Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.504
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neurosurg Rev ; 47(1): 525, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223361

RESUMEN

Patients with advanced Parkinson's disease often suffer from severe gait and balance problems, impacting quality of live and persisting despite optimization of standard therapies. The aim of this review was to systematically review the efficacy of STN-DBS programming techniques in alleviating gait disturbances in patients with advanced PD. Searches were conducted in PubMed, Embase, and Lilacs databases, covering studies published until May 2024. The review identified 36 articles that explored five distinct STN-DBS techniques aimed at addressing gait and postural instability in Parkinson's patients: low-frequency stimulation, ventral STN stimulation for simultaneous substantia nigra activation, interleaving, asymmetric stimulation and a short pulse width study. Among these, 21 articles were included in the meta-analysis, which revealed significant heterogeneity among studies. Notably, low-frequency STN-DBS demonstrated positive outcomes in total UPDRS-III score and FOG-Q, especially when combined with dopaminergic therapy. The most favorable results were found for low-frequency STN stimulation. The descriptive analysis suggests that unconventional stimulation approaches may be viable for gait problems in patients who do not respond to standard therapies.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/complicaciones , Trastornos Neurológicos de la Marcha/terapia , Trastornos Neurológicos de la Marcha/etiología , Resultado del Tratamiento
2.
Artículo en Inglés | MEDLINE | ID: mdl-39225548

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus internus (GPi) is an accepted therapy for Parkinson's disease (PD) with disabling motor complications. For elderly patients with poorer cognition and postural instability, GPi has been proposed as the preferable DBS target based on expert opinion, arguing GPi-DBS may be less complicated by depression, apathy, worsened verbal fluency, and executive dysfunction, resulting in greater improvement in quality of life (QoL). However, data supporting such patient-tailored approach are lacking. OBJECTIVES: The aims were to analyze whether the DBS target influences QoL in a PD cohort and a matched subgroup of frail patients with poor cognitive status and reduced postural stability, and whether other factors affect the QoL outcomes. METHODS: In this retrospective study, we analyzed a single-center cohort of 138 PD patients who received bilateral STN-DBS (117) or GPi-DBS (21) using the mentioned approach for target selection. All patients underwent standardized clinical evaluations of motor- and nonmotor signs as well as QoL before and 1 year after surgery. RESULTS: DBS of both targets improved motor signs, dyskinesias, and pain. QoL improved without significant difference between the targets, but with a trend for greater improvement across all QoL domains in favor of the STN, even in an STN subgroup matched to the GPi group. CONCLUSION: Our results contradict the prevailing belief that GPi-DBS is superior in frail PD patients with cognitive decline and postural instability, questioning the proposed patient-tailored approach of DBS target selection. Further studies are needed for a data-driven approach.

4.
Ann Acad Med Singap ; 53(8): 481-489, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39230316

RESUMEN

Introduction: Subthalamic nucleus deep brain stimulation (STN-DBS) is a proven treatment modality for Parkinson's disease (PD), reducing dyskinesia and time spent in the "OFF" state. This study evaluates the long-term outcomes of STN-DBS in PD patients up to 10 years post-surgery in Singapore. Method: We conducted a retrospective review of Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores, activities of daily living (ADLs), disease milestones, dopaminergic drug prescriptions, and adverse events in patients before and after STN-DBS surgery. Results: A total of 94 PD patients who underwent bilateral STN-DBS were included. STN-DBS reduced time in the "OFF" state by 36.9% at 1 year (P=0.034) and 40.9% at 5 years (P=0.006). Time with dyskinesia did not significantly change. Levodopa equivalent daily dose was reduced by 35.1% by 5 years (P<0.001). MDS-UPDRS-II and III scores increased from 5 years post-DBS by 40.5% and 35.4%, respectively. Independence in ADLs decreased, though not significantly. The prevalence of frequent falls increased at 5 years. Surgery- and device-related adverse events were uncommon and generally mild. Conclusion: STN-DBS provides sustained relief from motor complications and reduced medication requirements in PD patients in Singapore. This study highlights STN-DBS as an effective treatment option, significantly enhancing the quality of life for those with PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Singapur , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Anciano , Actividades Cotidianas , Levodopa/uso terapéutico , Levodopa/administración & dosificación , Índice de Severidad de la Enfermedad , Antiparkinsonianos/uso terapéutico
5.
Basic Clin Neurosci ; 15(2): 157-164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228454

RESUMEN

Introduction: Patients in the early stages of Parkinson disease (PD) may have subtle cognitive deficits, while overt cognitive deficits are usually manifestations of late-stage PD. There is still a debate on the outcome of deep brain stimulation (DBS) on the cognitive function of PD patients. This study aimed to investigate the effect of subthalamic nucleus (STN)-DBS on the dementia of PD patients after surgery compared to medical therapy and other procedures. Methods: We searched PubMed, Scopus, Cochrane Library, and Web of Science database on October 2020, with keywords: "Deep brain stimulation," "Parkinson disease," "dementia," and "memory." Reviews, abstracts, case presentations, and letters were excluded. Results: In total, 491 studies were screened after removing the duplicates. The screening results yielded 81 articles to be screened for eligibility. Finally, 6 studies were included in this meta-analysis for synthesis. Overall, 800 patients were included in this meta-analysis, using the Mattis dementia rating scale (MDRS) and descriptive data from the articles extracted to assess global dementia. Conclusion: Our results suggest that the STN-DBS group showed a larger cognitive decline than the patients receiving the best medical treatment (BMT). However, comparing STN-DBS with globus pallidus interna stimulation and pallidotomy could not demonstrate a significant statistical effect on the global dementia of patients. More long-term studies with larger sample sizes are needed to validate current findings.

6.
J Clin Med ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124844

RESUMEN

Background/Objectives: High cognitive reserve (CR) has been shown to have beneficial effects on global cognition, cognitive decline, and risk of dementia in Parkinson's disease (PD). We evaluated the influence of CR on the long-term cognitive outcomes of patients with PD who underwent subthalamic nucleus deep brain stimulation (STN-DBS). Methods: Twenty-five patients with PD underwent neuropsychological screening using the Montreal Cognitive Assessment (MoCA) at baseline, 1 year, and 5 years after bilateral STN-DBS. CR was assessed using the Cognitive Reserve Index questionnaire. According to CR score, patients were assigned to two different groups (LowCR group ≤ 130, HighCR group > 130). Results: Our data showed that patients in the HighCR group obtained a better performance with the MoCA total score at long-term follow-up compared to those in the LowCR group ([mean ± SE] LowCR group: 21.4 ± 1.2 vs. HighCR group: 24.5 ± 1.3, p = 0.05). The cognitive profile of the HighCR group remained unchanged over time. Conversely, the LowCR group had worse global cognition 5 years after surgery (T0: 25.3 ± 0.6 vs. T2: 21.4 ± 1.2, p = 0.02). Cognitive decline was not associated with mood, demographics, or clinical variables. Conclusions: These preliminary findings suggest that higher CR may be protective in PD cognition after STN-DBS. Specifically, a high CR may help cope with long-term decline in the context of surgical treatment. Quantifying a patient's CR could lead to more personalized medical care, tailoring postoperative support and monitoring for those at higher risk of cognitive decline.

7.
Cogn Neurodyn ; 18(4): 1849-1860, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104668

RESUMEN

There is evidence that the subthalamic nucleus (STN) and globus pallidus pars externa (GPe) involve in the development of Parkinson's disease, a neurodegenerative disorder characterized by motor and non-motor symptoms and loss of dopaminergic neurons in which the error index (EI) in firing patterns is widely used to address the related issues. Whether and how this interaction mechanism of STN and GPe affects EI in Parkinson's disease is uncertain. To account for this, we propose a kind of basal ganglia-thalamic network model associated with Parkinson's disease coupled with neurons, and investigate the effect of synaptic conductance of STN and GPe on EI in this network, as well as their internal relationship under EI as an index. The results show a relationship like a piecewise function between the error index and the slope of the state transition function of synaptic conductance from STN to GPe ( g snge ) and from GPe to STN ( g gesn ). And there is an approximate negative correlation between EI and g gesn . Increasing g snge and decreasing g gesn can improve the fidelity of thalamus information transmission and alleviate Parkinson's disease effectively. These obtained results can give some theoretical evidence that the abnormal synaptic releases of STN and GPe may be the symptoms of the development of Parkinson's disease, and further enrich the understanding of the pathogenesis and treatment mechanism of Parkinson's disease.

8.
Ann N Y Acad Sci ; 1538(1): 117-128, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39116019

RESUMEN

The neural network mediating successful response inhibition mainly includes right hemisphere activation of the pre-supplementary motor area, inferior frontal gyrus (IFG), subthalamic nucleus (STN), and caudate nucleus. However, the causal role of these regions in the inhibitory network is undefined. Five patients with Parkinson's disease were assessed prior to and after therapeutic thermal ablation of the right STN in two separate functional magnetic resonance imaging (fMRI) sessions while performing a stop-signal task. Initiation times were faster but motor inhibition with the left hand (contralateral to the lesion) was significantly impaired as evident in prolonged stop-signal reaction times. Reduced inhibition after right subthalamotomy was associated (during successful inhibition) with the recruitment of basal ganglia regions outside the established inhibitory network. They included the putamen and caudate together with the anterior cingulate cortex and IFG of the left hemisphere. Subsequent network connectivity analysis (with the seed over the nonlesioned left STN) revealed a new inhibitory network after right subthalamotomies. Our results highlight the causal role of the right STN in the neural network for motor inhibition and the possible basal ganglia mechanisms for compensation upon losing a key node of the inhibition network.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiopatología , Núcleo Subtalámico/cirugía , Masculino , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Persona de Mediana Edad , Femenino , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Anciano , Tiempo de Reacción/fisiología , Ganglios Basales/fisiopatología , Ganglios Basales/diagnóstico por imagen , Mapeo Encefálico/métodos
9.
Clin Neurol Neurosurg ; 244: 108439, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089180

RESUMEN

OBJECTIVE: Parkinson's disease (PD) as a neurodegenerative disorder characterized by a reduction in both the quantity and functionality of dopaminergic neurons. This succinctly highlights the central pathological feature of PD and its association with dopaminergic neuron degeneration, which underlies the motor and non-motor symptoms of the disease. This study aims to elucidate the nuances of apparent diffusion coefficient (ADC) changes in different cerebral regions by after the bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) surgery of PD, as well as to investigate their potential interactions with the motor and neuropsychiatric spectrum. METHODS: Patients who underwent STN-DBS surgery for PD between 2017 and 2019 were included in this study. The results of diffusion magnetic resonance imaging (MRI), Unified Parkinson Disease Rating Scale (UPDRS) III scores, Beck and Hamilton depression tests were recorded before and at the 3rd month of postoperative stimulation. The data obtained were evaluated with the Wilcoxon signed rank test. Result of the statistical tests were within the 95 % confidence interval and p values were significant below 0.05. RESULTS: Our study was conducted with a total of 13 patients, 8 men and 5 women. As a result of measurements made in a total of 32 different regions, especially in the motor and neuropsychiatric areas of the brain, an increase in ADC values was found in all areas. ADC changes of eight localizations such as left corpus callosum, right corona radiata, left corona radiata, hippocampus, right insula, left superior cerebellar peduncle, left caudate nucleus and left putamen were statistically significant. UPDRS III scores improved by 57 % (p <0.05), and Beck and Hamilton depression scores by 25 % and 33 %, respectively (p> 0.05). CONCLUSIONS: This article implicate that bilateral STN-DBS surgery potentially exerts beneficial effects on both motor and neuropsychiatric symptomatology in individuals with PD. We believe that this therapeutic mechanism is hypothesized to involve modulation of diffusion alterations within distinct cerebral tissues.


Asunto(s)
Estimulación Encefálica Profunda , Imagen de Difusión por Resonancia Magnética , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Núcleo Subtalámico/cirugía , Núcleo Subtalámico/diagnóstico por imagen , Persona de Mediana Edad , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Anciano , Resultado del Tratamiento , Adulto
10.
Brain Stimul ; 17(4): 947-957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39096961

RESUMEN

While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using functional magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examination of cell-type specific STN feedforward neural activity. Unilateral optogenetic STN DBS elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, this modulation effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetic DBS induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.


Asunto(s)
Estimulación Encefálica Profunda , Imagen por Resonancia Magnética , Optogenética , Núcleo Subtalámico , Animales , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/diagnóstico por imagen , Optogenética/métodos , Femenino , Ratas , Ratas Sprague-Dawley , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Globo Pálido/fisiología , Globo Pálido/diagnóstico por imagen
11.
Neurobiol Dis ; 200: 106649, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187210

RESUMEN

Chronic predator stress (CPS) is an important and ecologically relevant tool for inducing anhedonia in animals, but the neural circuits underlying the associated neurobiological changes remain to be identified. Using cell-type-specific manipulations, we found that corticotropin-releasing hormone (CRH) neurons in the medial subthalamic nucleus (mSTN) enhance struggle behaviors in inescapable situations and lead to anhedonia, predominately through projections to the external globus pallidus (GPe). Recordings of in vivo neuronal activity revealed that CPS distorted mSTN-CRH neuronal responsivity to negative and positive stimuli, which may underlie CPS-induced behavioral despair and anhedonia. Furthermore, we discovered presynaptic inputs from the bed nucleus of the stria terminalis (BNST) to mSTN-CRH neurons projecting to the GPe that were enhanced following CPS, and these inputs may mediate such behaviors. This study identifies a neurocircuitry that co-regulates escape response and anhedonia in response to predator stress. This new understanding of the neural basis of defensive behavior in response to predator stress will likely benefit our understanding of neuropsychiatric diseases.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39127889

RESUMEN

OBJECTIVE: The effects of stimulation frequency on verbal fluency (VF) following subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not well understood. The present study examines the impact stimulation frequency has on VF following bilateral STN-DBS in PD. METHODS: Prospective study of 38 consecutive patients with PD with low frequency STN-DBS (LFS) (n = 10) and high frequency STN-DBS (HFS) (n = 14), and a non-operated PD control group consisting of patients with fluctuating response to dopaminergic medication (n = 14) homogeneous in age, education, disease duration, and global cognitive function. Patients were evaluated on VF tasks (letter, semantic, action verbs, alternating). A one-way analysis of variance (ANOVA) was conducted to assess distinctions between groups. Pre- and post-surgical comparisons of fluencies were performed for operated groups. A mixed ANOVA was applied to the data to evaluate the interaction between treatment (HFS vs. LFS) and time (pre- vs. post-surgery). Strategy use (clustering and switching) was evaluated. RESULTS: Semantic and letter fluency performance revealed significant differences between HFS and LFS groups. Pre- and post-surgical comparisons revealed HFS negatively affected letter, semantic, and action fluencies, but LFS had no effect on VF. No interaction effect or main effect of treatment was found. Main effect of time was significant for semantic and action fluencies indicating a decrease in postoperative fluency performance. Patients with LFS produced larger average cluster sizes than patients with HFS. CONCLUSION: LFS may be less detrimental to VF, but these findings suggest that VF decline following STN-DBS is not caused by stimulation frequency alone.

13.
Elife ; 132024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984395

RESUMEN

Subpopulations of neurons in the subthalamic nucleus have distinct activity patterns that relate to the three hypotheses of the Drift Diffusion Model.


Asunto(s)
Neuronas , Núcleo Subtalámico , Núcleo Subtalámico/fisiología , Neuronas/fisiología , Humanos , Animales , Modelos Neurológicos
14.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39001075

RESUMEN

INTRODUCTION: The current approach to assessing bradykinesia in Parkinson's Disease relies on the Unified Parkinson's Disease Rating Scale (UPDRS), which is a numeric scale. Inertial sensors offer the ability to probe subcomponents of bradykinesia: motor speed, amplitude, and rhythm. Thus, we sought to investigate the differential effects of high-frequency compared to low-frequency subthalamic nucleus (STN) deep brain stimulation (DBS) on these quantified facets of bradykinesia. METHODS: We recruited advanced Parkinson's Disease subjects with a chronic bilateral subthalamic nucleus (STN) DBS implantation to a single-blind stimulation trial where each combination of medication state (OFF/ON), electrode contacts, and stimulation frequency (60 Hz/180 Hz) was assessed. The Kinesia One sensor system was used to measure upper limb bradykinesia. For each stimulation trial, subjects performed extremity motor tasks. Sensor data were recorded continuously. We identified STN DBS parameters that were associated with improved upper extremity bradykinesia symptoms using a mixed linear regression model. RESULTS: We recruited 22 subjects (6 females) for this study. The 180 Hz STN DBS (compared to the 60 Hz STN DBS) and dopaminergic medications improved all subcomponents of upper extremity bradykinesia (motor speed, amplitude, and rhythm). For the motor rhythm subcomponent of bradykinesia, ventral contacts yielded improved symptom improvement compared to dorsal contacts. CONCLUSION: The differential impact of high- and low-frequency STN DBS on the symptoms of bradykinesia may advise programming for these patients but warrants further investigation. Wearable sensors represent a valuable addition to the armamentarium that furthers our ability to conduct objective, quantitative clinical assessments.


Asunto(s)
Estimulación Encefálica Profunda , Hipocinesia , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/instrumentación , Hipocinesia/terapia , Hipocinesia/fisiopatología , Núcleo Subtalámico/fisiopatología , Femenino , Masculino , Persona de Mediana Edad , Anciano
15.
Clin Anat ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076145

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is a standard treatment for Parkinson's disease (PD), with both regions exhibiting similar treatment effectiveness. However, posttreatment neuropsychiatric side effects, such as severe depression, are common, primarily due to the loss of serotonergic cells. Identifying a region with fewer serotonergic neurons could potentially reduce these side effects. This study aimed to quantify the number of serotonergic neurons in the STN and GPi. Both regions were analyzed using hematoxylin and eosin staining and immunohistochemistry. The GPi exhibited a significantly lower number and H-score of serotonergic neurons than the STN. Within the STN, the number and H-score of serotonergic neurons were higher in the medial aspect than in the lateral aspect. Three different types of neurons, large and small, were observed. In STN, large neurons were concentrated in the center and small neurons in the periphery. This distribution was not observed in GPi. In addition, the concentration of the serotonergic neurons is less in GPi. These findings suggest that the GPi may be a safer target region, potentially reducing the incidence of post-DBS depression.

16.
Brain Res ; 1841: 149128, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053685

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.


Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Dopamina , Norepinefrina , Oxidopamina , Núcleo Subtalámico , Transmisión Sináptica , Animales , Núcleo Subtalámico/metabolismo , Estimulación Encefálica Profunda/métodos , Masculino , Oxidopamina/toxicidad , Transmisión Sináptica/fisiología , Dopamina/metabolismo , Norepinefrina/metabolismo , Ratas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Neuronas Dopaminérgicas/metabolismo , Bulbo Olfatorio/metabolismo , Ratas Sprague-Dawley , Cuerpo Estriado/metabolismo , Giro Dentado/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/fisiopatología
17.
Acta Neuropathol Commun ; 12(1): 121, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085955

RESUMEN

Agyrophilic grains (AGs) are age-related limbic-predominant lesions in which four-repeat tau is selectively accumulated. Because previous methodologically heterogeneous studies have demonstrated inconsistent findings on the relationship between AGs and dementia, whether AGs affect cognitive function remains unclear. To address this question, we first comprehensively evaluated the distribution and quantity of Gallyas-positive AGs and the severity of neuronal loss in the limbic, neocortical, and subcortical regions in 30 cases of pure argyrophilic grain disease (pAGD) in Braak stages I-IV and without other degenerative diseases, and 34 control cases that had only neurofibrillary tangles with Braak stages I-IV and no or minimal Aß deposits. Then, we examined whether AGs have independent effects on neuronal loss and dementia by employing multivariate ordered logistic regression and binomial logistic regression. Of 30 pAGD cases, three were classified in diffuse form pAGD, which had evident neuronal loss not only in the limbic region but also in the neocortex and subcortical nuclei. In all 30 pAGD cases, neuronal loss developed first in the amygdala, followed by temporo-frontal cortex, hippocampal CA1, substantia nigra, and finally, the striatum and globus pallidus with the progression of Saito AG stage. In multivariate analyses of 30 pAGD and 34 control cases, the Saito AG stage affected neuronal loss in the amygdala, hippocampal CA1, temporo-frontal cortex, striatum, globus pallidus, and substantia nigra independent of the age, Braak stage, and limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) stage. In multivariate analyses of 23 pAGD and 28 control cases that lacked two or more lacunae and/or one or more large infarctions, 100 or more AGs per × 400 visual field in the amygdala (OR 10.02, 95% CI 1.12-89.43) and hippocampal CA1 (OR 12.22, 95% CI 1.70-87.81), and the presence of AGs in the inferior temporal cortex (OR 8.18, 95% CI 1.03-65.13) affected dementia independent of age, moderate Braak stages (III-IV), and LATE-NC. Given these findings, the high density of limbic AGs and the increase of AGs in the inferior temporal gyrus may contribute to the occurrence of dementia through neuronal loss, at least in cases in a low to moderate Braak stage.


Asunto(s)
Demencia , Neocórtex , Humanos , Masculino , Femenino , Anciano , Anciano de 80 o más Años , Demencia/patología , Neocórtex/patología , Sistema Límbico/patología , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Sustancia Negra/patología , Globo Pálido/patología , Enfermedades Neurodegenerativas/patología
18.
Clin Neurophysiol ; 165: 107-116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996612

RESUMEN

OBJECTIVE: Parkinson's disease (PD) patients exhibit changes in mechanisms underlying movement preparation, particularly the suppression of corticospinal excitability - termed "preparatory suppression" - which is thought to facilitate movement execution in healthy individuals. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) being an attractive treatment for advanced PD, we aimed to study the potential contribution of this nucleus to PD-related changes in such corticospinal dynamics. METHODS: On two consecutive days, we applied single-pulse transcranial magnetic stimulation to the primary motor cortex of 20 advanced PD patients treated with bilateral STN-DBS (ON vs. OFF), as well as 20 healthy control subjects. Motor-evoked potentials (MEPs) were elicited at rest or during movement preparation in an instructed-delay choice reaction time task including left- or right-hand responses. Preparatory suppression was assessed by expressing MEPs during movement preparation relative to rest. RESULTS: PD patients exhibited a deficit in preparatory suppression when it was probed on the responding hand side, particularly when this corresponded to their most-affected hand, regardless of their STN-DBS status. CONCLUSIONS: Advanced PD patients displayed a reduction in preparatory suppression which was not restored by STN-DBS. SIGNIFICANCE: The current findings confirm that PD patients lack preparatory suppression, as previously reported. Yet, the fact that this deficit was not responsive to STN-DBS calls for future studies on the neural source of this regulatory mechanism during movement preparation.


Asunto(s)
Estimulación Encefálica Profunda , Potenciales Evocados Motores , Corteza Motora , Movimiento , Enfermedad de Parkinson , Tractos Piramidales , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Masculino , Estimulación Encefálica Profunda/métodos , Femenino , Núcleo Subtalámico/fisiopatología , Persona de Mediana Edad , Tractos Piramidales/fisiopatología , Anciano , Potenciales Evocados Motores/fisiología , Movimiento/fisiología , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Tiempo de Reacción/fisiología
19.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916480

RESUMEN

BACKGROUND: Pain is a non-motor symptom that impairs quality of life in Parkinson's patients. Pathological nociceptive hypersensitivity in patients could be due to changes in the processing of somatosensory information at the level of the basal ganglia, including the subthalamic nucleus (STN), but the underlying mechanisms are not yet defined. Here, we investigated the interaction between the STN and the dorsal horn of the spinal cord (DHSC), by first examining the nature of STN neurons that respond to peripheral nociceptive stimulation and the nature of their responses under normal and pathological conditions. Next, we studied the consequences of deep brain stimulation (DBS) of the STN on the electrical activity of DHSC neurons. Then, we investigated whether the therapeutic effect of STN-DBS would be mediated by the brainstem descending pathway involving the rostral ventromedial medulla (RVM). Finally, to better understand how the STN modulates allodynia, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in the STN. METHODS: The study was carried out on the 6-OHDA rodent model of Parkinson's disease, obtained by stereotactic injection of the neurotoxin into the medial forebrain bundle of rats and mice. In these animals, we used motor and nociceptive behavioral tests, in vivo electrophysiology of STN and wide dynamic range (WDR) DHSC neurons in response to peripheral stimulation, deep brain stimulation of the STN and the selective DREADD approach. Vglut2-ires-cre mice were used to specifically target and inhibit STN glutamatergic neurons. RESULTS: STN neurons are able to detect nociceptive stimuli, encode their intensity and generate windup-like plasticity, like WDR neurons in the DHSC. These phenomena are impaired in dopamine-depleted animals, as the intensity response is altered in both spinal and subthalamic neurons. Furthermore, As with L-Dopa, STN-DBS in rats ameliorated 6-OHDA-induced allodynia, and this effect is mediated by descending brainstem projections leading to normalization of nociceptive integration in DHSC neurons. Furthermore, this therapeutic effect was reproduced by selective inhibition of STN glutamatergic neurons in Vglut2-ires-cre mice. CONCLUSION: Our study highlights the centrality of the STN in nociceptive circuits, its interaction with the DHSC and its key involvement in pain sensation in Parkinson's disease. Furthermore, our results provide for the first-time evidence that subthalamic DBS produces analgesia by normalizing the responses of spinal WDR neurons via descending brainstem pathways. These effects are due to direct inhibition, rather than activation of glutamatergic neurons in the STN or passage fibers, as shown in the DREADDs experiment.

20.
Stereotact Funct Neurosurg ; : 1-9, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934196

RESUMEN

INTRODUCTION: We present our surgical complications resulting in neurological deficit or additional surgery during 25 years of DBS of the subthalamic nucleus (STN) for Parkinson's disease (PD). METHODS: We conducted a retrospective chart review of all PD patients that received STN DBS in our DBS center between 1998 and 2023. Outcomes were complications resulting in neurological deficit or additional surgery. Potential risk factors (number of microelectrode recording tracks, age, anesthesia method, hypertension, and sex) for symptomatic intracerebral hemorrhage (ICH) were analyzed. Furthermore, lead fixation techniques were compared. RESULTS: Eight hundred PD patients (507 men, 293 women) received unilateral (n = 11) or bilateral (n = 789) implantation of STN electrodes. Neurological deficit due to ICH, edema, delirium, or infarction was seen in 8.4% of the patients (7.4% transient, 1.0% permanent). Twenty-two patients (2.8%) had a symptomatic ICH following STN DBS, for which we did not find any risk factors, and five had permanent sequelae due to ICH (0.6%). Of all patients, 18.4% required additional surgery; the proportion was reduced from 27% in the first 300 cases to 13% in the last 500 cases (p < 0.001). The infection rate was 3.5%, which decreased from 5.3% in the first 300 cases to 2.2% in the last 500 cases. The use of a lead anchoring device led to significantly less lead migrations than miniplate fixation. CONCLUSION: STN DBS leads to permanent neurological deficit in a small number of patients (1.0%), but a substantial proportion needs some additional surgical procedure after the first DBS system implantation. The risk of revision surgery was reduced over time but remained significant. These findings need to be discussed with the patient in the preoperative informed consent process in addition to the expected health benefit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA