Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Talanta ; 258: 124472, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37013336

RESUMEN

We developed a novel, sensitive, and selective platform for the specific determination of aflatoxin B1 (AFB1). Single-walled carbon nanohorns decorated by a cobalt oxide composite and gold nanoparticles were created to provide facile electron transfer and improve the sensor's sensitivity. In addition, we attributed the selectivity of the proposed sensor to the specific binding property of the anti-aflatoxin B1 antibody. We clarified the specific interaction of the proposed immunosensor to AFB1 using homology modeling combined with molecular docking. In the presence of AFB1, the current signal of the modified electrode reduced; this involved specific antibody-antigen binding, including hydrophobic hydrogen bonding and pi-pi stack interactions. The new AFB1 sensor platform showed two linearity ranges of 0.01-1 ng mL-1 and 1-100 ng mL-1, with the limit of detection at 0.0019 ng mL-1. We investigated the proposed immunosensor in real samples, including peanuts, certified reference material of a peanut sample (labeled 206 µg kg-1 AFB1), corn, and chicken feed. The sensor's accuracy was 86.1-104.4% recovery, which agrees with the reference HPLC technique using paired t-test analysis. The present work shows excellent performance for AFB1 detection and could be applied for food quality control or modified to detect other mycotoxins.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Aflatoxina B1/análisis , Aflatoxina B1/química , Nanocompuestos/química , Inmunoensayo/métodos , Oro/química , Carbono/química
2.
Chemistry ; 29(8): e202203196, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36331360

RESUMEN

As promising photonic material, phototheranostics can be activated in the laser irradiation range of tumor with sensitivity and spatiotemporal precision. However, it is difficult to completely eradicate solid tumors due to their irregularity and limited laser irradiation area. Herein, multi-stimulus responsive HA-Ce6@SWNHs were constructed with single-walled carbon nanohorns (SWNHs) and chlorine e6 (Ce6) modified hyaluronic acid (HA) via non-covalent binding. This SWNHs-based phototheranostics not only exhibited water dispersion but also could target tumor and be activated by near-infrared light for photodynamic therapy (PDT) and photothermal therapy (PTT). Additionally, HA-Ce6@SWNHs could be degraded by hyaluronidase in residual tumor cells, causing HA-Ce6 to fall off the SWNHs surfaces to restore autofluorescence, thus precisely guiding the programmed photodynamic treatments for residual tumor cells after the initial phototherapy. Thus, this work provides a rationally designed multiple-stimulus-response strategy to develop smart SWNHs-based phototheranostics for precise PDT/PTT and post-treatment imaging-guided PDT of residual tumor cells.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Carbono , Neoplasia Residual/tratamiento farmacológico , Fototerapia , Línea Celular Tumoral , Fármacos Fotosensibilizantes/uso terapéutico
3.
Foods ; 12(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38231791

RESUMEN

The determination of the aflatoxin B1 (AFB1) content has received widespread attention in the context of food safety, which is a global public health issue. Accordingly, a label-free and turn-on fluorescent AFB1 determination method is developed herein with an ss-DNA aptamer as the recognition element, 4, 4-(1E,1E)-2, 2-(anthracene-9, 10-diyl) bis(ethene-2, 1-diyl) bis(N, N, N-trimethylbenzenaminium iodide) (DSAI) as the aggregation-induced emission (AIE) fluorescent probe, and single-walled carbon nanohorns (SWCNHs) as the selective part with a fluorescence quenching effect. In the presence of AFB1, the AFB1-specific aptamer undergoes a structural transformation and switches from being a random helix to a folded structure. DSAI's fluorescence is protected as a result of the resistance of the transformed aptamer adsorbed on the SWCNHs' surface. Because DSAI's fluorescence is not quenchable, the fluorescence intensity is calculated as a function of the AFB1 concentration. By simply mixing DSAI, aptamer, AFB1 samples, and SWCNHs, the method can be carried out in 2 h, with a limit of detection (LOD) of 1.83 ng/mL. It has a high selectivity in the presence of other mycotoxins, and its performance is confirmed in soybean sauce with a known concentration of AFB1. The LOD was 1.92 ng/mL in the soy sauce samples and the recovery ranged from 95 to 106%, implying that the presented aptasensor has great potential for food analysis.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432219

RESUMEN

Lithium-sulfur batteries are considered one of the most appealing technologies for next-generation energy-storage devices. However, the main issues impeding market breakthrough are the insulating property of sulfur and the lithium-polysulfide shuttle effect, which cause premature cell failure. To face this challenge, we employed an easy and sustainable evaporation method enabling the encapsulation of elemental sulfur within carbon nanohorns as hosting material. This synthesis process resulted in a morphology capable of ameliorating the shuttle effect and improving the electrode conductivity. The electrochemical characterization of the sulfur-carbon nanohorns active material revealed a remarkable cycle life of 800 cycles with a stable capacity of 520 mA h/g for the first 400 cycles at C/4, while reaching a value around 300 mAh/g at the 750th cycle. These results suggest sulfur-carbon nanohorn active material as a potential candidate for next-generation battery technology.

5.
J Colloid Interface Sci ; 628(Pt A): 273-286, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932666

RESUMEN

Phototheranostics, a local non-invasive approach that integrates light-based diagnostics and therapeutics, enables precise treatment using nanotheranostic agents with minimal damage to normal tissues. However, ensuring high-efficiency ablation of cancer cells using phototheranostics for one time irradiation is highly challenging. Herein, we designed and synthesized a single-walled carbon nanohorns-based nanotheranostic agent, HA-IR808-SWNHs, by loading IR808, a photosensitizer, conjugated hyaluronic acid (HA) with an amide bond on the surface of single-walled carbon nanohorns (SWNHs) through noncovalent π-π interaction by the sonication method. The HA in HA-IR808-SWNHs improves the water dispersibility of SWNHs and endows SWNHs with targeting capabilities. Importantly, overexpressed endogenous hyaluronidase in cancer cells actively disassembles HA-IR808-SWNHs, forming small HA-IR808 fragments. The fragments exhibit a strong fluorescence signal and can be used to guide programmed photodynamic therapy for sequentially eliminating the residual living cancer cells. The current study confirms that HA-IR808-SWNHs is an endogenous enzyme-responsive nanotheranostic agent that can be employed to precisely track and ablate residual cancer cells in a spatiotemporal manner. The results strengthen the understanding of SWNH functionalization and expand its potential biomedical application, especially in cancer theranostics.


Asunto(s)
Fotoquimioterapia , Amidas , Carbono/química , Ácido Hialurónico , Hialuronoglucosaminidasa , Imagen Óptica , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Nanomedicina Teranóstica , Agua
6.
Nanomedicine (Lond) ; 17(11): 765-774, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35642581

RESUMEN

Aim: To develop a new detection technique for ATP in cancer cells using fluorescent biosensing. Materials & methods: This research presents a new label-free fluorescent aptasensor for ATP measurement that incorporates a DNA aptamer, SYBR Gold and single-walled carbon nanohorns. Results: The aptasensor showed selectivity toward ATP and a low limit of detection (37.6 nM). The linear detection range was 100-50,000 nM, and the fluorescence intensity and ATP concentration logarithm showed an excellent linear correlation (R2 = 0.9924). Conclusion: The developed aptasensor may be used to detect cellular ATP in cancer cells and could be employed for biological sample analysis. The benefits of the aptasensor, such as its simplicity, speed, cost-effectiveness, specificity and sensitivity, give it promising implications as a potentially adaptable sensing platform.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Neoplasias , Adenosina Trifosfato/análisis , Técnicas Biosensibles/métodos , Oro , Límite de Detección , Neoplasias/diagnóstico
7.
Anal Bioanal Chem ; 414(9): 3087-3094, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35118572

RESUMEN

This paper describes a novel fluorescence label-free aptasensor to detect aflatoxin B1 (AFB1) by utilizing SYBR Gold, aptamer, and single-walled carbon nanohorns (SWCNHs). In the presence of AFB1, the conformation of AFB1-specific aptamer went through and the spatial structure of this specific aptamer was transformed accordingly. Due to the resistance of the transformed aptamer when adsorbed on the surface of SWCNHs, the protection of the fluorescence of SYBR Gold was accomplished. Consequently, concentrations of AFB1 showed a strong association with fluorescence intensity. The detection limit (LOD) of AFB1 was 1.89 ng/mL, while the linear range was 5-200 ng/mL and fluorescence intensity satisfactorily correlated (R2 = 0.9919) with the logarithm of AFB1 concentration.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aflatoxina B1/análisis , Aptámeros de Nucleótidos/química , Carbono , Oro/química , Límite de Detección
8.
ACS Biomater Sci Eng ; 7(12): 5541-5554, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34802226

RESUMEN

In this work, a novel electrochemical immunosensor based on nitrogen doped graphene quantum dot (N-GQD) and single-walled carbon nanohorns (SWCNHs) was developed for the detection of α-fetoprotein (AFP), a cancer biomarker. Thus, to fabricate the platform of the immunosensor, nanocomposite architecture was developed by decorating N-GQD on the surface of the SWCNHs. The resulting hybrid architecture (N-GQD@SWCNHs) functioned as an exceptional base for the immobilization of antibody (Anti-AFP) through carbodiimide reaction with good stability and bioactivity. The immunosensor was prepared by evenly distributing the bioconjugates (N-GQD@SWCNHs/Anti-AFP) dispersion on the surface of the glassy carbon electrode, and subsequently blocking the remaining active sites by bovine serum albumin to prevent the nonspecific adsorption. Cyclic voltammetry and electrochemical impedance spectroscopy technique was employed to investigate the assembly process of the immunosensor. Under optimal conditions, the immunosensor exhibited a broad dynamic range in between 0.001 ng/mL to 200 ng/mL and a low detection limit of 0.25 pg/mL. Furthermore, the sensor showed high selectivity, desirable stability, and reproducibility. Measurements of AFP in human serum gave outstanding recovery within 99.2% and 102.1%. Thus, this investigation and the amplification strategy exhibited a potential role of the developed nanocomposite based sensor for early clinical screening of cancer biomarkers.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Neoplasias , Puntos Cuánticos , Biomarcadores de Tumor , Carbono , Detección Precoz del Cáncer , Humanos , Inmunoensayo , Límite de Detección , Nitrógeno , Reproducibilidad de los Resultados
9.
Pharmaceutics ; 12(9)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906852

RESUMEN

Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.

10.
Adv Sci (Weinh) ; 7(16): 2001088, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832363

RESUMEN

Immune responses stimulated by photodynamic therapy (PDT) and photothermal therapy (PTT) are a promising strategy for the treatment of advanced cancer. However, the antitumor efficacy by PDT or PTT alone is less potent and unsustainable against cancer metastasis and relapse. In this study, Gd3+ and chlorin e6 loaded single-walled carbon nanohorns (Gd-Ce6@SWNHs) are developed, and it is demonstrated that they are a strong immune adjuvant, and have high tumor targeting and penetration efficiency. Then, three in vivo mouse cancer models are established, and it is found that sequential PDT and PTT using Gd-Ce6@SWNHs synergistically promotes systemic antitumor immune responses, where PTT stimulates dendritic cells (DCs) to secrete IL-6 and TNF-α, while PDT triggers upregulation of IFN-γ and CD80. Moreover, migration of Gd-Ce6@SWNHs from the targeted tumors to tumor-draining lymph nodes sustainably activates the DCs to generate a durable immune response, which eventually eliminates the distant metastases without using additional therapeutics. Gd-Ce6@SWNHs intervened phototherapies also generate durable and long-term memory immune responses to tolerate and prevent cancer rechallenge. Therefore, this study demonstrates that sequential PDT and PTT using Gd-Ce6@SWNHs under moderate conditions elicits cooperative and long-lasting antitumor immune responses, which are promising for the treatment of patients with advanced metastatic cancers.

11.
Chemosphere ; 225: 282-287, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30877922

RESUMEN

A novel competitive electrochemical immunosensor based on Au nanodendrites (Au NDs)/silver nanoparticles (Ag NPs) @single-walled carbon nanohorns (SWCNHs) was established for sensitive determination of sulphonamides (SAs) in aquatic environments. The indirectly competitive binding system of the approach was composed of coating antigen that coated on Au NDs/glass carbon electrode (GCE), the target and primary antibody (Ab1). When Ab2@Ag NPs@SWCNHs was captured by coating antigen (Cag)- Ab1 complex, massive Ag+ will be released from electrode in the presence nitric acid (HNO3), consequently, the generated Ag+ will significantly amplify the electrochemical signal, which would be recorded by the linear sweep voltametry (LSV). Meanwhile, the used three-dimensional Au nanodendrites (Au NDs) could increase the conductivity of the electrode and the size of the active surface area to improve the antigen-loading. Under the optimal conditions, the immunosensor showed a good linear relationship for sulfamethazine (SMZ)ranged in 0.33-63.81 ng/mL with a detection limit of 0.12 ng/mL (LOD, based on 90% inhibition). In addition, the proposed approach exhibited satisfactory accuracy and precision (recoveries, 79.25-119.25%; CV, 2.14-9.58%), it can be applied for rapid analysis of the trace pollutants from environmental waters.


Asunto(s)
Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Nanopartículas del Metal , Sulfonamidas/análisis , Contaminantes Químicos del Agua/análisis , Carbono , Electrodos , Humanos , Límite de Detección
12.
Biosens Bioelectron ; 130: 166-173, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735949

RESUMEN

In this study, a dual-type responsive electrochemical biosensor was developed for the quantitative detection of α2,6-sialylated glycans (α2,6-sial-Gs), a potential biomarker of tumors. The gold nanorods (AuNRs), which exhibited great specific surface area, as well as good biocompatibility, was synthesized by the way of seed growth method. Furthermore, a biotin-streptavidin (biotin-SA) system was introduced to improve the immunoreaction efficiency. Accordingly, a label-free biosensor was fabricated based on AuNRs-SA for the quick detection of α2,6-sial-Gs by recording the signal of differential pulse voltammetry (DPV). Furthermore, to expand the ultrasensitive detection of α2,6-sial-Gs, a carboxylated single-walled carbon nanohorns/sulfur-doped platinum nanocluster (c-SWCNHs/S-PtNC) was synthesized for the first time as a novel signal label, which showed an excellent catalytic performance. The usage of c-SWCNHs/S-PtNC could significantly amplify the electrochemical signal recorded by the amperometric i-t curve. Herein, a sandwich type biosensor was constructed by combining the AuNRs-SA on the electrode and c-SWCNHs/S-PtNC (signal amplifier). The label-free biosensor possessed a linear range from 5 ng mL-1 to 5 µg mL-1 with a detection limit of 0.50 ng mL-1, and the sandwich-type biosensor possessed a wide linear range from 1 fg mL-1 to 100 ng mL-1 with a detection limit of 0.69 fg mL-1. Furthermore, the biosensor exhibited excellent recovery and stability, indicating its potential for use in actual samples.


Asunto(s)
Biomarcadores de Tumor/aislamiento & purificación , Técnicas Biosensibles , Técnicas Electroquímicas , Polisacáridos/aislamiento & purificación , Biomarcadores de Tumor/química , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Polisacáridos/química
13.
Food Chem ; 274: 8-15, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30373012

RESUMEN

In view of the significant risk of heavy metal ions on human health, effective determination method is quite urgent. Herein, a single-walled carbon nanohorns modified screen-printed electrode was proposed as a disposable electrochemical sensor. The electrochemical study reveals that the developed electrode possesses excellent electrochemical activity. By combination of bismuth film, the electrochemical sensor exhibits distinct and detached stripping peaks towards cadmium and lead. Under the optimized conditions, the linear range of the single-walled carbon nanohorns film modified electrode for both heavy metal ions varied from 1.0 to 60.0 µg L-1. The detection limit of cadmium (II) and lead (II) ions was 0.2 µg L-1 and 0.4 µg L-1. Furthermore, the determination of cadmium (II) and lead (II) ions in honey and milk samples illustrates the prepared electrochemical sensor possesses excellent practicability for determining cadmium (II) and lead (II) ions in a low levels (µg L-1).


Asunto(s)
Cadmio/análisis , Técnicas Electroquímicas/métodos , Contaminación de Alimentos/análisis , Miel/análisis , Plomo/análisis , Leche/química , Animales , Bismuto , Carbono/química , Cationes/análisis , Técnicas Electroquímicas/instrumentación , Electrodos , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Límite de Detección , Nanoestructuras/química
14.
Chemistry ; 24(49): 12827-12837, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29978545

RESUMEN

Indocyanine green (ICG) is an effective light absorber for laser-mediated photodynamic therapy. However, applications of ICG are limited due to its rapid degradation and poor photostability in water. Herein, we report the development of a multifunctional nanoplatform by coating ICG on the surface of single-walled carbon nanohorns (SWNHs) through π-π stacking, obtaining SWNH-ICGs with high solubility and stability under physiological conditions. The SWNH-ICGs could be used as a single nanoplatform to simultaneously produce satisfactory hyperthermia and reactive oxygen species under near-infrared (NIR) laser irradiation. In addition, the SWNH-ICGs not only improved the photostability of ICG in different media, but also protected it from light degradation. The SWNH-ICGs exhibited highly efficient thermal/photoacoustic (PA) imaging-guided photothermal therapy (PTT) and photodynamic therapy (PDT) effects, even under low-power laser irradiation (0.3 W cm-2 ) in vitro. Combined PTT and PDT effectively killed triple-negative breast cancer 4T1 cells, demonstrating a markedly improved and synergistic therapeutic effect compared to PTT or PDT alone. Furthermore, significant tumor growth inhibition as well as tumor cell death were observed following PTT/PDT at 808 nm laser irradiation, confirming the synergistic effects of SWNH-ICGs over free ICG in vivo. This facile and simple methodology for thermal/PA imaging-guided PTT/PDT suggests that SWNH-ICGs may serve as an effective nanoplatform for cancer therapy.


Asunto(s)
Carbono/química , Verde de Indocianina/química , Neoplasias Mamarias Animales/terapia , Nanopartículas/química , Fotoquimioterapia/métodos , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Portadores de Fármacos , Femenino , Hipertermia Inducida , Verde de Indocianina/uso terapéutico , Rayos Infrarrojos , Terapia por Luz de Baja Intensidad , Ratones , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Distribución Tisular , Ondas Ultrasónicas
15.
Nanomaterials (Basel) ; 8(6)2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799488

RESUMEN

A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 °C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via π-π and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 µg·L-1 in all cases and the inter-day precision was in the interval 7.4⁻15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%.

16.
Theranostics ; 8(7): 1966-1984, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29556368

RESUMEN

Tumor combination therapy using nano formulations with multimodal synergistic therapeutic effects shows great potential for complete ablation of tumors. However, targeting tumor metastases with nano structures is a major obstacle for therapy. Therefore, developing a combination therapy system able to target both primary tumors and their metastases at distant sites with synergistic therapy is desirable for the complete eradication of tumors. To this end, a dual chemodrug-loaded theranostic system based on single walled carbon nanohorns (SWNHs) is developed for targeting both primary breast tumors and their lung metastases. Methods: SWNHs were first modified simultaneously with poly (maleic anhydride-alt-1-octadecene) (C18PMH) and methoxypolyethyleneglycol-b-poly-D, L-lactide (mPEG-PLA) via hydrophobic-hydrophobic interactions and π-π stacking. Then cisplatin and doxorubicin (DOX) (2.9:1 molar ratio) were sequentially loaded onto the modified nanohorns in a noninterfering way. After careful examinations of the release profiles of the loaded drugs and the photothermal performance of the dual chemodrug-loaded SWNHs, termed SWNHs/C18PMH/mPEG-PLA-DOX-Pt, the dual drug chemotherapeutic and chemo-photothermal synergetic therapeutic effects on tumor cells were evaluated. Subsequently, the in vivo behavior and tumor accumulation of the drug-loaded SWNHs were studied by photoacoustic imaging (PAI). For chemo-photothermal therapy of tumors, 4T1 tumor bearing mice were intravenously injected with SWNHs/C18PMH/mPEG-PLA-DOX-Pt at a dose of 10 mg/kg b.w. (in SWNHs) and tumors were illuminated by an 808 nm laser (1W/cm2 for 5 min) 24 h post-injection. Results: DOX and cisplatin were loaded onto the modified SWNHs with high efficiency (44 wt% and 66 wt%, respectively) and released in a pH-sensitive, tandem and sustainable manner. The SWNHs/C18PMH/mPEG-PLA-DOX-Pt had a hydrodynamic diameter of 182 ± 3.2 nm, were highly stable in physiological environment, and had both dual drug chemotherapeutic (CI = 0.439) and chemo-photothermal synergistic antitumor effects (CI = 0.396) in vitro. Moreover, the dual drug-loaded SWNHs had a long blood half-life (10.9 h) and could address both the primary breast tumors and their lung metastases after intravenous administration. Consequently, chemo-photothermal combination therapy ablated the primary tumors and simultaneously eradicated the metastatic lung nodules. Conclusion: Our study demonstrates that SWNHs/C18PMH/mPEG-PLA-DOX-Pt is highly potent for chemo-photothermal combination therapy of primary tumors and cocktail chemotherapy of their metastases at a distant site.


Asunto(s)
Quimioterapia/métodos , Hipertermia Inducida/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Imagen Multimodal/métodos , Metástasis de la Neoplasia/tratamiento farmacológico , Fototerapia/métodos , Administración Intravenosa , Animales , Antineoplásicos/administración & dosificación , Carbono , Línea Celular Tumoral , Cisplatino/administración & dosificación , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Xenoinjertos , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Trasplante de Neoplasias , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
17.
ACS Appl Mater Interfaces ; 10(6): 5551-5559, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29359910

RESUMEN

Nitrogen-doped single-walled carbon nanohorns (N-SWCNHs) are porous carbon material characterized by unique horn-shape structures with high surface areas and good conductivity. Moreover, they can be mass-produced (tons/year) using a novel proprietary process technology making them an attractive material for various industrial applications. One of the applications is the encapsulation of sulfur, which turns them as promising conductive host materials for lithium-sulfur batteries. Therefore, we explore for the first time the electrochemical performance of industrially produced N-SWCNHs as a sulfur-encapsulating conductive material. Fabrication of lithium-sulfur cells based on N-SWCNHs with sulfur composite could achieve a remarkable initial gravimetric capacity of 1650 mA h g-1, namely equal to 98.5% of the theoretical capacity (1675 mA h g-1), with an exceptional sulfur content as high as 80% in weight. Using cyclic chronopotentiometry and impedance spectroscopy, we also explored the dissolution mechanism of polysulfides inside the electrolyte.

18.
J Sep Sci ; 40(16): 3343-3350, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28627742

RESUMEN

Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns.

19.
Biosens Bioelectron ; 87: 136-141, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27542086

RESUMEN

Ochratoxin A (OTA), a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins worldwide. OTA mainly exerts nephrotoxicity, immunotoxicity, mutagenicity, carcinogenicity, teratogenicity, and neurotoxicity. This paper describes a simple and sensitive aptamer/single-walled carbon nanohorn (SWCNH)-based assay for OTA detection. SWCNHs can protect DNA from DNase I cleavage. However, aptamers can be detached from the surface of SWCNHs through specific target binding, exposing them to enzymatic cleavage and releases the target for a new cycle. Cycling of targets leads to significant signal amplification and low limit of detection (LOD), resulting in a nearly 20-fold reduction in LOD for OTA assay compared with non-target recycling under the same experimental parameters. This technique responded specifically to OTA without interference from other analogues (Ochratoxin B, Ochratoxin C, warfarin, and N-acetyl-l-phenylalanine). Moreover, the application of this technique in real sample has been verified using red wine samples spiked with a series of OTA concentrations. This aptasensor offers a great practical importance in food safety and can be widely extended for detection of other toxins by replacing the sequence of the recognition aptamer.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Carcinógenos/análisis , Ocratoxinas/análisis , Vino/análisis , Aptámeros de Nucleótidos/metabolismo , Aspergillus ochraceus/química , Desoxirribonucleasa I/metabolismo , G-Cuádruplex , Límite de Detección , Nanotubos de Carbono/química , Espectrometría de Fluorescencia/métodos , Vino/microbiología
20.
Biosens Bioelectron ; 83: 347-52, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27135940

RESUMEN

A dual-signalling electrochemical approach has been developed towards aconitine based on competitive host-guest interaction by selecting methylene blue (MB) and p-sulfonated calix[8]arene functionalized single-walled carbon nanohorns (SCX8-SWCNHs) as the "reporter pair". Upon the presence of aconitine to the performed SCX8-SWCNHs·MB complex, the MB molecules are displaced by aconitine. This results in a decreased oxidation peak current of MB and the appearance of an oxidation peak of aconitine, and the changes of these signals correlate linearly with the concentration of aconitine. A linear response range of 1.00-10.00µM for aconitine with a low detection limit of 0.18µM (S/N=3) was obtained by using the proposed method. This method could be successfully utilized to detect aconitine in serum samples. This dual-signalling sensor can provide more sensitive target recognition and will have important applications in the sensitive and selective electrochemical detection of aconitine.


Asunto(s)
Aconitina/sangre , Adyuvantes Inmunológicos/sangre , Calixarenos/química , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Humanos , Límite de Detección , Nanotubos de Carbono/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA