Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.270
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cancer Innov ; 3(4): e122, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38948253

RESUMEN

Background: Non-small cell lung cancer (NSCLC), including the lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes, is a malignant tumor type with a poor 5-year survival rate. The identification of new powerful diagnostic biomarkers, prognostic biomarkers, and potential therapeutic targets in NSCLC is urgently required. Methods: The UCSC Xena, UALCAN, and GEO databases were used to screen and analyze differentially expressed genes, regulatory modes, and genetic/epigenetic alterations in NSCLC. The UCSC Xena database, GEO database, tissue microarray, and immunohistochemistry staining analyses were used to evaluate the diagnostic and prognostic values. Gain-of-function assays were performed to examine the roles. The ESTIMATE, TIMER, Linked Omics, STRING, and DAVID algorithms were used to analyze potential molecular mechanisms. Results: NR3C2 was identified as a potentially important molecule in NSCLC. NR3C2 is expressed at low levels in NSCLC, LUAD, and LUSC tissues, which is significantly related to the clinical indexes of these patients. Receiver operating characteristic curve analysis suggests that the altered NR3C2 expression patterns have diagnostic value in NSCLC, LUAD, and especially LUSC patients. Decreased NR3C2 expression levels can help predict poor prognosis in NSCLC and LUAD patients but not in LUSC patients. These results have been confirmed both with database analysis and real-world clinical samples on a tissue microarray. Copy number variation contributes to low NR3C2 expression levels in NSCLC and LUAD, while promoter DNA methylation is involved in its downregulation in LUSC. Two NR3C2 promoter methylation sites have high sensitivity and specificity for LUSC diagnosis with clinical application potential. NR3C2 may be a key participant in NSCLC development and progression and is closely associated with the tumor microenvironment and immune cell infiltration. NR3C2 co-expressed genes are involved in many cancer-related signaling pathways, further supporting a potentially significant role of NR3C2 in NSCLC. Conclusions: NR3C2 is a novel potential diagnostic and prognostic biomarker and therapeutic target in NSCLC.

2.
J Cell Physiol ; : e31370, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988059

RESUMEN

Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.

3.
Int J Biol Sci ; 20(9): 3302-3316, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993558

RESUMEN

Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.


Asunto(s)
Fosfohidrolasa PTEN , Enfermedad de Parkinson , Transducción de Señal , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Masculino , Ratones , Cuerpo Estriado/metabolismo , Ratones Endogámicos C57BL , Integrina alfa5/metabolismo , Integrina alfa5/genética , Sinapsis/metabolismo , Modelos Animales de Enfermedad
5.
Discov Oncol ; 15(1): 275, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980440

RESUMEN

BACKGROUND: Osteosarcoma (OS), the most common primary malignant bone tumor, predominantly affects children and young adults and is characterized by high invasiveness and poor prognosis. Despite therapeutic advancements, the survival rate remains suboptimal, indicating an urgent need for novel biomarkers and therapeutic targets. This study aimed to investigate the prognostic significance of LGMN expression and immune cell infiltration in the tumor microenvironment of OS. METHODS: We performed an integrative bioinformatics analysis utilizing the GEO and TARGET-OS databases to identify differentially expressed genes (DEGs) associated with LGMN in OS. We conducted Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to explore the biological pathways and functions. Additionally, we constructed protein-protein interaction (PPI) networks, a competing endogenous RNA (ceRNA) network, and applied the CIBERSORT algorithm to quantify immune cell infiltration. The diagnostic and prognostic values of LGMN were evaluated using the area under the receiver operating characteristic (ROC) curve and Cox regression analysis. Furthermore, we employed Consensus Clustering Analysis to explore the heterogeneity within OS samples based on LGMN expression. RESULTS: The analysis revealed significant upregulation of LGMN in OS tissues. DEGs were enriched in immune response and antigen processing pathways, suggesting LGMN's role in immune modulation within the TME. The PPI and ceRNA network analyses provided insights into the regulatory mechanisms involving LGMN. Immune cell infiltration analysis indicated a correlation between high LGMN expression and increased abundance of M2 macrophages, implicating an immunosuppressive role. The diagnostic AUC for LGMN was 0.799, demonstrating its potential as a diagnostic biomarker. High LGMN expression correlated with reduced overall survival (OS) and progression-free survival (PFS). Importantly, Consensus Clustering Analysis identified two distinct subtypes of OS, highlighting the heterogeneity and potential for personalized medicine approaches. CONCLUSIONS: Our study underscores the prognostic value of LGMN in osteosarcoma and its potential as a therapeutic target. The identification of LGMN-associated immune cell subsets and the discovery of distinct OS subtypes through Consensus Clustering Analysis provide new avenues for understanding the immunosuppressive TME of OS and may aid in the development of personalized treatment strategies. Further validation in larger cohorts is warranted to confirm these findings.

6.
Front Aging Neurosci ; 16: 1369545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988328

RESUMEN

Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current core cerebrospinal fluid (CSF) AD biomarkers, widely employed for diagnosis, require a lumbar puncture to be performed, making them impractical as screening tools. Considering the role of sleep disturbances in AD, recent research suggests quantitative sleep electroencephalography features as potential non-invasive biomarkers of AD pathology. However, quantitative analysis of comprehensive polysomnography (PSG) signals remains relatively understudied. PSG is a non-invasive test enabling qualitative and quantitative analysis of a wide range of parameters, offering additional insights alongside other biomarkers. Machine Learning (ML) gained interest for its ability to discern intricate patterns within complex datasets, offering promise in AD neuropathology detection. Therefore, this study aims to evaluate the effectiveness of a multimodal ML approach in predicting core AD CSF biomarkers. Methods: Mild-moderate AD patients were prospectively recruited for PSG, followed by testing of CSF and blood samples for biomarkers. PSG signals underwent preprocessing to extract non-linear, time domain and frequency domain statistics quantitative features. Multiple ML algorithms were trained using four subsets of input features: clinical variables (CLINVAR), conventional PSG parameters (SLEEPVAR), quantitative PSG signal features (PSGVAR) and a combination of all subsets (ALL). Cross-validation techniques were employed to evaluate model performance and ensure generalizability. Regression models were developed to determine the most effective variable combinations for explaining variance in the biomarkers. Results: On 49 subjects, Gradient Boosting Regressors achieved the best results in estimating biomarkers levels, using different loss functions for each biomarker: least absolute deviation (LAD) for the Aß42, least squares (LS) for p-tau and Huber for t-tau. The ALL subset demonstrated the lowest training errors for all three biomarkers, albeit with varying test performance. Specifically, the SLEEPVAR subset yielded the best test performance in predicting Aß42, while the ALL subset most accurately predicted p-tau and t-tau due to the lowest test errors. Conclusions: Multimodal ML can help predict the outcome of CSF biomarkers in early AD by utilizing non-invasive and economically feasible variables. The integration of computational models into medical practice offers a promising tool for the screening of patients at risk of AD, potentially guiding clinical decisions.

7.
FASEB J ; 38(13): e23809, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967126

RESUMEN

The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/ß-catenin, Hippo, TGF-ß, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.


Asunto(s)
Carcinogénesis , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/patología , Transducción de Señal , Mutación
8.
CNS Neurosci Ther ; 30(7): e14818, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946682

RESUMEN

Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3ß subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aß aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aß formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/enzimología , Precursor de Proteína beta-Amiloide/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores
9.
Mol Cell Endocrinol ; 592: 112326, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972346

RESUMEN

Activin E activates brown and beige adipocytes and has been controversially implicated as a factor that induces obesity and fatty liver. Here, we sought to address this controversial issue by producing recombinant human activin E to evaluate its effects on HB2 brown adipocytes in vitro. Activin E increased uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) mRNA expression in the adipocytes. This upregulation was suppressed by SB431542, an inhibitor of activin receptor-like kinase (Alk) TGF-ß type I receptors. SB431542 also inhibited the activin E-induced phosphorylation of Smad2/3. A promoter assay using a CAGA-Luc reporter and Alk expression vectors revealed that activin E activated the TGF-ß/activin pathway via Alk7. The upregulation of Ucp1 and Fgf21 mRNA might be mediated through Alk7 and Smad2/3 phosphorylation. Activin E is a potential stimulator of energy expenditure by activating brown adipocytes and highlights its potential as a therapeutic target for treating obesity.

10.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063036

RESUMEN

BACKGROUND: As a common soft tissue sarcoma, liposarcoma (LPS) is a heterogeneous malignant tumor derived from adipose tissue. Due to the high risk of metastasis and recurrence, the prognosis of LPS remains unfavorable. To improve clinical treatment, a robust risk prediction model is essential to evaluate the prognosis of LPS patients. METHODS: By comprehensive analysis of data derived from GEO datasets, differentially expressed genes (DEGs) were obtained. Univariate and Lasso Cox regressions were subsequently employed to reveal distant recurrence-free survival (DRFS)-associated DEGs and develop a prognostic gene signature, which was assessed by Kaplan-Meier survival and ROC curve. GSEA and immune infiltration analyses were conducted to illuminate molecular mechanisms and immune correlations of this model in LPS progression. Furthermore, a correlation analysis was involved to decipher the therapeutic significance of this model for LPS. RESULTS: A six-gene signature was developed to predict DRFS of LPS patients and showed higher precision performance in more aggressive LPS subtypes. Then, a nomogram was further established for clinical application based on this risk model. Via GSEA, the high-risk group was significantly enriched in cell cycle-related pathways. In the LPS microenvironment, neutrophils, memory B cells and resting mast cells exhibited significant differences in cell abundance between high-risk and low-risk patients. Moreover, this model was significantly correlated with therapeutic targets. CONCLUSION: A prognostic six-gene signature was developed and significantly associated with cell cycle pathways and therapeutic target genes, which could provide new insights into risk assessment of LPS progression and therapeutic strategies for LPS patients to improve their prognosis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Liposarcoma , Microambiente Tumoral , Humanos , Liposarcoma/genética , Liposarcoma/inmunología , Liposarcoma/patología , Liposarcoma/mortalidad , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Transcriptoma , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Nomogramas , Masculino , Femenino , Estimación de Kaplan-Meier , Curva ROC
11.
Transl Oncol ; 47: 102049, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964031

RESUMEN

BACKGROUND: Nuclear cap-binding protein 2 (NCBP2), as the component of the cap-binding complex, participates in a number of biological processes, including pre-mRNA splicing, transcript export, translation regulation and other gene expression steps. However, the role of NCBP2 on the tumor cells and immune microenvironment remains unclear. To systematically analyze and validate functions of NCBP2, we performed a pan-cancer analysis using multiple approaches. METHODS: The data in this study were derived from sequencing, mutation, and methylation data in the TCGA cohort, normal sample sequencing data in the GTEx project, and cell line expression profile data in the CCLE database. RESULTS: Survival analyses including the Cox proportional-hazards model and log-rank test revealed the poor prognostic role of NCBP2 in multiple tumors. We further validated the oncogenic ability of NCBP2 in prostate cancer cell lines, organoids and tumor-bearing mice. A negative correlation was observed between NCBP2 expression and immune score by the ESTIMATE algorithm. Simultaneously, the NCBP2-induced immunosuppressive microenvironment might be related to the decline in CD8+T cells and the increase in regulatory T cells and neutrophils, examined by flow cytometry experiments for NCBP2 overexpressed tumor-bearing mice. CONCLUSION: This research offered strong proof supporting NCBP2 as the prognostic marker and the therapeutic target in the future.

12.
Ann Med ; 56(1): 2382949, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39041063

RESUMEN

OBJECTIVE: To explore the complex mechanisms of keloid, new approaches have been developed by different strategies. However, conventional treatment did not significantly reduce the recurrence rate. This study aimed to identify new biomarkers and mechanisms for keloid progression through bioinformatics analyses. METHODS: In our study, microarray datasets for keloid were downloaded from the GEO database. Differentially expressed genes (DEGs) were identified by R software. Multiple bioinformatics tools were used to identify hub genes, and reverse predict upstream miRNAs and lncRNA molecules of target hub genes. Finally, the total RNA-sequencing technique and miRNA microarray were combined to validate the identified genes. RESULTS: Thirty-one DEGs were screened out and the upregulated hub gene SPP1 was finally identified, which was consistent with our RNA-sequencing analysis results and validation dataset. In addition, a ceRNA network of mRNA (SPP1)-miRNA (miR-181a-5p)-lncRNA (NEAT1, MALAT1, LINC00667, NORAD, XIST and MIR4458HG) was identified by the bioinformatics databases. The results of our miRNA microarray showed that miR-181a-5p was upregulated in keloid, also we found that the lncRNA NEAT1 could affect keloid progression by retrieving the relevant literature. CONCLUSIONS: We speculate that SPP1 is a potential candidate biomarker and therapeutic target for patients with keloid, and NEAT1/miR-181a-5p/SPP1 might be the RNA regulatory pathway that regulates keloid formation.


Identify new biomarkers in keloid, potentially improve disease diagnosis and treatment.Through a variety of bioinformatics analysis tools, we found that the miRNA pathway NEAT1/miR-181a-5p/SPP1 may participant in controlling disease progression in the keloid.Providing insight into the mechanisms of disease development in the keloid at the transcriptome level.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Queloide , MicroARNs , Osteopontina , ARN Largo no Codificante , Queloide/genética , Queloide/metabolismo , Humanos , Biología Computacional/métodos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Perfilación de la Expresión Génica , Regulación hacia Arriba , ARN Mensajero/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN
13.
J Transl Med ; 22(1): 664, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014470

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS: To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS: We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS: Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.


Asunto(s)
Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Fosfatidato Fosfatasa , Animales , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Fosfatidato Fosfatasa/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones Transgénicos , Ratones , Contracción Muscular , Terapia Molecular Dirigida , Ratones Endogámicos C57BL , Terapia Genética , Masculino
14.
Oncol Lett ; 28(3): 425, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39021735

RESUMEN

During the progression of renal cell carcinoma (RCC), tumor growth, metastasis and treatment response heterogeneity are regulated by both the tumor itself and the tumor microenvironment (TME). The aim of the present study was to investigate the role of the TME in RCC and construct a crosstalk network for clear cell RCC (ccRCC). An additional aim was to evaluate whether TNF receptor superfamily member 1A (TNFRSF1A) is a potential therapeutic target for ccRCC. Single-cell data analysis of RCC was performed using the GSE152938 dataset, focusing on key cellular components and their involvement in the ccRCC TME. Additionally, cell-cell communication was analyzed to elucidate the complex network of the ccRCC microenvironment. Analyses of data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases were performed to further mine the key TNF receptor genes, with a particular focus on the prediction and assessment of the cancer-associated features of TNFRSF1A. In addition, following the silencing of TNFRSF1A using small interfering RNA in the 786-O ccRCC cell line, a number of in vitro experiments were conducted to further investigate the cancer-promoting characteristics of TNFRSF1A. These included 5-ethynyl-2'-deoxyuridine incorporation, Cell Counting Kit-8, colony formation, Transwell, cell cycle and apoptosis assays. The TNF signaling pathway was found to have a critical role in the development of ccRCC. Based on the specific crosstalk identified between TNF and TNFRSF1A, the communication of this signaling pathway within the TME was elucidated. The results of the cellular phenotype experiments indicated that TNFRSF1A promotes the proliferation, migration and invasion of ccRCC cells. Consequently, it is proposed that targeting TNFRSF1A may disrupt tumor progression and serve as a therapeutic strategy. In conclusion, by understanding the TME and identifying significant crosstalk within the TNF signaling pathway, the potential of TNFRSF1A as a therapeutic target is highlighted. This may facilitate an advance in precision medicine and improve the prognosis for patients with RCC.

15.
Pharmacol Res ; 206: 107293, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971271

RESUMEN

Colorectal cancer (CRC) presents a complex landscape, characterized by both inter-tumor and intra-tumor heterogeneity. RUNX1, a gene implicated in modulating tumor cell growth, survival, and differentiation, remains incompletely understood regarding its impact on CRC prognosis. In our investigation, we discerned a positive correlation between elevated RUNX1 expression and aggressive phenotypes across various CRC subtypes. Notably, knockdown of RUNX1 demonstrated efficacy in restraining CRC proliferation both in vitro and in vivo, primarily through inducing apoptosis and impeding cell proliferation. Mechanistically, we unveiled a direct regulatory link between RUNX1 and cholesterol synthesis, mediated by its control over HMGCR expression. Knockdown of RUNX1 in CRC cells triggered HMGCR transcriptional activation, culminating in elevated cholesterol levels that subsequently hindered cancer progression. Clinically, heightened RUNX1 expression emerged as a prognostic marker for adverse outcomes in CRC patients. Our findings underscore the pivotal involvement of RUNX1 in CRC advancement and its potential as a therapeutic target. The unique influence of RUNX1 on cholesterol synthesis and HMGCR transcriptional regulation uncovers a novel pathway contributing to CRC progression.


Asunto(s)
Neoplasias Colorrectales , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Hidroximetilglutaril-CoA Reductasas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Animales , Masculino , Proliferación Celular , Línea Celular Tumoral , Colesterol/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Apoptosis , Persona de Mediana Edad , Ratones Endogámicos BALB C
16.
Cancer Cell Int ; 24(1): 267, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068458

RESUMEN

BACKGROUND: To explore the impact of ARGs on the prognosis of NSCLC, and its correlation with clinicopathological parameters and immune microenvironment. Preliminary research on the biological functions of CEBPA in NSCLC. METHODS: Using consensus clustering analysis to identify molecular subtypes of ARGs in NSCLC patients; employing LASSO regression and multivariate Cox analysis to select 7 prognostic risk genes and construct a prognostic risk model; validating independent prognostic factors of NSCLC using forest plot analysis; analyzing immune microenvironment correlations using ESTIMATE and ssGSEA; assessing correlations between prognostic risk genes via qPCR and Western blot in NSCLC; measuring mRNA and protein expression levels of knocked down and overexpressed CEBPA in NSCLC using CCK-8 and EdU assays; evaluating the effects of knocked down and overexpressed CEBPA on cell proliferation using Transwell experiments; examining the correlation of CEBPA with T cells and B cells using mIHC analysis. RESULTS: Consensus clustering analysis identified three molecular subtypes, suggesting significant differential expression of these ARGs in NSCLC prognosis and clinical pathological parameters. There was significant differential expression between the two risk groups in the prognostic risk model, with P < 0.001. The risk score of the prognostic risk model was also P < 0.001. CEBPA exhibited higher mRNA and protein expression levels in NSCLC cell lines. Knockdown of CEBPA significantly reduced mRNA and protein expression levels of CEBPB, YWHAZ, ABL1, and CDK1 in H1650 and A549 cells. siRNA-mediated knockdown of CEBPA markedly inhibited proliferation, migration, and invasion of NSCLC cells, whereas overexpression of CEBPA showed the opposite trend. mIHC results indicated a significant increase in CD3 + CD4+, CD3 + CD8+, and CD20 + cell counts in the high CEBPA expression group. CONCLUSIONS: The risk score of the prognostic risk model can serve as an independent prognostic factor, guiding the diagnosis and treatment of NSCLC. CEBPA may serve as a potential tumor biomarker and immune target, facilitating further exploration of the biological functions and immunological relevance in NSCLC.

17.
Mol Med Rep ; 30(3)2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38963030

RESUMEN

DNA methylation is one of the earliest and most significant epigenetic mechanisms discovered. DNA methylation refers, in general, to the addition of a methyl group to a specific base in the DNA sequence under the catalysis of DNA methyltransferase, with S­adenosine methionine as the methyl donor, via covalent bonding and chemical modifications. DNA methylation is an important factor in inducing cancer. There are different types of DNA methylation, and methylation at different sites plays different roles. It is well known that the progression of colorectal cancer (CRC) is affected by the methylation of key genes. The present review did not only discuss the potential relationship between DNA methylation and CRC but also discussed how DNA methylation affects the development of CRC by affecting key genes. Furthermore, the clinical significance of DNA methylation in CRC was highlighted, including that of the therapeutic targets and biomarkers of methylation; and the importance of DNA methylation inhibitors was discussed as a novel strategy for treatment of CRC. The present review did not only focus upon the latest research findings, but earlier reviews were also cited as references to older literature.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Epigénesis Genética , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Animales
18.
Eur J Pharmacol ; 979: 176831, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047964

RESUMEN

Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death 1 (PD-1), leading to T cell exhaustion and promoting tumor cell survival, ultimately mediating immunosuppression. While FDA-approved monoclonal antibodies targeting the PD-1/PD-L1 interaction have shown success in cancer treatment, some patients experience limited and short-lived therapeutic outcomes. Recent studies have identified PD-L1 expression not only on tumor cell surfaces but also on exosomes, with secretion pathways including both conventional and unconventional endocytosis routes, presenting a unique therapeutic opportunity. Emerging evidence suggests that exosomal PD-L1 contributes to systemic immunosuppression, potentially counteracting the effects of anti-PD-1 checkpoint therapies. However, the significance of exosomal PD-L1 in clinical cancer patients unresponsive to anti-PD-1/PD-L1 immunotherapy, as well as the factors regulating its generation, remain unclear. Moreover, the mechanisms underlying PD-L1 expression on exosomes and its regulation in cancer are yet to be fully elucidated. This review primarily focuses on the mechanisms modulating exosomal PD-L1 generation in cancer, while also outlining its involvement in immunosuppression, tumor proliferation, and response to cancer immunotherapy. Additionally, we explore the potential of exosomal PD-L1 as a cancer biomarker and therapeutic target, aiming to provide a comprehensive overview of this emerging field and its implications for cancer treatment and diagnosis.

19.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000386

RESUMEN

Cholangiocarcinoma (CCA), or bile duct cancer, is the second most common liver malignancy, with an increasing incidence in Western countries. The lack of effective treatments associated with the absence of early symptoms highlights the need to search for new therapeutic targets for CCA. Sulfatides (STs), a type of sulfoglycosphingolipids, have been found in the biliary tract, with increased levels in CCA and other types of cancer. STs are involved in protein trafficking and cell adhesion as part of the lipid rafts of the plasma membrane. We aimed to study the role of STs in CCA by the genetic targeting of GAL3ST1, an enzyme involved in ST synthesis. We used the CRISPR-Cas9 system to generate GAL3ST1-deficient TFK1 cells. GAL3ST1 KO cells showed lower proliferation and clonogenic activity and reduced glycolytic activity compared to TFK1 cells. Polarized TFK1 GAL3ST1 KO cells displayed increased transepithelial resistance and reduced permeability compared to TFK1 wt cells. The loss of GAL3ST1 showed a negative effect on growth in 30 out of 34 biliary tract cancer cell lines from the DepMap database. GAL3ST1 deficiency partially restored epithelial identity and barrier function and reduced proliferative activity in CCA cells. Sulfatide synthesis may provide a novel therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Proliferación Celular , Colangiocarcinoma , Transición Epitelial-Mesenquimal , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Humanos , Transición Epitelial-Mesenquimal/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Línea Celular Tumoral , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/deficiencia , Sulfoglicoesfingolípidos/metabolismo , Sistemas CRISPR-Cas , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología
20.
J Nutr Health Aging ; 28(9): 100325, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39083861

RESUMEN

BACKGROUND: Recent research highlights the importance of muscular strength as a key factor in physical fitness, a strong indicator of overall mortality risk, and a vital target for preventing chronic diseases. This study used a proteome-wide Mendelian randomization analysis plus colocalization analysis for low hand grip strength to explore potential therapeutic targets for muscle weakness. METHODS: We conducted two two-sample Mendelian randomization analyses from four cohorts to identify and validate the causal relationship between plasma proteins and low grip strength. We also employed bidirectional Mendelian randomization analysis with Steiger filtering, Bayesian co-localization, and phenotype scanning to detect reverse causality, thereby consolidating our Mendelian randomization findings. Downstream analyses were also undertaken of identified proteins, including knockout models, enrichment analyses, and protein-protein interaction networks. Finally, we assessed the druggability of the identified proteins. RESULTS: At Bonferroni significance (P < 6.82 × 10-5), Mendelian randomization analysis revealed that three proteins were causally associated with low grip strength. Increased MGP (OR = 0.85) and HP (OR = 0.96) decreased the risk of low grip strength, whereas elevated ART4 (OR = 1.06) increased the risk of low grip strength. None of the three proteins had reverse causality with low grip strength. Bayesian co-localization suggested that MGP shared the same variant with low grip strength (coloc.abf-PPH4 = 0.826). Further downstream analyses showed that MGP, which is highly expressed in musculoskeletal system, is a potential novel target for muscle weakness. CONCLUSIONS: The proteome-wide Mendelian randomization investigation identified three proteins associated with the risk of muscle weakness. MGP, HP, and ART4 deserve further investigation as potential therapeutic targets for muscle weakness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA