Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.989
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 139-150, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095153

RESUMEN

Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Oro , Grafito , Nanopartículas del Metal , Paraquat , Grafito/química , Paraquat/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Límite de Detección , Carbono/química , Contaminantes Químicos del Agua/análisis , Herbicidas/análisis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124854, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39089061

RESUMEN

Ion specificity is crucial for developing fluorescence probes. Using a recently reported optical sensor (BDA-1) of Zn2+ as a representative, we carried out extensive quantum chemical calculations on its photophysical properties using density function theory. According to the calculated optimized geometries, excitation energies and transition oscillator strengths, the weak fluorescence of BDA-1 observed in experiments is attributed to the suppression of fluorescence emission by efficient internal conversion, rather than the previously proposed photoinduced electron transfer (PET) mechanism. With the addition of Zn2+ or Cd2+ ions, the tetradentate chelates [M:BDA-1-H+]+ (M=Zn, Cd) are produced. According to frontier molecular orbital and interfragment charge transfer analyses of these complexes, PET is preferentially confirmed to occur upon photo-excitation. Notably, as one coordination bond in the excited [Cd:BDA-1-H+]+ complex is significantly weakened in comparison to that of [Zn:BDA-1-H+]+, their molecular orbital compositions in the S1 state are completely different. As a result, absorption and radiation transitions of [Zn:BDA-1-H+]+ both have considerable oscillator strength, while fluorescence radiation from the excited [Cd:BDA-1-H+]+ is doubly suppressed. This difference causes that the fluorescence intensity of BDA-1 is sensitive to the addition of metal ions, and exhibits the zinc ion-specificity.

3.
Comput Biol Med ; 180: 108959, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089109

RESUMEN

Neuropsychiatric symptoms (NPS) and mood disorders are common in individuals with mild cognitive impairment (MCI) and increase the risk of progression to dementia. Wearable devices collecting physiological and behavioral data can help in remote, passive, and continuous monitoring of moods and NPS, overcoming limitations and inconveniences of current assessment methods. In this longitudinal study, we examined the predictive ability of digital biomarkers based on sensor data from a wrist-worn wearable to determine the severity of NPS and mood disorders on a daily basis in older adults with predominant MCI. In addition to conventional physiological biomarkers, such as heart rate variability and skin conductance levels, we leveraged deep-learning features derived from physiological data using a self-supervised convolutional autoencoder. Models combining common digital biomarkers and deep features predicted depression severity scores with a correlation of r = 0.73 on average, total severity of mood disorder symptoms with r = 0.67, and mild behavioral impairment scores with r = 0.69 in the study population. Our findings demonstrated the potential of physiological biomarkers collected from wearables and deep learning methods to be used for the continuous and unobtrusive assessments of mental health symptoms in older adults, including those with MCI. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05059353) on September 28, 2021, titled "Effectiveness and Safety of a Digitally Based Multidomain Intervention for Mild Cognitive Impairment".

4.
ACS Sens ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39086324

RESUMEN

One challenge for gas sensors is humidity interference, as dynamic humidity conditions can cause unpredictable fluctuations in the response signal to analytes, increasing quantitative detection errors. Here, we introduce a concept: Select humidity sensors from a pool to compensate for the humidity signal for each gas sensor. In contrast to traditional methods that extremely suppress the humidity response, the sensor pool allows for more accurate gas quantification across a broader range of application scenarios by supplying customized, high-dimensional humidity response data as extrinsic compensation. As a proof-of-concept, mitigation of humidity interference in colorimetric gas quantification was achieved in three steps. First, across a ten-dimensional variable space, an algorithm-driven high-throughput experimental robot discovered multiple local optimum regions where colorimetric humidity sensing formulations exhibited high evaluations on sensitivity, reversibility, response time, and color change extent for 10-90% relative humidity (RH) in room temperature (25 °C). Second, from the local optimum regions, 91 sensing formulations with diverse variables were selected to construct a parent colorimetric humidity sensor array as the sensor pool for humidity signal compensation. Third, the quasi-optimal sensor subarrays were identified as customized humidity signal compensation solutions for different gas sensing scenarios across an approximately full dynamic range of humidity (10-90% RH) using an ingenious combination optimization strategy, and two accurate quantitative detections were attained: one with a mean absolute percentage error (MAPE) reduction from 4.4 to 0.75% and the other from 5.48 to 1.37%. Moreover, the parent sensor array's excellent humidity selectivity was validated against 10 gases. This work demonstrates the feasibility and superiority of robot-assisted construction of a customizable parent colorimetric sensor array to mitigate humidity interference in gas quantification.

5.
Small ; : e2405493, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087376

RESUMEN

Simultaneous monitoring of critical parameters (e.g., pressure, shear, and temperature) at bony prominences is essential for the prevention of pressure injuries in a systematic manner. However, the development of wireless sensor array for accurate mapping of risk factors has been limited due to the challenges in the convergence of wireless technologies and wearable sensor arrays with a thin and small form factor. Herein, a battery-free, wireless, miniaturized multi-modal sensor array is introduced for continuous mapping of pressure, shear, and temperature at skin interfaces. The sensor array includes an integrated pressure and shear sensor consisting of 3D strain gauges and micromachined components. The mechanically decoupled design of the integrated sensor enables reliable data acquisition of pressure and shear at skin interfaces without the need for additional data processing. The sensor platform enables the analysis of interplay among localized pressure, shear, and temperature in response to changes in the patient's movement, posture, and bed inclination. The validation trials using a novel combination of wireless sensor arrays and customized pneumatic actuator demonstrate the efficacy of the platform in continuous monitoring and efficient redistribution of pressure and shear without repositioning, thereby improving the patient's quality of life.

6.
Heliyon ; 10(14): e34382, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114030

RESUMEN

The goal of this paper's novel energy-conscious routing method is to optimize energy usage and extend network lifespans using a new clustering probability. Versatile arrangements and a longer network lifespan (until the last node dies) are achieved through cluster-based routing strategies. Existing algorithms, such as low energy adaptive clustering hierarchy (LEACH), residual energy LEACH (RES-EL), and distributed residual energy LEACH (DIS-RES-EL), have been compared to the newly proposed algorithms: improved residual energy LEACH (IMP-RES-EL) and energy efficient LEACH (EEL). IMP-RES-EL and EEL outperform all other stated algorithms by extending the network lifespan, enhancing stability, increasing the number of aggregated data packets transmitted from cluster heads to the base station (BS), and selecting cluster heads with energy efficiency and optimal routing within the network. The proposed approaches outperform existing algorithms, particularly when every corner-located BS is considered in the wireless sensor network (WSN). The network lifespan in rounds increased by 36 %, the number of aggregated data packets from cluster heads to the BS increased by 44 %, and the efficiency of corner-located BSs improved by 20 %. Extensive simulations on five distinct topologies were reviewed and compared to the three techniques listed above, demonstrating the superiority of the proposed algorithms.

7.
Heliyon ; 10(14): e34439, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114055

RESUMEN

A highly sensitive sensor based on two metal-insulator-metal waveguides coupled to an asymmetric hexagonal nano-ring resonator detecting cancerous cells is proposed. This novel design is utilized to facilitate the sensing of human cells. The sensing mechanism of the presented optical structure can act as a refractive index measurement in biological, chemical, biomedical diagnosis, and bacteria detection, which leads to achieving high sensitivity in the structure. The main goal is to achieve the highest sensitivity concerning the optimum design. As a result, the sensitivity of the designed topology reaches a maximum value of about 1800 nm/RIU (nm/refractive index unit) by controlling the angle of the resonator. It is evident that the sensitivity parameter is improved, and the reason for the increase in sensitivity is due to the asymmetry of the resonator, which has an 81 % increase in sensitivity compared to the symmetrical resonator, especially for blood cancer cells. The maximum quality factor obtains 131.65 with a FOM of 90.4 (RIU-1). The sensing performance of this proposed structure is numerically investigated using the finite difference time domain (FDTD) method with the perfectly matched layer (PML). Accordingly, the suggested high sensitivity sensor makes this structure a promising therapeutic candidate for sensing applications that can be used in on-chip optical devices to produce highly complex integrated circuits.

8.
ACS Sens ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116022

RESUMEN

Efficient and reliable technologies for the on-site detection of illicit drugs are important in drug-facilitated crime investigations. However, the development of such technologies is challenging. Based on the synthetic optimization, introducing a boron ester functional group to the two furanic indicators endows the stimulus-responsive properties synergistically. The ring-opening reaction of the indicators in the presence of amine-containing illicit drugs generated well-known donor-acceptor Stenhouse adducts, accompanied by strong color changes. A small-size and lightweight laminated sensor was integrated based on the outstanding ratiometric variations of the two active furanic indicators. A prototype platform was fabricated equipped with a circuit control, a mini pump, and a signal processing system. A user-friendly detection and efficient screening of amine-containing illicit drugs, including phenethylamines, amphetamines, cathinones, and tryptamines in the liquid states were conducted. The ratiometric response of the sensor was linear in the concentration range of 2.1-10.6 µg·mL-1 for methamphetamine·HCl and methcathinone ·HCl. The detection limits for the two illicit drugs at the sublevel (ng·mL-1) were found to be 8.4 and 9.0 ng·mL-1, respectively. Double-blind field tests and different illicit drugs were evaluated with good screening capability. Successful trials showed the potential applications of the developed prototype platform for efficient and on-site analytical determination.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39116407

RESUMEN

2D metal halide perovskites (MHPs), mainly the studied Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phases, have gained enormous popularity as optoelectronic materials owing to their self-assembled multiple quantum well structures, tunable semiconducting properties, and improved structural stability compared to their bulk 3D counterparts. The performance of polycrystalline thin film devices is limited due to the formation of defects and trap states. However, as studied so far, single crystal-based devices can provide a better platform to improve device performance and investigate their fundamental properties more reliably. This Review provides the first comprehensive report on the emerging field of RP and DJ perovskite single crystals and their use in visible light photodetectors of varied device configurations. This Review structurally summarizes the 2D MHP single crystal growth methods and the parameters that control the crystal growth process. In addition, the characterization techniques used to investigate their crystal properties are discussed. The review further provides detailed insights into the working mechanisms as well as the operational performance of 2D MHP single crystal photodetector devices. In the end, to outline the present status and future directions, this Review provides a forward-looking perspective concerning the technical challenges and bottlenecks associated with the developing field of RP and DJ perovskite single crystals. Therefore, this timely review will provide a detailed overview of the fast-growing field of 2D MHP single crystal-based photodetectors as well as ignite new concepts for a wide range of applications including solar cells, photocatalysts, solar H2 production, neuromorphic bioelectronics, memory devices, etc.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124931, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116590

RESUMEN

A critical bottleneck in sensor technology is the rapid and precise detection of specific analytes in complex matrices, hindering advancements in environmental monitoring, healthcare, and industrial process control. This study addresses this challenge by introducing a novel composite hydrogel sensor designed for rapid and selective detection of ethanol and barium ions (Ba2+) in aqueous environments. The sensor integrates interpenetrating network (IPN) hydrogels with embedded colloidal photonic crystals (CPCs), synthesized via a solution-based polymerization approach. This innovative configuration allows CPCs to dynamically adjust their photonic bandgap in response to environmental changes, manifesting as a visible, colorimetric shift. This response stems from the synergy between the mechanical properties of the IPN hydrogel and the optical sensitivity of CPCs. Upon exposure to analytes such as ethanol and Ba2+, the sensor exhibits a rapid and reversible color transition that is directly proportional to their concentration. Notably, ethanol (0 vol%-80 vol%) and Ba2+ (5-17.5 mM) induce a distinct blueshift in the photonic bandgap and trigger a color change from red-orange to green due to the alteration in the swelling behavior of the IPN hydrogel, affecting its lattice constant. The IPN hydrogel-CPC composite demonstrates exceptional operational stability and facilitates rapid detection, making it ideal for on-site applications without the need for complex equipment. These characteristics make the composite hydrogel sensor a promising candidate for environmental monitoring, industrial process control, and public health diagnostics, paving the way for the development of next-generation responsive sensor materials.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124932, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116596

RESUMEN

The trace amount of water in organic solvents can affect the progress of chemical reactions, which will adversely affect chemical production in many industries, resulting in a doubling of costs. In this work, carbon dots (CDs) with abundant polar groups were synthesized by a simple one-step hydrothermal method. The prepared CDs showed superior dispersibility and fluorescence performance compared to the CDs that have been reported for the detection of water content in organic solvents. It can realize the fluorescence detection of trace water in several water-soluble organic solvents such as N,N-dimethylformamide, ethanol and methanol with wide linear range (0 %-100 %) and high sensitivity. This will provide a powerful tool for the rapid detection of water content in organic solvents in chemical production.

12.
Bioinspir Biomim ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116911

RESUMEN

Micro-sensors, such as pressure and flow sensors, are usually adopted to attain actual fluid information around swimming biomimetic robotic fish for hydrodynamic analysis and control. However, most of the reported micro-sensors are mounted discretely on body surfaces of robotic fish and it is impossible to analyzed the the hydrodynamics between the caudal fin and the fluid. In this work, a biomimetic caudal fin integrated with a resistive pressure sensor is designed and fabricated by laser machined conductive carbon fibre composites. To analyze the pressure exerted on the caudal fin during underwater oscillation, the pressure on the caudal fin is measured under different oscillating frequencies and angles. Then a model developed from Bernoulli equation indicates that the maximum pressure difference is linear to the quadratic power of the oscillating frequency and the maximum oscillating angle. The fluid disturbance generated by caudal fin oscillating increases with an increase of oscillating frequency, resulting in the decrease of the efficiency of converting the kinetic energy of the caudal fin oscillation into the pressure difference on both sides of the caudal fin. However, perhaps due to the longer stability time of the disturbed fluid, this conversion efficiency increases with the increase of the maximum oscillating angle. Additionally, the pressure variation of the caudal fin oscillating with continuous different oscillating angles is also demonstrated to be detected effectively. It is suggested that the caudal fin integrated with the pressure sensor could be used for sensing the in situ flow field in real time and analysing the hydrodynamics of biomimetic robotic fish.

13.
Sci Total Environ ; : 175346, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117201

RESUMEN

Nitrite is a common nitrogen-containing compound that possesses high biological toxicity, thereby posing a serious threat to aquatic organisms. Therefore, it is imperative to develop a rapid and quantitative determination approach for nitrite. In this study, the aim was to prepare a novel electrochemical sensor to determine nitrite. This was achieved by synthesizing Au/Zn dendritic complexes on a carbon cloth self-supported electrode after plasma treated by a stepwise strategy of electrodeposition and in-situ corrosion. In accordance with the optimal experimental conditions, the electrode exhibited remarkable catalytic activity for the electrooxidation of nitrite ions (pH = 8.0), accompanied by a considerable enhancement in peak anodic current in comparison to the unmodified electrode. The sensor exhibited a wide linear range (1-833 µM, 833-8330 µM), high sensitivity (3506 µA mM-1 cm-2, 538 µA mM-1 cm-2), a low detection limit (0.43 µM), and excellent selectivity, reproducibility, and stability for the determination of nitrite. Furthermore, the prepared sensor was successfully applied to the detection of nitrite in tap water, fish holding pond water and duck pond water, demonstrating good recovery and no significant difference from the spectrophotometric results. The results suggest that the electrochemical sensor developed in this study represents a straightforward yet efficacious approach to the development of advanced portable sensors for aquaculture applications.

14.
J Cell Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120491

RESUMEN

Cells sense and respond to mechanical forces through mechanotransduction, which regulates processes in health and disease. In single adhesive cells, mechanotransduction involves the transmission of force from the extracellular matrix to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the subsequent nuclear localization of transcriptional regulators such as YAP. However, if and how NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that nucleocytoplasmic transport responds to mechanics but not cell density in cell monolayers. Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered in response both to osmotic shocks, and to the inhibition of cell contractility. Further, NCT correlates with the degree of nuclear deformation measured through nuclear solidity, a shape parameter related to nuclear envelope tension. In contrast, YAP but NCT is sensitive to cell density, showing that YAP response to cell-cell contacts is not via a mere mechanical effect of NCT. Our results demonstrate the generality of the mechanical regulation of NCT.

15.
Mikrochim Acta ; 191(9): 510, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103665

RESUMEN

Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.


Asunto(s)
Aptámeros de Nucleótidos , Cocaína , Técnicas Electroquímicas , Oro , Límite de Detección , Detección de Abuso de Sustancias , Cocaína/orina , Cocaína/análisis , Cocaína/sangre , Aptámeros de Nucleótidos/química , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Detección de Abuso de Sustancias/métodos , Técnicas Biosensibles/métodos , Saliva/química , Electrodos , Conducción de Automóvil , Frío
16.
Artículo en Inglés | MEDLINE | ID: mdl-39106976

RESUMEN

Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.

17.
Mikrochim Acta ; 191(9): 518, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107518

RESUMEN

A nanocomposite of cobalt nanoparticle (CoNP) functionalized carbon nanotube (Co@CNT) was prepared and used to modify a glassy carbon electrode (Co@CNT/GCE). Characterization indicates the morphology of Co@CNT is CoNPs adhering on CNTs. With the nano-interface, Co@CNT provides large surface area, high catalytic activity, and efficient electron transfer, which makes Co@CNT/GCE exhibiting satisfactory electrochemical response toward quercetin (QC) and folic acid (FA). The optimum pH values for the detection of FA and QC are 7.0 and 3.0, respectively. The saturated absorption capacity (Γ*) and catalytic rate constant (kcat) of Co@CNT/GCE for QC and FA are calculated as 1.76 × 10-9, 3.94 × 10-10 mol∙cm-2 and 3.04 × 102, 0.569 × 102 M-1∙s-1. The linear range for both FA and QC is estimated to be 5.0 nM-10 µM, and the LODs (3σ/s) were 2.30 nM and 2.50 nM, respectively. The contents of FA and QC in real samples determined by Co@CNT/GCE are comparable with the results determined by HPLC. The recoveries were in the range 90.5 ~ 114% and the total RSD was lower than 8.67%, which further confirms the reliability of the proposed electrode for practical use.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39110038

RESUMEN

As an atomically thin electric conductor with a low density of highly mobile charge carriers, graphene is a suitable transducer for molecular adsorption. In this study, we demonstrate that the adsorption properties can be significantly enhanced with a laser-deposited TiO2 nanolayer on top of single-layer CVD graphene, whereas the effective charge transfer between the TiO2-adsorbed gas molecules and graphene is retained through the interface. The formation of such a heterostructure with optimally a monolayer thick oxide combined with ultraviolet irradiation (wavelength 365 nm, intensity <1 mW/mm2) dramatically enhances the gas-sensing properties. It provides an outstanding sensitivity for detecting NO2 in the range of a few ppb to a few hundred ppb-s in air, with response times below 30 s at room temperature. The effect of visible light (436 and 546 nm) was much weaker, indicating that the excitations due to light absorption in TiO2 play an essential role, while the characteristics of gas responses imply the involvement of both photoinduced adsorption and desorption. The sensing mechanism was confirmed by theoretical simulations on a NO2@Ti8O16C50 complex under periodic boundary conditions. The proposed sensor structure has significant additional merits, such as relative insensitivity to other polluting gases (CO, SO2, NH3) and air humidity, as well as long-term stability (>2 years) in ambient air. The results pave the way for an emerging class of gas sensor structures based on stacked 2D materials incorporating highly charge-sensitive transducer and selective receptor layers.

19.
J Fluoresc ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110354

RESUMEN

Biogenic amines, produced by bacterial enzymatic reactions in food storage or processing, serve as indicators in food processing industries to assess food quality and freshness. Biogenic amines also often associated with various health problems, including abnormal immune responses and gastrointestinal disease. Previously, salphen base complexes have been reported but still exhibited low fluorescence enhancement upon biogenic amines. This research focused on synthesizing and characterizing new Zn(II) Schiff base complex with indole sidechain to enhance the fluorescence property and exploring their binding behaviour with the biogenic amines, which were phenylethylamine and cadaverine. The Zn(II) indole Schiff base complex's structure was verified by diverse spectroscopic techniques. Then, the binding behaviours between the Zn(II) indole Schiff base complex with the biogenic amines were analyzed using UV-Vis, fluorescence spectroscopy, and Job's plot analysis. UV-Vis binding study results indicated that the synthesized complexes could bind stronger with phenylethylamine than cadaverine, with binding constant, Kb= (8.21 ± 0.58) × 104 M- 1 and (2.506 ± 0.004) × 104 M- 1 respectively. Moreover, Zn(II) indole Schiff base complex-phenylethylamine binding also generated higher fluorescence enhancement than cadaverine, which were 54% and 51% respectively. Based on Job's plot analysis, the complex and biogenic amines were bound in the ratio of 1:1. To conclude, the synthesized complex has promising potential as a sensing material for biogenic amines detection in food. The complex is recommended to be deployed in the development of solid-state fluorescence sensor for biogenic amines detection for monitoring the food spoilage in the food industry in the future.

20.
Environ Monit Assess ; 196(9): 793, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110302

RESUMEN

This study aims to assess the effectiveness of PCB-based capacitive soil moisture sensors for local field conditions. The electrical scheme of designed sensors has been presented in this study. The PCB-based capacitive soil moisture sensors are calibrated using a linear equation developed between analog values of capacitive sensors and soil moisture content measured from the gravimetric method. The performance of the designed soil moisture sensors was assessed at five different locations at varying depths (i.e., 15 cm, 30 cm, and 45 cm). The calibration results indicated a positive correlation between the soil moisture content and measurement frequency of the sensor for wheat crop, with R2 values of 0.72, 0.83, and 0.83 for 15 cm, 30 cm, and 45 cm depths, respectively. Results reveal that 85% of the sensors accurately detected the patterns in soil moisture fluctuations during the cropping period. The designed capacitive sensors demonstrated a maximum relative error of 5.87% for 45 cm depth. However, the relative error remained below 5% for the 15 cm and 30 cm soil depths. For the sugarcane crop, R2 values vary from 0.66 to 0.82, with the highest relative error of 5.22% at a 15 cm depth. These sensors offer a highly cost-effective solution for farmers, with the entire wireless sensor network system including one sensor node, three soil moisture sensors, and one soil temperature sensor, which is priced at approximately $150, making it a practical and affordable option for widespread adoption.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Suelo , Temperatura , Suelo/química , Monitoreo del Ambiente/métodos , Agricultura/métodos , Agricultores , Granjas , Agua , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA