RESUMEN
The development of telecom technology not only facilitates social interactions but also inevitably provides the breeding ground for telecom fraud crimes. However, telecom fraud detection is a challenging task as fraudsters tend to commit co-fraud and disguise themselves within the mass of benign ones. Previous approaches work by unearthing differences in calling sequential patterns between independent fraudsters, but they may ignore synergic fraud patterns and oversimplify fraudulent behaviors. Fortunately, graph-like data formed by traceable telecom interaction provides opportunities for graph neural network (GNN)-based telecom fraud detection methods. Therefore, we develop a latent synergy graph (LSG) learning-based telecom fraud detector, named LSG-FD, to model both sequential and interactive fraudulent behaviors. Specifically, LSG-FD introduces (1) a multi-view LSG extractor to reconstruct synergy relationship-oriented graphs from the meta-interaction graph based on second-order proximity assumption; (2) an LSTM-based calling behavior encoder to capture the sequential patterns from the perspective of local individuals; (3) a dual-channel based graph learning module to alleviate the disassortativity issue (caused by the camouflages of fraudsters) by incorporating the dual-channel frequency filters and the learnable controller to adaptively aggregate high- and low-frequency information from their neighbors; (4) an imbalance-resistant model trainer to remedy the graph imbalance issue by developing a label-aware sampler. Experiment results on the telecom fraud dataset and another two widely used fraud datasets have verified the effectiveness of our model.
Asunto(s)
Fraude , Aprendizaje , Humanos , Redes Neurales de la ComputaciónRESUMEN
Telecom fraud detection is of great significance in online social networks. Yet the massive, redundant, incomplete, and uncertain network information makes it a challenging task to handle. Hence, this paper mainly uses the correlation of attributes by entropy function to optimize the data quality and then solves the problem of telecommunication fraud detection with incomplete information. First, to filter out redundancy and noise, we propose an attribute reduction algorithm based on max-correlation and max-independence rate (MCIR) to improve data quality. Then, we design a rough-gain anomaly detection algorithm (MCIR-RGAD) using the idea of maximal consistent blocks to deal with missing incomplete data. Finally, the experimental results on authentic telecommunication fraud data and UCI data show that the MCIR-RGAD algorithm provides an effective solution for reducing the computation time, improving the data quality, and processing incomplete data.