Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; : 167332, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960056

RESUMEN

Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.

2.
Autophagy ; : 1-16, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38953305

RESUMEN

Macroautophagy, simply referred to below as autophagy, is an intracellular degradation system that is highly conserved in eukaryotes. Since the processes involved in autophagy are accompanied by membrane dynamics, RAB small GTPases, key regulators of membrane trafficking, are generally thought to regulate the membrane dynamics of autophagy. Although more than half of the mammalian RABs have been reported to be involved in canonical and selective autophagy, no consensus has been reached in regard to the role of RABs in mammalian autophagy. Here, we comprehensively analyzed a rab-knockout (KO) library of MDCK cells to reevaluate the requirement for each RAB isoform in basal and starvation-induced autophagy. The results revealed clear alteration of the MAP1LC3/LC3-II level in only four rab-KO cells (rab1-KO, rab2-KO, rab7a-KO, and rab14-KO cells) and identified RAB14 as a new regulator of autophagy, specifically at the autophagosome maturation step. The autophagy-defective phenotype of two of these rab-KO cells, rab2-KO and rab14-KO cells, was very mild, but double KO of rab2 and rab14 caused a severer autophagy-defective phenotype (greater LC3 accumulation than in single-KO cells, indicating an overlapping role of RAB2 and RAB14 during autophagosome maturation. We also found that RAB14 is phylogenetically similar to RAB2 and that it possesses the same properties as RAB2, i.e. autophagosome localization and interaction with the HOPS subunits VPS39 and VPS41. Our findings suggest that RAB2 and RAB14 overlappingly regulate the autophagosome maturation step through recruitment of the HOPS complex to the autophagosome.Abbreviation: AID2: auxin-inducible degron 2; ATG: autophagy related; BafA1: bafilomycin A1; CKO: conditional knockout; EBSS: Earle's balanced salt solution; EEA1: early endosome antigen 1; HOPS: homotypic fusion and protein sorting; HRP: horseradish peroxidase; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; MDCK: Madin-Darby canine kidney; mAb: monoclonal antibody; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; 5-Ph-IAA: 5-phenyl-indole-3-acetic acid; pAb: polyclonal antibody; siRNA: small interfering RNA; SNARE: soluble NSF-attachment protein receptor; TF: transferrin; WT: wild-type.

3.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836877

RESUMEN

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Asunto(s)
Legionella pneumophila , Fagosomas , Proteínas SNARE , Ubiquitinación , Proteínas de Unión al GTP rab , Legionella pneumophila/metabolismo , Humanos , Fagosomas/metabolismo , Fagosomas/microbiología , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Vacuolas/metabolismo , Vacuolas/microbiología , Células HEK293 , Ratones , Proteínas de Unión a GTP rab7/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Retículo Endoplásmico/metabolismo
4.
Front Oncol ; 14: 1376831, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774409

RESUMEN

Background: Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZ-binding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods: MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results: TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB-231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-ß treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion: TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.

5.
Vet Res ; 55(1): 68, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807225

RESUMEN

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Liberación del Virus , Proteínas de Unión al GTP rab , Animales , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Porcinos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Ratones , Seudorrabia/virología , Ensamble de Virus/fisiología , Enfermedades de los Porcinos/virología , Línea Celular
6.
J Biol Chem ; 300(6): 107409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796063

RESUMEN

About 18% of all human cancers carry a mutation in the KRAS gene making it among the most sought-after anticancer targets. However, mutant KRas protein has proved remarkably undruggable. The recent approval of the first generation of RAS inhibitors therefore marks a seminal milestone in the history of cancer research. It also raises the predictable challenges of limited drug efficacies and acquired resistance. Hence, new approaches that improve our understanding of the tumorigenic mechanisms of oncogenic RAS within more physiological settings continue to be essential. Here, we have used the near-diploid hTERT RPE-1 cells to generate isogenic cell lines in which one of the endogenous KRAS alleles carries an oncogenic KRAS mutation at glycine 12. Cells with a KRASG12V/+, KRASG12C/+, or KRASG12D/+ genotype, together with WT KRASG12G(WT)/+ cells, reveal that oncogenic KRAS.G12X mutations increase cell proliferation rate and cell motility and reduced focal adhesions in KRASG12V/+ cells. Epidermal growth factor -induced phosphorylation of ERK and AKT was comparable between KRASG12V/+, KRASG12C/+, KRASG12D/+, and KRASG12G(WT)/+ cells. Interestingly, KRASG12X/+ cells showed varying responses to distinct inhibitors with the KRASG12V/+ and KRASG12D/+ cells more sensitive to hydroxyurea and MEK inhibitors, U0126 and trametinib, but more resistant to PI3K inhibitor, PIK-90, than the KRASG12G(WT)/+ cells. A combination of low doses of hydroxyurea and U0126 showed an additive inhibition on growth rate that was greater in KRASG12V/+ than WT cells. Collectively, these cell lines will be a valuable resource for studying oncogenic RAS signaling and developing effective anti-KRAS reagents with minimum cytotoxicity on WT cells.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Movimiento Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular/efectos de los fármacos , Telomerasa/genética , Telomerasa/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Pirimidinonas/farmacología , Piridonas/farmacología , Mutación Missense , Línea Celular , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Nitrilos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Butadienos/farmacología , Sustitución de Aminoácidos , Mutación
7.
Methods Mol Biol ; 2797: 237-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570464

RESUMEN

The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de ras GTPasa , Guanosina Trifosfato/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Hidrólisis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Espectroscopía de Resonancia Magnética , Guanosina Difosfato/metabolismo
8.
Physiol Rep ; 12(5): e15969, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453353

RESUMEN

Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.


Asunto(s)
Ácido Mevalónico , Proteínas Proto-Oncogénicas c-akt , Ratas , Masculino , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ácido Mevalónico/metabolismo , Ácido Mevalónico/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Suspensión Trasera/fisiología , Transducción de Señal/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
9.
Trends Cell Biol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38538441

RESUMEN

Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.

10.
Mol Cell Biochem ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38341833

RESUMEN

BACKGROUND: WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS: The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS: WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION: Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.

11.
FASEB J ; 38(5): e23504, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38421271

RESUMEN

The function of kidney podocytes is closely associated with actin cytoskeleton regulated by Rho small GTPases. Loss of actin-driven cell adhesions and processes is connected to podocyte dysfunction, proteinuria, and kidney diseases. FilGAP, a GTPase-activating protein for Rho small GTPase Rac1, is abundantly expressed in kidney podocytes, and its gene is linked to diseases in a family with focal segmental glomerulosclerosis. In this study, we have studied the role of FilGAP in podocytes in vitro. Depletion of FilGAP in cultured podocytes induced loss of actin stress fibers and increased Rac1 activity. Conversely, forced expression of FilGAP increased stress fiber formation whereas Rac1 activation significantly reduced its formation. FilGAP localizes at the focal adhesion (FA), an integrin-based protein complex closely associated with stress fibers, that mediates cell-extracellular matrix (ECM) adhesion, and FilGAP depletion decreased FA formation and impaired attachment to the ECM. Moreover, in unique podocyte cell cultures capable of inducing the formation of highly organized processes including major processes and foot process-like projections, FilGAP depletion or Rac1 activation decreased the formation of these processes. The reduction of FAs and process formations in FilGAP-depleted podocyte cells was rescued by inhibition of Rac1 or P21-activated kinase 1 (PAK1), a downstream effector of Rac1, and PAK1 activation inhibited their formations. Thus, FilGAP contributes to both cell-ECM adhesion and process formation of podocytes by suppressing Rac1/PAK1 signaling.


Asunto(s)
Podocitos , Actinas , Riñón , Proteínas Activadoras de GTPasa/genética , Matriz Extracelular
12.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408251

RESUMEN

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Asunto(s)
Euryarchaeota , Vesículas Extracelulares , Haloferax volcanii , Proteínas de Unión al GTP Monoméricas , Euryarchaeota/genética , Archaea/genética , ARN , Haloferax volcanii/genética , Vesículas Extracelulares/genética
13.
Cell Mol Biol Lett ; 29(1): 27, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383288

RESUMEN

BACKGROUND: The R-RAS2 is a small GTPase highly similar to classical RAS proteins at the regulatory and signaling levels. The high evolutionary conservation of R-RAS2, its links to basic cellular processes and its role in cancer, make R-RAS2 an interesting research topic. To elucidate the evolutionary history of R-RAS proteins, we investigated and compared structural and functional properties of ancestral type R-RAS protein with human R-RAS2. METHODS: Bioinformatics analysis were used to elucidate the evolution of R-RAS proteins. Intrinsic GTPase activity of purified human and sponge proteins was analyzed with GTPase-GloTM Assay kit. The cell model consisted of human breast cancer cell lines MCF-7 and MDA-MB-231 transiently transfected with EsuRRAS2-like or HsaRRAS2. Biological characterization of R-RAS2 proteins was performed by Western blot on whole cell lysates or cell adhesion protein isolates, immunofluorescence and confocal microscopy, MTT test, colony formation assay, wound healing and Boyden chamber migration assays. RESULTS: We found that the single sponge R-RAS2-like gene/protein probably reflects the properties of the ancestral R-RAS protein that existed prior to duplications during the transition to Bilateria, and to Vertebrata. Biochemical characterization of sponge and human R-RAS2 showed that they have the same intrinsic GTPase activity and RNA binding properties. By testing cell proliferation, migration and colony forming efficiency in MDA-MB-231 human breast cancer cells, we showed that the ancestral type of the R-RAS protein, sponge R-RAS2-like, enhances their oncogenic potential, similar to human R-RAS2. In addition, sponge and human R-RAS2 were not found in focal adhesions, but both homologs play a role in their regulation by increasing talin1 and vinculin. CONCLUSIONS: This study suggests that the ancestor of all animals possessed an R-RAS2-like protein with oncogenic properties similar to evolutionarily more recent versions of the protein, even before the appearance of true tissue and the origin of tumors. Therefore, we have unraveled the evolutionary history of R-RAS2 in metazoans and improved our knowledge of R-RAS2 properties, including its structure, regulation and function.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al GTP Monoméricas , Animales , Femenino , Humanos , Neoplasias de la Mama/genética , Proliferación Celular , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transducción de Señal
14.
J Biochem ; 176(1): 11-21, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38366640

RESUMEN

The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.


Asunto(s)
Proteínas ras , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Luz , Escherichia coli/metabolismo , Escherichia coli/genética , Procesos Fotoquímicos
15.
Mol Biol Rep ; 51(1): 141, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236467

RESUMEN

Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.


Asunto(s)
Neoplasias , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/genética , Neoplasias/genética
16.
Mol Biol Rep ; 51(1): 106, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227057

RESUMEN

BACKGROUND: ARF (ADP-ribosylation factor) GTPases are major regulators of intracellular trafficking, and classified into 3 groups (Type I - III), among which the type I group members, ARF1 and 3, are responsible genes for neurodevelopmental disorders. METHODS: In this study, we analysed the expression of Type I ARFs ARF1-3 during mouse brain development using biochemical and morphological methods. RESULTS: Western blotting analyses revealed that ARF1-3 are weakly expressed in the mouse brain at embryonic day 13 and gradually increase until postnatal day 30. ARF1-3 appear to be abundantly expressed in various telencephalon regions. Biochemical fractionation studies detected ARF1-3 in the synaptosome fraction of cortical neurons containing both pre- and post-synapses, however ARF1-3 were not observed in post-synaptic compartments. In immunohistochemical analyses, ARF1-3 appeared to be distributed in the cytoplasm and dendrites of cortical and hippocampal neurons as well as in the cerebellar molecular layer including dendrites of Purkinje cells and granule cell axons. Immunofluorescence in primary cultured hippocampal neurons revealed that ARF1-3 are diffusely distributed in the cytoplasm and dendrites with partial colocalization with a pre-synaptic marker, synaptophysin. CONCLUSIONS: Overall, our results support the notion that ARF1-3 could participate in vesicle trafficking both in the dendritic shaft (excluding spines) and axon terminals (pre-synaptic compartments).


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Animales , Ratones , Factores de Ribosilacion-ADP/genética , Neuronas , Axones , Cerebelo
17.
Front Immunol ; 14: 1223653, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077328

RESUMEN

Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating ß2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and ß2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.


Asunto(s)
Integrinas , Neutrófilos , Humanos , Neutrófilos/metabolismo , Integrinas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas 14-3-3/metabolismo , Antígenos CD18/metabolismo
18.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067102

RESUMEN

Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here we show that RhoA in SCs is indispensable to have correct muscle regeneration and hypertrophy. In particular, the absence of RhoA in SCs prevents a correct SC fusion both to other RhoA-deleted SCs (regeneration context) and to growing control myofibers (hypertrophy context). We demonstrated that RhoA is dispensable for SCs proliferation and differentiation; however, RhoA-deleted SCs have an inefficient movement even if their cytoskeleton assembly is not altered. Proliferative myoblast and differentiated myotubes without RhoA display a decreased expression of Chordin, suggesting a crosstalk between these genes for myoblast fusion regulation. These findings demonstrate the importance of RhoA in SC fusion regulation and its requirement to achieve an efficient skeletal muscle homeostasis restoration.


Asunto(s)
Fusión Celular , Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Proteína de Unión al GTP rhoA , Humanos , Comunicación Celular , Hipertrofia/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/fisiología
19.
Am J Cancer Res ; 13(11): 5352-5367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058797

RESUMEN

First-generation tyrosine kinase inhibitors (TKIs) have been associated with good responses in non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR)-sensitizing mutations. However, this therapeutic strategy inevitably promotes resistance to TKIs. This study aimed to investigate the functional role and mechanism of proscillaridin A in NSCLC with or without EGFR mutations. Cellular function assays showed that proscillaridin A could inhibit cell proliferation, migration and invasion in vitro independent of EGFR mutation status. Real-time PCR of the human chromosome 17 α-satellite region revealed that proscillaridin A significantly suppressed tumour micrometastasis in vivo. In immunofluorescence experiments, we found that proscillaridin A decreased filopodia length in NSCLC cells. Furthermore, proscillaridin A also downregulated EGFR-Src-mediated cytoskeleton-related pathways, including FAK-paxillin signalling, which has been shown to promote cell filopodia formation by regulating small G-proteins. Therefore, we used the GST-PBD pull-down assay to demonstrate that proscillaridin A could decrease Cdc42 activity. Moreover, survival analyses of 591 lung adenocarcinoma patients from the GEO database indicated that the expression levels of Src and paxillin and the risk score of the gene signature based on these two factors were negatively correlated with overall survival and could be used as independent prognostic factors. In conclusion, we speculate that proscillaridin A inhibits lung cancer cell growth and motility by regulating EGFR-Src-associated pathways.

20.
FASEB J ; 37(12): e23310, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010922

RESUMEN

Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.


Asunto(s)
Actinas , Proteínas de Unión al GTP rap1 , Animales , Ratones , Actinas/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA