Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ther Oncol ; 32(3): 200852, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39220111

RESUMEN

Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.

2.
Pathogens ; 12(3)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36986405

RESUMEN

Golden snub-nosed monkeys (Rhinopithecus roxellanae) belong to Class A, the highest level of endangered primate species. Exploring the infection status of potential pathogens in golden snub-nosed monkeys is important for controlling associated diseases and protecting this species. The objective of this study was to investigate the seroprevalence for a number of potential pathogens and the prevalence of fecal adenovirus and rotavirus. A total of 283 fecal samples were collected from 100 golden snub-nosed monkeys in December 2014, June 2015, and January 2016; 26 blood samples were collected from 26 monkeys in June 2014, June 2015, January 2016 and November 2016 at Shennongjia National Reserve in Hubei, China. The infection of 11 potential viral diseases was examined serologically using an Indirect Enzyme-linked Immunosorbent Assay (iELISA) and Dot Immunobinding Assays (DIA), while the whole blood IFN-γ in vitro release assay was used to test tuberculosis (TB). In addition, fecal Adenovirus and Rotavirus were detected using Polymerase Chain Reaction (PCR). As a result, the Macacine herpesvirus-1 (MaHV-1), Golden snub-nosed monkey cytomegalovirus (GsmCMV), Simian foamy virus (SFV) and Hepatitis A virus (HAV) were detected with the seroprevalence of 57.7% (95% CI: 36.9, 76.6), 38.5% (95% CI: 20.2, 59.4), 26.9% (95% CI: 11.6, 47.8), and 7.7% (95% CI: 0.0, 84.2), respectively. Two fecal samples tested positive for Adenovirus (ADV) by PCR, with a prevalence of 0.7% (95% CI: 0.2, 2.5), and further, the amplification products were sequenced. Phylogenetic analysis revealed that they belonged to the HADV-G group. However, other pathogens, such as Coxsackievirus (CV), Measles virus (MeV), Rotavirus (RV), Simian immunodeficiency virus (SIV), Simian type D retroviruses (SRV), Simian-T-cell lymphotropic virus type 1 (STLV-1), Simian varicella virus (SVV), Simian virus 40 (SV40) and Mycobacterium tuberculosis complex (TB) were negative in all samples. In addition, a risk factor analysis indicated that the seroprevalence of MaHV-1 infection was significantly associated with old age (≥4 years). These results have important implications for understanding the health status and conservation of the endangered golden snub-nosed monkey population at Shennongjia Nature Reserve.

3.
Int J Vet Sci Med ; 10(1): 11-18, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35291581

RESUMEN

Long-tailed macaques (Macaca fascicularis) are known to harbour a variety of infectious pathogens, including zoonotic species. Long-tailed macaques and humans coexist in Thailand, which creates potential for interspecies pathogen transmission. This study was conducted to assess the presence of B virus, Mycobacterium spp., simian foamy virus (SFV), hepatitis B virus (HBV), and Plasmodium spp. in 649 free-living Thai long-tailed macaques through polymerase-chain reaction. DNA of SFV (56.5%), HBV (0.3%), and Plasmodium spp. (2.2%) was detected in these macaques, whereas DNA of B virus and Mycobacterium spp. was absent. SFV infection in long-tailed macaques is broadly distributed in Thailand and is correlated with age. The HBV sequences in this study were similar to HBV sequences from orangutans. Plasmodium spp. DNA was identified as P. inui. Collectively, our results indicate that macaques can carry zoonotic pathogens, which have a public health impact. Surveillance and awareness of pathogen transmission between monkeys and humans are important.

4.
Viruses ; 12(4)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268512

RESUMEN

African green monkey (AGM) spumaretroviruses have been less well-studied than other simian foamy viruses (SFVs). We report the biological and genomic characterization of SFVcae_FV2014, which was the first foamy virus isolated from an African green monkey (AGM) and was found to be serotype 3. Infectivity studies in various cell lines from different species (mouse, dog, rhesus monkey, AGM, and human) indicated that like other SFVs, SFVcae_FV2014 had broad species and cell tropism, and in vitro cell culture infection resulted in cytopathic effect (CPE). In Mus dunni (a wild mouse fibroblast cell line), MDCK (Madin-Darby canine kidney cell line), FRhK-4 (a fetal rhesus kidney cell line), and MRC-5 (a human fetal lung cell line), SFVcae_FV2014 infection was productive resulting in CPE, and had delayed or similar replication kinetics compared with SFVmcy_FV21 and SFVmcy_FV34[RF], which are two Taiwanese macaque isolates, designated as serotypes 1 and 2, respectively. However, in Vero (AGM kidney cell line) and A549 (a human lung carcinoma cell line), the replication kinetics of SFVcae_FV2014 and the SFVmcy viruses were discordant: In Vero, SFVcae_FV2014 showed rapid replication kinetics and extensive CPE, and a persistent infection was seen in A549, with delayed, low CPE, which did not progress even upon extended culture (day 55). Nucleotide sequence analysis of the assembled SFVcae_FV2014 genome, obtained by high-throughput sequencing, indicated an overall 80-90% nucleotide sequence identity with SFVcae_LK3, the only available full-length genome sequence of an AGM SFV, and was distinct phylogenetically from other AGM spumaretroviruses, corroborating previous results based on analysis of partial env sequences. Our study confirmed that SFVcae_FV2014 and SFVcae_LK3 are genetically distinct AGM foamy virus (FV) isolates. Furthermore, comparative infectivity studies of SFVcae_FV2014 and SFVmcy isolates showed that although SFVs have a wide host range and cell tropism, regulation of virus replication is complex and depends on the virus strain and cell-specific factors.


Asunto(s)
Genoma Viral , Spumavirus/genética , Replicación Viral , Células A549 , Animales , Línea Celular , Chlorocebus aethiops , Efecto Citopatogénico Viral , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cinética , Macaca , Ratones , Filogenia , Serogrupo , Spumavirus/clasificación , Spumavirus/fisiología
5.
Gene ; 734: 144382, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31978513

RESUMEN

Japanese macaque (Macaca fuscata) is an indigenous Old World monkey (OWM) species that inhabits the Japanese archipelago. There are two subspecies of Japanese macaque: Yakushima macaque (M. f. yakui) which inhabits Yakushima Island exclusively, and Hondo macaque (M. f. fuscata) which inhabits the mainland of Japan. Yakushima macaque is considered to be branched off from a certain parental macaque group that had inhabited the mainland of Japan. However, the process of sub-speciation of the Yakushima macaque is still unclear at present. In this study, to gain new insight into the process of sub-speciation of Japanese macaque, we utilized the simian foamy virus (SFV) as a marker. SFVs are found in virtually all primates except humans and undergo species-specific cospeciation with the hosts. The phylogenetic analysis of conserved regions of the env gene in SFVs remarkably resembled that of the OWMs with high statistical confidence. The phylogenetic analyses also indicated that there are four (1-4) genotypes among Asian OWMs investigated. SFVs derived from Asian OWMs except Yakushima macaque were classified as genotypes 1-3, whereas SFVs isolated from all Yakushima macaques and one Hondo macaque were classified as genotype 4. Interestingly, genotype 4 was firstly branched off from the rest of the genotypes, which might indicate that the macaques infected with genotype 4 SFV were derived from the "older" population of Japanese macaques. The high prevalence of genotype 4 SFVs among Yakushima macaque might reflect the possibility that they are a descendant of the population settled earlier, which has been geographically isolated in Yakushima Island.


Asunto(s)
Macaca fuscata/virología , Virus Espumoso de los Simios/clasificación , Animales , Células Cultivadas , Genes Virales , Genes env , Integrasas/genética , Tipificación Molecular , Filogenia , Virus Espumoso de los Simios/genética , Virus Espumoso de los Simios/aislamiento & purificación , Especificidad de la Especie
6.
Microbes Environ ; 35(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31969530

RESUMEN

MicroRNAs (miRNAs) are a group of small non-coding RNAs that suppress the expression of target mRNAs. The seed sequence of miRNA plays a crucial role in recognizing the 3'-untranslated region of the target mRNA. Cells infected with a simian foamy virus (SFV) isolated from an African green monkey (Chlorocebus aethiops) (SFVcae) showed high expression levels of viral miRNAs encoded in the long terminal repeat of SFVcae. In the present study, we investigated the roles and expression of miRNAs derived from an SFV isolated from a Japanese macaque (Macaca fuscata) (SFVmfu) using next-generation sequencing technologies. The results obtained showed that SFVmfu also expressed viral miRNAs; however, the seed sequences of most miRNAs derived from SFVmfu differed from those reported previously from SFVcae. Cells persistently infected with SFVmfu strongly expressed an miRNA with the same seed sequence as the miR-1 microRNA precursor family. Luciferase reporter assays indicated that this miRNA down-regulates the expression of adenylyl cyclase-associated protein 1, which is up-regulated in several solid tumors. The present results suggest that SFVmfu utilizes viral miRNAs to establish long-term co-existence with the Japanese macaque.


Asunto(s)
Regulación de la Expresión Génica , Macaca fuscata/virología , MicroARNs/genética , ARN Viral/genética , Infecciones por Retroviridae/virología , Spumavirus/genética , Regiones no Traducidas 3' , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Humanos , MicroARNs/metabolismo , ARN Viral/metabolismo , Infecciones por Retroviridae/genética
7.
Virus Evol ; 5(2): vez032, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31636999

RESUMEN

Among all known retroviruses, foamy viruses (FVs) have the most stable virus-host co-speciation history, co-diverging in concert with their vertebrate hosts for hundreds of millions of years. However, detailed molecular analyses indicate that different parts of their genome might have different evolutionary histories. While their polymerase gene displays a robust and straightforward virus-host co-speciation pattern, the evolutionary history of their envelope (env) gene, is much more complicated. Here, we report eleven new FV env sequences in two mandrill populations in Central Africa, geographically separated by the Ogooué River into the North and the South populations. Phylogenetic reconstruction of the polymerase gene shows that the two virus populations are distinct, and each contains two variants of env genes co-existing with one another. The distinction between the two env variants can be mapped to the surface domain, flanked by two recombination hotspots, as previously reported for chimpanzee and gorilla FVs. Our analyses suggest that the two env variants originated during the diversification of Old World monkeys and apes, ∼30 million years ago. We also show that this env gene region forms two phylogenetically distinct clades, each displaying a host co-divergence and geographical separation pattern, while the rest of the genome of the two strains is phylogenetically indistinguishable in each of the host-specific groups. We propose possible evolutionary mechanisms to explain the modular nature of the FV genome.

8.
Viruses ; 11(7)2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277268

RESUMEN

Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.


Asunto(s)
Genoma Viral , Hylobates/virología , Enfermedades de los Monos/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Virus Espumoso de los Simios/genética , Animales , Secuencia de Bases , Teorema de Bayes , Genes Virales , Hominidae , Humanos , Filogenia , Recombinación Genética , Alineación de Secuencia , Análisis de Secuencia , Virus Espumoso de los Simios/clasificación , Secuencias Repetidas Terminales
9.
Retrovirology ; 14(1): 55, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-29197389

RESUMEN

BACKGROUND: Foamy viruses (FV) are ancient complex retroviruses that differ from orthoretroviruses such as human immunodeficiency virus (HIV) and murine leukemia virus (MLV) and comprise a distinct subfamily of retroviruses, the Spumaretrovirinae. FV are ubiquitous in their natural hosts, which include cows, cats, and nonhuman primates (NHP). FV are transmitted mainly through saliva and appear nonpathogenic by themselves, but they may increase morbidity of other pathogens in coinfections. CONCLUSIONS: This review summarizes and discusses what is known about FV infection of natural hosts. It also emphasizes what is known about FV zoonotic infections A large number of studies have revealed that the FV of NHP, simian foamy viruses (SFV), are transmitted to humans who interact with infected NHP. SFV from a variety of NHP establish persistent infection in humans, while bovine foamy virus and feline foamy virus rarely or never do. The possibility of FV recombination and mutation leading to pathogenesis is considered. Since humans can be infected by SFV, a seemingly nonpathogenic virus, there is interest in using SFV vectors for human gene therapy. In this regard, detailed understanding of zoonotic SFV infection is highly relevant.


Asunto(s)
Infecciones por Retroviridae/transmisión , Spumavirus , Zoonosis/virología , Animales , Coinfección , Humanos , Infecciones por Retroviridae/patología , Infecciones por Retroviridae/virología
10.
Virology ; 460-461: 147-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010280

RESUMEN

The existence and genetic make-up of most primate retroviruses was revealed by studies of bushmeat and fecal samples from unhabituated primate communities. For these, detailed data on intra- and within-species contact rates are generally missing, which makes identification of factors influencing transmission a challenging task. Here we present an assessment of 12 years of research on primate retroviruses in the Taï National Park area, Côte d'Ivoire. We discuss insights gained into the prevalence, within- and cross-species transmission of primate retroviruses (including towards local human populations) and the importance of virus-host interactions in determining cross-species transmission risk. Finally we discuss how retroviruses ecology and evolution may change in a shifting environment and identify avenues for future research.


Asunto(s)
Animales Salvajes/virología , Enfermedades de los Primates/virología , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Retroviridae/aislamiento & purificación , Animales , Côte d'Ivoire/epidemiología , Humanos , Filogenia , Enfermedades de los Primates/epidemiología , Enfermedades de los Primates/transmisión , Primates/clasificación , Primates/virología , Retroviridae/clasificación , Retroviridae/genética , Infecciones por Retroviridae/epidemiología , Infecciones por Retroviridae/transmisión , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
11.
Emerg Microbes Infect ; 2(5): e29, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-26038465

RESUMEN

Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure. We also included in this study 38 macaques owned by nomadic people who train them to perform for audiences. PCR was used to analyze a portion of the proviral gag gene from all SFV-positive macaques, and multiple clones were sequenced. Phylogenetic analysis was used to infer long-term patterns of viral transmission. Analyses of SFV gag gene sequences indicated that macaque populations from different areas harbor genetically distinct strains of SFV, suggesting that geographic features such as forest cover play a role in determining the dispersal of macaques and SFV. We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV. Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals. Some macaques are infected with SFV that appears to be recombinant. These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses.

12.
Emerg Microbes Infect ; 2(9): e58, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038489

RESUMEN

Simian foamy viruses (SFVs) are ubiquitous in non-human primates (NHPs). As in all retroviruses, reverse transcription of SFV leads to recombination and mutation. Because more humans have been shown to be infected with SFV than with any other simian borne virus, SFV is a potentially powerful model for studying the virology and epidemiology of viruses at the human/NHP interface. In Asia, SFV is likely transmitted to humans through macaque bites and scratches that occur in the context of everyday life. We analyzed multiple proviral sequences from the SFV gag gene from both humans and macaques in order to characterize retroviral transmission at the human/NHP interface in Bangladesh. Here we report evidence that humans can be concurrently infected with multiple SFV strains, with some individuals infected by both an autochthonous SFV strain as well as a strain similar to SFV found in macaques from another geographic area. These data, combined with previous results, suggest that both human-facilitated movement of macaques leading to the introduction of non-resident strains of SFV and retroviral recombination in macaques contribute to SFV diversity among humans in Bangladesh.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA