Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478112

RESUMEN

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Asunto(s)
Ciprofloxacina , Klebsiella pneumoniae , Humanos , Ciprofloxacina/farmacología , Klebsiella pneumoniae/genética , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Tobramicina/farmacología , Pruebas de Sensibilidad Microbiana
2.
Front Microbiol ; 15: 1369760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500588

RESUMEN

Ribosomes stall on truncated or otherwise damaged mRNAs. Bacteria rely on ribosome rescue mechanisms to replenish the pool of ribosomes available for translation. Trans-translation, the main ribosome-rescue pathway, uses a circular hybrid transfer-messenger RNA (tmRNA) to restart translation and label the resulting peptide for degradation. Previous studies have visualized how tmRNA and its helper protein SmpB interact with the stalled ribosome to establish a new open reading frame. As tmRNA presents the first alanine codon via a non-canonical mRNA path in the ribosome, the incoming alanyl-tRNA must rearrange the tmRNA molecule to read the codon. Here, we describe cryo-EM analyses of an endogenous Escherichia coli ribosome-tmRNA complex with tRNAAla accommodated in the A site. The flexible adenosine-rich tmRNA linker, which connects the mRNA-like domain with the codon, is stabilized by the minor groove of the canonically positioned anticodon stem of tRNAAla. This ribosome complex can also accommodate a tRNA near the E (exit) site, bringing insights into the translocation and dissociation of the tRNA that decoded the defective mRNA prior to tmRNA binding. Together, these structures uncover a key step of ribosome rescue, in which the ribosome starts translating the tmRNA reading frame.

3.
J Mol Biol ; 436(4): 168423, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185325

RESUMEN

In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fMet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entrance channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.


Asunto(s)
Bacteriófago lambda , Escherichia coli , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero , Proteínas Represoras , Subunidades Ribosómicas Grandes Bacterianas , Proteínas Reguladoras y Accesorias Virales , Escherichia coli/genética , Escherichia coli/virología , Proteínas Ribosómicas/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Proteínas Represoras/genética , Proteínas Reguladoras y Accesorias Virales/genética
4.
mBio ; 14(5): e0146123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37681945

RESUMEN

IMPORTANCE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.


Asunto(s)
Factor Tu de Elongación Peptídica , Factores de Elongación de Péptidos , Factor Tu de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Antibacterianos/farmacología , Proteínas de Unión al ARN/genética , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN de Transferencia/metabolismo
5.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37693525

RESUMEN

In bacteriophage λ lysogens, the λcI repressor is encoded by the leaderless transcript (lmRNA) initiated at the λpRM promoter. Translation is enhanced in rpsB mutants deficient in ribosomal protein uS2. Although translation initiation of lmRNA is conserved in bacteria, archaea, and eukaryotes, structural insight of a lmRNA translation initiation complex is missing. Here, we use cryo-EM to solve the structures of the uS2-deficient 70S ribosome of host E. coli mutant rpsB11 and the wild-type 70S complex with λcI lmRNA and fmet-tRNAfMet. Importantly, the uS2-deficient 70S ribosome also lacks protein bS21. The anti-Shine-Dalgarno (aSD) region is structurally supported by bS21, so that the absence of the latter causes the aSD to divert from the normal mRNA exit pathway, easing the exit of lmRNA. A π-stacking interaction between the monitor base A1493 and A(+4) of lmRNA potentially acts as a recognition signal. Coulomb charge flow, along with peristalsis-like dynamics within the mRNA entry channel due to the increased 30S head rotation caused by the absence of uS2, are likely to facilitate the propagation of lmRNA through the ribosome. These findings lay the groundwork for future research on the mechanism of translation and the co-evolution of lmRNA and mRNA that includes the emergence of a defined ribosome-binding site of the transcript.

6.
FEBS J ; 290(6): 1461-1472, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35015931

RESUMEN

The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this 'Structural Snapshot' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Microscopía por Crioelectrón , Ribosomas/metabolismo , ARN Bacteriano/química , Codón de Terminación , ARN Mensajero/metabolismo
7.
mBio ; 13(5): e0185822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154190

RESUMEN

Despite having a highly reduced genome, Chlamydia trachomatis undergoes a complex developmental cycle in which the bacteria differentiate between the following two functionally and morphologically distinct forms: the infectious, nonreplicative elementary body (EB) and the noninfectious, replicative reticulate body (RB). The transitions between EBs and RBs are not mediated by division events that redistribute intracellular proteins. Rather, both primary (EB to RB) and secondary (RB to EB) differentiation likely require bulk protein turnover. One system for targeted protein degradation is the trans-translation system for ribosomal rescue, where polypeptides stalled during translation are marked with an SsrA tag encoded by a hybrid tRNA-mRNA, tmRNA. ClpX recognizes the SsrA tag, leading to ClpXP-mediated degradation. We hypothesize that ClpX functions in chlamydial differentiation through targeted protein degradation. We found that mutation of a key residue (R230A) within the specific motif in ClpX associated with the recognition of SsrA-tagged substrates resulted in abrogated secondary differentiation while not reducing chlamydial replication or developmental cycle progression as measured by transcripts. Furthermore, inhibition of trans-translation through chemical and targeted genetic approaches also impeded chlamydial development. Knockdown of tmRNA and subsequent complementation with an allele mutated in the SsrA tag closely phenocopied the overexpression of ClpXR230A, thus suggesting that ClpX recognition of SsrA-tagged substrates plays a critical function in secondary differentiation. Taken together, these data provide mechanistic insight into the requirements for transitions between chlamydial developmental forms. IMPORTANCE Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable infectious blindness. This unique organism undergoes developmental transitions between infectious, nondividing forms and noninfectious, dividing forms. Therefore, the chlamydial developmental cycle is an attractive target for Chlamydia-specific antibiotics, which would minimize effects of broad-spectrum antibiotics on the spread of antibiotic resistance in other organisms. However, the lack of knowledge about chlamydial development on a molecular level impedes the identification of specific, druggable targets. This work describes a mechanism through which both the fundamental processes of trans-translation and proteomic turnover by ClpXP contribute to chlamydial differentiation, a critical facet of chlamydial growth and survival. Given the almost universal presence of trans-translation and ClpX in eubacteria, this mechanism may be conserved in developmental cycles of other bacterial species. Additionally, this study expands the fields of trans-translation and Clp proteases by emphasizing the functional diversity of these systems throughout bacterial evolution.


Asunto(s)
Chlamydia trachomatis , Proteómica , Chlamydia trachomatis/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Péptidos/metabolismo , Antibacterianos/metabolismo , ARN Mensajero/metabolismo , Proteínas Bacterianas/metabolismo
8.
Arch Microbiol ; 204(9): 582, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36042049

RESUMEN

Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.


Asunto(s)
Streptomyces coelicolor , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico , Ribonucleasa P/metabolismo
9.
Microorganisms ; 10(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35889057

RESUMEN

Bacillus strains are widely distributed in terrestrial and marine environments, and some of them are used as biocontrol organisms for their biofilm-formation ability. In Bacillus subtilis, biofilm formation is fine-tuned by a complex network, a clear understanding of which still requires study. In bacteria, tmRNA, encoded by the ssrA gene, catalyzes trans-translation that can rescue ribosomes stalled on mRNA transcripts lacking a functional stop codon. tmRNA also affects physiological bioprocesses in some bacteria. In this study, we constructed a ssrA mutant in B. subtilis and found that the biofilm formation in the ssrA mutant was largely impaired. Moreover, we isolated a biofilm-formation suppressor of ssrA, in which the biofilm formation was restored to a level even stronger than that in the wild type. We further performed RNAseq assays with the wild type, ssrA mutant, and suppressor of ssrA for comparisons of their transcriptomes. By analyzing the transcriptomic data, we predicted the possible functions of some differentially expressed genes (DEGs) in the tmRNA regulation of biofilm formation in B. subtilis. Finally, we found that the overexpression of two DEGs, acoA and yhjR, could restore the biofilm formation in the ssrA mutant, indicating that AcoA and YhjR were immediate regulators involved in the tmRNA regulatory web controlling biofilm formation in B. subtilis. Our data can improve the knowledge about the molecular network involved in Bacillus biofilm formation and provide new targets for manipulation of Bacillus biofilms for future investigation.

10.
Bioessays ; 44(8): e2200046, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35719031

RESUMEN

Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.


Asunto(s)
Antibacterianos , Proteínas de Unión al ARN , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
11.
Microb Physiol ; 32(1-2): 45-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100600

RESUMEN

The trans-translation process is a ribosomal rescue system for stalled ribosomes processing truncated mRNA. The genes ssrA and smpB fulfil the key functions in most bacteria, but some species have either lost these genes or the function of the ribosomal rescue system is taken over by other genes. To date, the ribosomal rescue system has not been analysed in detail for the Acholeplasmataceae. This family, in the Mollicutes class, comprises the genus Acholeplasma and the provisional taxon "Candidatus Phytoplasma". Despite their monophyletic origin, the two clades can be separated by traits such as not representing primary pathogens for acholeplasmas versus being phytopathogenic for the majority of phytoplasmas. Both taxa share reduced genomes, but only phytoplasma genomes are characterised by a remarkable level of instability and reduction. Despite the general relevance of the ribosomal rescue system, information is lacking on coding, the genomic context and pseudogenisation of smpB and ssrA and their possible application as a phylogenetic marker. Herein, we provide a comprehensive analysis of the ribosomal rescue system in members of Acholeplasmataceae. The examined Acholeplasmataceae genomes encode a ribosomal rescue system, which depends on tmRNA encoded by ssrA acting in combination with its binding protein SmpB. Conserved gene synteny is evident for smpB, while ssrA shows a less conserved genomic context. Analysis of the tmRNA sequences highlights the variability of proteolysis tag sequences and short conserved sites at the 5'- and 3'-ends. Analyses of smpB provided no hints regarding the coding of pseudogenes, but they did suggest its application as a phylogenetic marker of Acholeplasmataceae - in accordance with 16S rDNA topology. Sequence variability of smpB provides sufficient information for species assignment and phylogenetic analysis.


Asunto(s)
Acholeplasmataceae , Acholeplasmataceae/genética , Filogenia , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Ribosomas/genética
12.
RNA ; 27(11): 1390-1399, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34353925

RESUMEN

In bacteria, trans-translation is the major quality control system for rescuing stalled ribosomes. It is mediated by tmRNA, a hybrid RNA with properties of both a tRNA and a mRNA, and the small protein SmpB. Because trans-translation is absent in eukaryotes but necessary for bacterial fitness or survival, it is a promising target for the development of novel antibiotics. To facilitate screening of chemical libraries, various reliable in vitro and in vivo systems have been created for assessing trans-translational activity. However, the aim of the current work was to permit the safe and easy in vitro evaluation of trans-translation from pathogenic bacteria, which are obviously the ones we should be targeting. Based on green fluorescent protein (GFP) reassembly during active trans-translation, we have created a cell-free assay adapted to the rapid evaluation of trans-translation in ESKAPE bacteria, with 24 different possible combinations. It can be used for easy high-throughput screening of chemical compounds as well as for exploring the mechanism of trans-translation in these pathogens.


Asunto(s)
Bacterias/patogenicidad , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Técnicas In Vitro , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Ribosomas/genética
13.
Genes Cells ; 26(7): 541-550, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33971069

RESUMEN

The tmRNA (transfer messenger RNA), encoded by ssrA gene, is involved in rescuing of stalled ribosomes by a process called trans-translation. Additionally, regions of the ssrA gene (coding for tmRNA) were reported to serve as integration sites for various bacteriophages. Though variations in ssrA genes were reported, their functional relevance is less studied. In this study, we investigated the horizontal gene transfer (HGT) of ssrA among the members of Enterobacteriaceae. This was done by predicting recombination signals in ssrA gene (belonging to Enterobacteriaceae) using RDP5 (Recombination Detection Program 5). Our results revealed 7 recombination signals in ssrA gene belonging to different species. We further showed that the recombination signals were more in the domains present in the 3' end than 5' end of tmRNA. Of note, the mRNA region was reported in many recombination signals. Further, members belonging to genera Yersinia, Erwinia, Dickeya and Enterobacter were highly represented in the recombination signals. Sequence analysis revealed the presence of integration sites for different class of bacteriophages in ssrA gene. The locations of phage recognition sites are comparable with recombination signals. Taken together, our results revealed a diverse nature of HGT and recombination which possibly due to transduction mediated by phages.


Asunto(s)
Enterobacteriaceae/genética , Transferencia de Gen Horizontal , Motivos de Nucleótidos , ARN de Transferencia/genética , Recombinación Genética
14.
Front Microbiol ; 12: 652980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815344

RESUMEN

Ribosomes that become stalled on truncated or damaged mRNAs during protein synthesis must be rescued for the cell to survive. Bacteria have evolved a diverse array of rescue pathways to remove the stalled ribosomes from the aberrant mRNA and return them to the free pool of actively translating ribosomes. In addition, some of these pathways target the damaged mRNA and the incomplete nascent polypeptide chain for degradation. This review highlights the recent developments in our mechanistic understanding of bacterial ribosomal rescue systems, including drop-off, trans-translation mediated by transfer-messenger RNA and small protein B, ribosome rescue by the alternative rescue factors ArfA and ArfB, as well as Bacillus ribosome rescue factor A, an additional rescue system found in some Gram-positive bacteria, such as Bacillus subtilis. Finally, we discuss the recent findings of ribosome-associated quality control in particular bacterial lineages mediated by RqcH and RqcP. The importance of rescue pathways for bacterial survival suggests they may represent novel targets for the development of new antimicrobial agents against multi-drug resistant pathogenic bacteria.

15.
Microorganisms ; 10(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35056452

RESUMEN

Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell's energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3'-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.

16.
Access Microbiol ; 2(10): acmi000159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195973

RESUMEN

High-throughput sequencing has become a standard tool for transcriptome analysis. The depletion of overrepresented RNA species from sequencing libraries plays a key role in establishing potent and cost-efficient RNA-seq routines. Commercially available kits are known to obtain good results for the reduction of ribosomal RNA (rRNA). However, we found that the transfer-messenger RNA (tmRNA) was frequently highly abundant in rRNA-depleted samples of Pseudomonas aeruginosa , consuming up to 25 % of the obtained reads. The tmRNA fraction was particularly high in samples taken from stationary cultures. This suggests that overrepresentation of this RNA species reduces the mRNA fraction when cells are grown under challenging conditions. Here, we present an RNase-H-based depletion protocol that targets the tmRNA in addition to ribosomal RNAs. We were able to increase the mRNA fraction to 93-99% and therefore outperform not only the commercially Ribo-off kit (Vazyme) operating by the same principle but also the formerly widely used Ribo-Zero kit (Illumina). Maximizing the read share of scientifically interesting RNA species enhances the discriminatory potential of next-generation RNA-seq experiments and, therefore, can contribute to a better understanding of the transcriptomic landscape of bacterial pathogens and their used mechanisms in host infection.

17.
Elife ; 92020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33089779

RESUMEN

When ribosomes fail to complete normal translation, all cells have mechanisms to ensure degradation of the resulting partial proteins to safeguard proteome integrity. In Escherichia coli and other eubacteria, the tmRNA system rescues stalled ribosomes and adds an ssrA tag or degron to the C-terminus of the incomplete protein, which directs degradation by the AAA+ ClpXP protease. Here, we present cryo-EM structures of ClpXP bound to the ssrA degron. C-terminal residues of the ssrA degron initially bind in the top of an otherwise closed ClpX axial channel and subsequently move deeper into an open channel. For short-degron protein substrates, we show that unfolding can occur directly from the initial closed-channel complex. For longer degron substrates, our studies illuminate how ClpXP transitions from specific recognition into a nonspecific unfolding and translocation machine. Many AAA+ proteases and protein-remodeling motors are likely to employ similar multistep recognition and engagement strategies.


Asunto(s)
Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Pliegue del ARN , Proteínas de Unión al ARN/metabolismo , Microscopía por Crioelectrón , Endopeptidasa Clp/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Conformación Proteica , Proteínas de Unión al ARN/química , Ribosomas/metabolismo
18.
Elife ; 92020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32940602

RESUMEN

Similar to DNA replication, translation of the genetic code by the ribosome is hypothesized to be exceptionally sensitive to small chemical changes to its template mRNA. Here we show that the addition of common alkylating agents to growing cultures of Escherichia coli leads to the accumulation of several adducts within RNA, including N(1)-methyladenosine (m1A). As expected, the introduction of m1A to model mRNAs was found to reduce the rate of peptide bond formation by three orders of magnitude in a well-defined in vitro system. These observations suggest that alkylative stress is likely to stall translation in vivo and necessitates the activation of ribosome-rescue pathways. Indeed, the addition of alkylation agents was found to robustly activate the transfer-messenger RNA system, even when transcription was inhibited. Our findings suggest that bacteria carefully monitor the chemical integrity of their mRNA and they evolved rescue pathways to cope with its effect on translation.


Asunto(s)
Alquilantes/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Bacteriano , ARN Mensajero , Ribosomas , Alquilación , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metilmetanosulfonato/farmacología , Metilnitronitrosoguanidina/farmacología , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-32547961

RESUMEN

Small protein B(SmpB) cooperates with transfer-messenger RNA (tmRNA) for trans-translation to ensure the quality control of protein synthesis in prokaryotes. Furthermore, they regulate cell metabolism separately. According to research, SmpB functions as a transcription factor, and tmRNA acts as a small RNA. Purine pathway has been reported to be related to trimethoprim resistance, including hypoxanthine synthesis, adenosine metabolism and guanosine metabolism. Another reason of drug tolerance is the efflux pump of the bacterium. In transcriptomic data, it was shown that the expression of some related enzymes in adenosine metabolism were raised significantly in smpB deletion strain than that of wild type, which led to the differential trimethoprim resistance of Aeromonas veronii (A. veronii). Furthermore, the metabolic products of adenosine AMP, cAMP, and deoxyadenosine were accumulated significantly. However, the expressions of the enzymes related to hypoxanthine synthesis and guanosine metabolism were elevated significantly in ssrA (small stable RNA, tmRNA) deletion strain, which eventually caused an augmented metabolic product xanthine. In addition, the deletion of ssrA also affected the significant downregulations of efflux pump acrA/acrB. The minimal inhibitory concentrations (MIC) were overall decreased after the trimethoprim treatment to the wild type, ΔsmpB and ΔssrA. And the difference in sensitivity between ΔsmpB and ΔssrA was evident. The MIC of ΔsmpB was descended significantly than those of wild type and ΔssrA in M9 medium supplemented with 1 mM adenosine, illustrating that the adenosine metabolism pathway was principally influenced by SmpB. Likewise, the strain ΔssrA conferred more sensitivity than wild type and ΔsmpB in M9 medium supplemented with 1mM guanosine. By overexpressing acrA/acrB, the tolerance to trimethoprim was partially recovered in ΔssrA. These results revealed that SmpB and tmRNA acted on different branches in purine metabolism, conferring the diverse trimethoprim resistance to A. veronii. This study suggests that the trans-translation system might be an effective target in clinical treatment of A. veronii and other multi-antibiotic resistance bacteria with trimethoprim.


Asunto(s)
Aeromonas veronii , Resistencia al Trimetoprim , Aeromonas veronii/genética , Biosíntesis de Proteínas , Purinas , ARN Bacteriano/metabolismo
20.
Microb Pathog ; 145: 104226, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32353577

RESUMEN

Transfer-messenger RNA (tmRNA) is ubiquitous in bacteria, acting as the core component for the trans-translation system that contributes to label the aberrantly synthesized peptides for degradation and to release the stalled ribosomes. Deletion of tmRNA causes a variety of phenotypes related to important physiological processes in bacteria. To illustrate the molecular mechanism of the versatility of tmRNA in aquatic pathogen Aeromonas veronii, we mutated the C-terminal nucleotides of tmRNA (MutmRNA) for encoding a tag containing six histidine residues (His6tag), so as to capture and enrich the trans-translation substrates from the cell lysates through a Ni2+-NTA affinity chromatograph. The results showed that the concentrated substrates were detected as distinct and specific bands in western blotting using anti-His antibody, demonstrating that specific defective mRNAs were frequently and intensively rescued by trans-translation during the translation process in A. veronii. The substrates were analyzed by LC-MS/MS and further identified by searching a theoretically constructed database specific for A. veronii. Total of 24 potential substrates were identified, with various functions involved in metabolism, as well as structure and signal-based cellular events. Among the identified substrates, PspA and AsmA were labeled by Flag, and expressed in the presence of the modified trans-translation system in E. coli. Their labelings with MutmRNA were validated by purification through Ni2+-NTA column followed by western blotting using anti-Flag antibody. This study provided the most abundant set of endogenous targets for tmRNA in A. veronii, and facilitated further investigations about the molecular mechanism and signal pathway of tmRNA-mediated trans-translation.


Asunto(s)
Aeromonas veronii , Proteínas de Escherichia coli , Proteínas de la Membrana Bacteriana Externa , Cromatografía Liquida , Escherichia coli/genética , ARN Bacteriano , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA