple products, and the product selectivity can be manipulated through various approaches. Among them, exposing specific crystal facets through crystal facet engineering has been proven to be highly effective in obtaining specific products and has attracted numerous researchers. However, to our knowledge, few reports have systematically summarized the relationship between the crystal facet control of Cu catalysts and the catalytic products. This review begins by outlining the general mechanism of CO2 electrocatalytic reduction on Cu-based catalysts, and then summarizes the preferences of low-index and high-index Cu facets regarding product selectivity and delves into the synergistic effects between facets (including different Cu facets and interactions between Cu and non-Cu facets) and their impact on CO2 reduction reaction (CO2RR). In addition, the study of the recently developed Cu single-atom catalysts in ECRR was also introduced. Finally, we provide an outlook on the development of high-performance Cu-based catalysts for applications in CO2RR. The purpose of this review is to provide a clear vein and meaningful guidance for the following studies over the crystal facet control of Cu-based electrocatalysts.

19.
J Steroid Biochem Mol Biol ; : 106597, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127416

RESUMEN

This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5µM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9µM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.

20.
Talanta ; 280: 126674, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39137662

RESUMEN

A new molecularly imprinted polymer (MIP) sensitive and selective for S-metolachlor herbicide was synthesized by bulk polymerization with the use of N-isopropylacrylamide, acrylamide, and acrylic acid as functional monomers, and N,N'- methylenebis(acrylamide) as a cross-linker. A novel method for obtaining MIP toward S-metolachlor in an aqueous medium and at room temperature, according to the principles of green chemistry, has been discovered, in comparison to synthesis methods at high temperatures and using organic solvents. Under selected experimental conditions, the batch mode type of sorption was carried out efficiently, with S-metolachlor absorption of 2.4 mg per 1 g of MIP and 0.5 mg per 1 g of NIP. The selectivity of the sorbent towards other herbicides and pesticides was also tested, obtaining an ability to recognize S-metolachlor molecules 3.2 times better than atrazine, 6 times better than glyphosate, and 6.2 times better than fenoxaprop-P-ethyl. The FT-IR and SEM analyses were performed to characterize the structure of the synthesized polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA