Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Ophthalmic Inflamm Infect ; 14(1): 25, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836962

RESUMEN

PURPOSE: To report a case of endogenous endophthalmitis caused by the dematiaceous fungus Cladophialophora devriesii. METHODS: Observational case report and literature review. CASE PRESENTATION: A 73-year-old female with a history of chronic obstructive pulmonary disease presented with a red and painful left eye. Examination revealed anterior segment inflammation and vitritis, indicative of endophthalmitis. She underwent core vitrectomy and intravitreal injection of vancomycin and amphotericin B. The vitreous sample showed inflammatory cells and fungal hyphae, and systemic amphotericin B and itraconazole were commenced for fungal endophthalmitis. Targeted amplification of the sample for bacterial DNA (V2-V3 region of 16 S rDNA) was negative, but fungal DNA targets (ITS1 and ITS2) were present, and their sequences were consistent with Cladophialophora devriesii. Phenotypic characterisation and sequencing of ITS1 and ITS2, carried out on cultured fungus from the sample, also revealed Cladophialophora devriesii. She received repeated intravitreal injections of voriconazole, and based on the antifungal susceptibility results, her systemic medication was changed to posaconazole. After 12 months, the eye showed no signs of inflammation, and posaconazole therapy was discontinued. After 3 months without antifungal medication, the inflammation recurred, and she was restarted on antifungal therapy for an additional 20 months. Another recurrence occurred 3 months after discontinuation of treatment, and a repeat vitreous sample confirmed the presence of Cladophialophora devriesii. She was started on isavuconazole, but developed seclusio pupillae and painful secondary glaucoma. Due to the duration and severity of the infection, the eye was enucleated. Histopathology revealed persistent fungal elements at the ciliary processes and the posterior lens surface. CONCLUSIONS: This second reported case of endogenous endophthalmitis caused by Cladophialophora devriesii illustrates the role of vitreous sampling and molecular methods in diagnosis and treatment of fungal endophthalmitis. Despite early diagnosis and prolonged local and systemic antifungal therapy, it was not possible to achieve long-term control of the fungal infection.

2.
Med Chem ; 20(4): 397-413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425108

RESUMEN

INTRODUCTION: Tyrosinase is a versatile, glycosylated copper-containing oxidase enzyme that mainly catalyzes the biosynthesis of melanin in mammals. Its overexpression leads to the formation of excess melanin, resulting in hyperpigmentary skin disorders, such as dark spots, melasma, freckles, etc. Therefore, inhibition of tyrosinase is a therapeutic approach for the treatment of hyperpigmentation. METHODS: The current study focused on evaluating tyrosinase inhibitory activities of triazole derivatives 1-20, bearing different substituents on the phenyl ring. 17 derivatives have shown a potent tyrosinase inhibition with IC50 values between 1.6 to 13 µM, as compared to the standard drug, i.e., kojic acid (IC50 = 24.1 ± 0.5 µM). Particularly, compounds 11 and 15 displayed 12 times more potent inhibitory effects than the kojic acid. RESULTS: The structure-activity relationship revealed that substituting halogens at the C-4 position of the benzene ring renders remarkable anti-tyrosinase activities. Compounds 1-3 and 8 showed a competitive type of inhibition, while compounds 5, 11, and 15 showed a non-competitive mode of inhibition. Next, we performed molecular docking analyses to study the binding modes and interactions between the ligands (inhibitors) and the active site of the tyrosinase enzyme (receptor). Besides this, we have assessed the toxicity profile of inhibitors on the BJ human fibroblast cell line. CONCLUSION: The majority of the newly identified tyrosinase inhibitors were found to be noncytotoxic. The results presented herein form the basis of further studies on triazole derivatives as potential drug leads against tyrosinase-related diseases.


Asunto(s)
Inhibidores Enzimáticos , Hiperpigmentación , Monofenol Monooxigenasa , Triazoles , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Hiperpigmentación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Pironas , Enfermedades de la Piel/tratamiento farmacológico , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química
3.
J Fungi (Basel) ; 10(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38392832

RESUMEN

Plant diseases caused by pathogenic fungi or oomycetes seriously affect crop growth and the quality and yield of products. A series of novel 1,2,4-triazole derivatives containing carboxamide fragments based on amide fragments widely used in fungicides and the commercialized mefentrifluconazole were designed and synthesized. Their antifungal activities were evaluated against seven kinds of phytopathogenic fungi/oomycete. Results showed that most compounds had similar or better antifungal activities compared to mefentrifluconazole's inhibitory activity against Physalospora piricola, especially compound 6h (92%), which possessed outstanding activity. Compound 6h (EC50 = 13.095 µg/mL) showed a better effect than that of mefentrifluconazole (EC50 = 39.516 µg/mL). Compound 5j (90%) displayed outstanding anti-oomycete activity against Phytophthora capsici, with an EC50 value of 17.362 µg/mL, far superior to that of mefentrifluconazole (EC50 = 75.433 µg/mL). The result of molecular docking showed that compounds 5j and 6h possessed a stronger affinity for 14α-demethylase (CYP51). This study provides a new approach to expanding the fungicidal spectrum of 1,2,4-triazole derivatives.

4.
Eur J Med Chem ; 265: 116027, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128236

RESUMEN

The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 µM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 µM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Fluorescencia , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Triazoles/farmacología
5.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836812

RESUMEN

At present, phenolic acid derivatives and triazole derivatives have a good antifungal effect, which has attracted widespread attention. A series of novel phenolic acid triazole derivatives were synthesized, and their structures were characterized by IR, MS, NMR, and X-ray crystal diffraction. Compound methyl 4-(2-bromoethoxy)benzoate, methyl 4-(2-(1H-1,2,4-triazol-1-yl) ethoxy)benzoate, 4-(2-(1H-1,2,4-triazol-1-yl)ethoxy)benzoic acid and 4-(2-(1H-1,2,4-triazol-1-yl) ethoxy)-3-methoxybenzoic acid crystallize in the monoclinic system with space group P21/n, the monoclinic system with space group P21, the monoclinic system with space group P21 and the orthorhombic system with space group Pca21, respectively. At a concentration of 100 µg/mL and 200 µg/mL, the antifungal activity against seven plant pathogen fungi was determined. Compound methyl 4-(2-bromoethoxy)benzoate has the best inhibitory effect on Rhizoctonia solani AG1, and the inhibitory rate reached 88.6% at 200 µg/mL. The inhibitory rates of compound methyl 4-(2-(1H-1,2,4-triazol-1-yl) ethoxy)benzoate against Fusarium moniliforme and Sphaeropsis sapinea at a concentration of 200 µg/mL were 76.1% and 75.4%, respectively, which were better than that of carbendazim.

6.
J Mycol Med ; 33(4): 101437, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804566

RESUMEN

BACKGROUND: Antifungal resistance is the main health concern in the control of invasive fungal infections. This research was designed to further assess the antifungal activity of aryl-1,2,4-triazole-3-ylthio analogs of fluconazole (ATTAFs) against Candida albicans systemic candidiasis in the murine model. MATERIALS & METHODS: The murine model of systemic candidiasis was designed via the inoculation of 1 × 106 CFU of Candida albicans. The treatment dosages of 3.5 and 35 mg/kg per day were selected for ATTAFs and fluconazole, respectively. The median survival time (MST) was assayed for 30 days post-infection. The quantitative and qualitative (via histopathology staining) fungal burden was also assessed. Furthermore, immunohistochemistry and biochemistry assays were performed to monitor anti-inflammatory activity using the Cyclooxygenase-2 (Cox-2) marker and changes in serum protein levels. RESULTS: ATTAFs considerably improved the survival of the murine model (P < 0.003). Compared with fluconazole, the antifungal activity of ATTAFs and their MST showed no difference (P > 0.05). However, these compounds decreased the fungal burden in the kidneys, spleen, and liver. CONCLUSION: Our research indicates that ATTAF-1 and ATTAF-2 are effective therapeutic agents due to their fungal clearing and increasing the MST in the murine model of systemic candidiasis. Although we concluded that these components are novel and promising candidates for the management of invasive candidiasis, further studies are warranted to correlate these findings with clinical outcomes.


Asunto(s)
Candidiasis Invasiva , Fluconazol , Humanos , Animales , Ratones , Fluconazol/farmacología , Fluconazol/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/química , Azoles/farmacología , Azoles/uso terapéutico , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Candida albicans , Candidiasis Invasiva/tratamiento farmacológico , Farmacorresistencia Fúngica
7.
Mol Divers ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733243

RESUMEN

Diabetes Mellitus (DM) is the globe's common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3-triazol and 1,2,4-triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole-triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure-activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.

8.
J Enzyme Inhib Med Chem ; 38(1): 2244696, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37553905

RESUMEN

A series of novel triazole derivatives containing aryl-propanamide side chains was designed and synthesised. In vitro antifungal activity studies demonstrated that most of the compounds inhibited the growth of six human pathogenic fungi. In particular, parts of phenyl-propionamide-containing compounds had excellent, broad-spectrum antifungal activity against Candida albicans SC5314, Cryptococcus neoformans 22-21, Candida glabrata 537 and Candida parapsilosis 22-20 with MIC values in the range of ≤0.125 µg/mL-4.0 µg/mL. In addition, compounds A1, A2, A6, A12 and A15 showed inhibitory activities against fluconazole-resistant Candida albicans and Candida auris. Preliminary structure-activity relationships (SARs) are also summarised. Moreover, GC-MS analysis demonstrated that A1, A3, and A9 interfered with the C. albicans ergosterol biosynthesis pathway by inhibiting Cyp51. Molecular docking studies elucidated the binding modes of A3 and A9 with Cyp51. These compounds with low haemolytic activity and favourable ADME/T properties are promising for the development of novel antifungal agents.


Asunto(s)
Antifúngicos , Triazoles , Humanos , Antifúngicos/química , Triazoles/química , Simulación del Acoplamiento Molecular , Fluconazol/farmacología , Candida albicans , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana
9.
J Enzyme Inhib Med Chem ; 38(1): 2229070, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37381729

RESUMEN

Fifteen 1,2,4-triazole derivatives were synthesised in this study and their MIC values against Mycobacterium tuberculosis (Mtb) ranged from 2 to 32 µg/mL. Furthermore, their antimycobacterial activity was positively correlated with the KatG enzyme docking score. Among the 15 compounds, compound 4 showed the strongest bactericidal activity with an MIC of 2 µg/mL. The selectivity index of compound 4 is more than 10, indicating that the compound has low toxicity to animal cells and has the potential to become a drug. Molecular docking indicates that compound 4 can bind firmly to the Mtb KatG active site. The experimental results showed that compound 4 inhibited Mtb KatG and caused the accumulation of ROS in Mtb cells. We speculate that compound 4 causes the accumulation of ROS by inhibiting KatG, and ROS produces oxidative destruction, leading to the death of Mtb. This study provides a new idea for the development of novel anti-Mtb drugs.


Asunto(s)
Mycobacterium tuberculosis , Animales , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Triazoles/farmacología
10.
Molecules ; 28(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175218

RESUMEN

To this day, the quest to find new drugs is still a challenge due to the growing demands of patients suffering from chronic inflammatory diseases and the need for the individualization of therapy. The aim of this research was to synthesize new 1,2,4-triazole derivatives containing propanoic acid moiety and to investigate their anti-inflammatory, antibacterial and anthelmintic activity. Compounds 3a-3g were obtained in reactions of amidrazones 1a-1g with succinic anhydride. Several analyses of proton and carbon nuclear magnetic resonance (1H NMR, 13C NMR, respectively), as well as high-resolution mass spectra (HRMS), confirmed the structures of 1,2,4-triazole derivatives 3a-3g. Toxicity, antiproliferative activity and influence on cytokine release (TNF-α: Tumor Necrosis Factor-α, IL-6: Interleukin-6, IFN-γ: Interferon-γ, and IL-10: Interleukin-10) of the compounds 3a-3g were evaluated in peripheral blood mononuclear cells culture. Moreover, mitogen-stimulated cell culture was used for biological activity tests. The antimicrobial and anthelmintic activity of derivatives 3a-3g were studied against Gram-positive and Gram-negative bacterial strains and Rhabditis sp. culture. Despite the lack of toxicity, compounds 3a-3g significantly reduced the level of TNF-α. Derivatives 3a, 3c and 3e also decreased the release of IFN-γ. Taking all of the results into consideration, compounds 3a, 3c and 3e show the most beneficial anti-inflammatory effects.


Asunto(s)
Antiinfecciosos , Propionatos , Humanos , Propionatos/farmacología , Factor de Necrosis Tumoral alfa , Leucocitos Mononucleares , Antiinflamatorios/farmacología , Interleucina-6
11.
Molecules ; 28(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049866

RESUMEN

In the present study, a new series of 1,2,3-triazole derivatives was synthesized via a click one-pot reaction. The synthesized compounds were found to be active during molecular docking studies against targeted protein 1T69 by using the Molecular Operating Environment (MOE) software. The designed and synthesized compounds were characterized by using FT-IR, 1H-NMR and LC-MS spectra. The synthesized triazole moieties were further screened for their α-amylase and α-glucosidase inhibitory activities. The preliminary activity analysis revealed that all the compounds showed good inhibition activity, ranging from moderate to high depending upon their structures and concentrations and compared to the standard drug acarbose. Both in silico and in vitro analysis indicated that the synthesized triazole molecules are potent for DM type-II. Out of all the compounds, compound K-1 showed the maximum antidiabetic activity with 87.01% and 99.17% inhibition at 800 µg/mL in the α-amylase and α-glucosidase inhibition assays, respectively. Therefore these triazoles may be further used as promising molecules for development of antidiabetic compounds.


Asunto(s)
Hipoglucemiantes , alfa-Glucosidasas , Hipoglucemiantes/química , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de Glicósido Hidrolasas/química , Espectroscopía Infrarroja por Transformada de Fourier , Triazoles/farmacología , Triazoles/química , Estructura Molecular , alfa-Amilasas/metabolismo
12.
Arch Pharm (Weinheim) ; 356(6): e2200653, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36922908

RESUMEN

Vanillin is the main component of natural vanilla extract and is responsible for its flavoring properties. Besides its well-known applications as an additive in food and cosmetics, it has also been reported that vanillin can inhibit fungi of clinical interest, such as Candida spp., Cryptococcus spp., Aspergillus spp., as well as dermatophytes. Thus, the present work approaches the synthesis of a series of vanillin derivatives with 1,2,3-triazole fragments and the evaluation of their antifungal activities against Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Cryptococcus neoformans, Cryptococcus gattii, Trichophyton rubrum, and Trichophyton interdigitale strains. Twenty-two vanillin derivatives were obtained, with yields in the range of 60%-91%, from copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between two terminal alkynes prepared from vanillin and different benzyl azides. In general, the evaluated compounds showed moderate activity against the microorganisms tested, with minimum inhibitory concentration (MIC) values ranging from 32 to >512 µg mL-1 . Except for compound 3b against the C. gattii R265 strain, all vanillin derivatives showed fungicidal activity for the yeasts tested. The predicted physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties for the compounds indicated favorable profiles for drug development. In addition, a four-dimensional structure-activity relationship (4D-SAR) analysis was carried out and provided useful insights concerning the structures of the compounds and their biological profile. Finally, molecular docking calculations showed that all compounds bind favorably at the lanosterol 14α-demethylase enzyme active site with binding energies ranging from -9.1 to -12.2 kcal/mol.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Antifúngicos/química , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana
13.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675011

RESUMEN

In a basic medium, 5-Mercapto-1,2,4-triazoles pass into the thiol form, allowing their transformation into sodium salts, which, in reaction with sodium monochloroacetate, lead to sodium 5-thioacetates of 1,2,4-triazoles-3,4-disubstituted. Sulfur derivatives converted to pivalic mixed anhydrides were used as active forms in the acylation of 6-amino penicillanic acid (6-AP) to obtain new semisynthetic penicillins. They contain in the molecule, together with the ß-lactam ring, the nucleus 3-[(5-nitroindazol-1'-yl-methyl)]-4-aryl-5-mercapto-1,2,4-triazole, both contributing to an important antibacterial effect. The structure of the new antibiotics was confirmed by the results of elemental and spectral analysis (FT-IR, 1H- and 13C-NMR). The synthetic penicillins were tested for toxicological action and antibacterial activity and the obtained results were close to those for amoxicillin, the reference drug.


Asunto(s)
Penicilinas , Triazoles , Penicilinas/farmacología , Triazoles/farmacología , Triazoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología
14.
Nat Prod Res ; 37(16): 2662-2671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36194212

RESUMEN

Vanillin (1), the main constituent of vanilla species, was used as a starting natural scaffold for the synthesis of five new (2-6) and one known (7) triazole derivatives via click chemistry using the copper (I)-catalyzed azide-alkyne cycloaddition method. Vanillin and its new derivatives; 4-{1-[2-Hydroxymethyl-5-(5 methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-tetrahydro-furan-3-yl]-1H[1,2,3]triazol-4-ylmethoxy}-3-methoxy-benzaldehyde (2); [4-(4-Formyl-2methoxy-phenoxymethyl)-[1,2,3]triazol-1-yl]-acetic acid methyl ester (3); 4-[1-(4-Acetyl-phenyl)-1H-[1,2,3]triazol-4-ylmethoxy]-3-methoxy-benzaldehyde (4); 4-[4-(1-Benzyl-1H-[1,2,3]triazol-4-ylmethoxy)-3-methoxy-phenyl]-but-3-en-2-one (5); and 4-[4-(1-Benzyl-1H-[1,2,3]triazol-4-ylmethoxy)-3-methoxy-phenyl]-4-hydroxy-butan-2-one (6), as well as the previously known derivative (7) were subjected to antimicrobial, antiquorum-sensing and cytotoxic evaluation. Compounds 4-7 possessed the most notable enhancement in the anti-bacterial activity against Bacillus cereus, Pseudomonas aeruginosa and antifungal activity against Candida albicans. However, compounds 1 and 2 exhibited high antiquorum-sensing activity against Chromobacterium violaceum using catechin as a positive control. Compounds 4-7 demonstrated selective cytotoxicity against MCF-7 and HepG2 cancer cells compared to normal lung fibroblast cells (WI-38). These findings proved the usefulness of synthesis bioactive derivatives from vanillin through chemical modifications.

15.
Bioorg Med Chem Lett ; 78: 129044, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36336315

RESUMEN

In this work, a series of novel 1,2,4-triazole derivatives with selenium-containing hydrophobic side chains were designed and synthesized based on the structure of lanosterol 14α-demethylase (CYP51). All compounds were characterized by HRMS, 1H NMR and 13C NMR. Then, their antifungal activities against eight human pathogenic fungi were evaluated in vitro by testing the minimal inhibitory concentrations. The results showed that nearly all tested compounds were found to be more potent against all tested fungal strains than control drug fluconazole. Further mechanism study demonstrated that the target compounds had fungal CYP51 inhibitory activity. Meanwhile, representative compounds revealed low cytotoxic effects toward mammalian cell lines. In addition, the docking results showed that the target compounds bound to Candida albicans CYP51 in a better pattern than fluconazole, especially in the narrow hydrophobic cleft. Overall, the novel 1,2,4-triazole derivatives with selenium-containing hydrophobic side chains can be further developed for the potential treatment of invasive fungal infections.


Asunto(s)
Infecciones Fúngicas Invasoras , Selenio , Humanos , Animales , Antifúngicos/farmacología , Selenio/farmacología , Fluconazol , Triazoles/farmacología , Mamíferos
16.
Bioorg Chem ; 129: 106216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283177

RESUMEN

In order to develop new triazole derivatives, we optimized the lead compound a6 by structural modifications to obtain a series of (2R,3R)-3-((1-substituted-1H-1,2,3-triazol-4-yl) methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol, compounds 5-36. Most of the target compounds exhibited excellent in vitro antifungal activity against Candida albicans 10231 and Candida glabrata 537 with MIC ≤ 0.125 µg/mL. Of particular note, compounds 6, 22, 28, 30 and 36 were highly active against Candida neoformans 32609 with MIC ≤ 0.125 µg/mL and showed broad-spectrum antifungal activity including against fluconazole-resistant Candida auris 891. In addition, compounds 6 and 22 demonstrated inhibitory effects on filamentation in the azole-resistant C. albicans isolate. Moreover, compounds 6 and 22 were minimally toxic to HUVECs and possessed weak inhibitory effects on the human CYP3A4 and CYP2D6. SARs and docking study further indicated that ortho-substituted groups in the terminal phenyl ring can promote the compounds to improve their antifungal activity.


Asunto(s)
Antifúngicos , Triazoles , Humanos , Antifúngicos/química , Triazoles/química , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología , Candida albicans , Relación Estructura-Actividad
17.
Bioorg Chem ; 128: 106096, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35985158

RESUMEN

Acute ischemic stroke is an important cause of death and long-term disability worldwide. In this work, we have synthesized a series of derivatives with 3,5­diaryl substituent triazole scaffolds. The derivatives showed favorable protective effective in SNP-induced oxidative stress model, of which compound 5 was the most active. In vivo experiments showed that compound 5 could ameliorate neurological deficits, attenuate infarction sizes, reduce malonaldehyde (MDA) level and increase superoxide dismutase (SOD) level in middle cerebral artery occlusion (MCAO) rats. Preliminary safety evaluation showed that compound 5 exhibited low acute toxicity in BALB/c mice (LD50 greater than 1000 mg/kg). Further investigation indicated that compound 5 was able to scavenge ROS, restore mitochondrial membrane potential and protect PC12 cells from SNP-induced apoptosis. Moreover, compound 5 could initiate transcription of antioxidant response element (ARE) and induced expressions of antioxidative enzymes. Collectively, compound 5 might have the potency of treating acute ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Animales , Elementos de Respuesta Antioxidante , Apoptosis , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Ratas , Triazoles/farmacología , Triazoles/uso terapéutico
18.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014341

RESUMEN

Tannery industries are one of the extensive industrial activities which are the major source of chromium contamination in the environment. Chromium contamination has been an increasing threat to the environment and human health. Therefore, the removal of chromium ions is necessary to save human society. This study is oriented toward the preparation of a new triazole Schiff base derivatives for the remediation of chromium ions. 4,4'-((1E)-1,2-bis ((1H-1,2,4-triazol-3-yl) imino)ethane-1,2-diyl) diphenol was prepared by the interaction between 3-Amino-1H-1,2,4-triazole and 4,4'-Dihydroxybenzil. Then, the produced Schiff base underwent a phosphorylation reaction to produce the adsorbent (TIHP), which confirmed its structure via the different tools FTIR, TGA, 1HNMR, 13CNMR, GC-MS, and Phosphorus-31 nuclear magnetic resonance (31P-NMR). The newly synthesized adsorbent (TIHP) was used to remove chromium oxyanions (Cr(VI)) from an aqueous solution. The batch technique was used to test many controlling factors, including the pH of the working aqueous solution, the amount of adsorbent dose, the initial concentration of Cr(VI), the interaction time, and the temperature. The desorption behaviour of Cr(VI) changes when it is exposed to the suggested foreign ions. The maximum adsorption capacity for Cr(VI) adsorption on the new adsorbent was 307.07 mg/g at room temperature. Freundlich's isotherm model fits the adsorption isotherms perfectly. The kinetic results were well-constrained by the pseudo-second-order equation. The thermodynamic studies establish that the adsorption type was exothermic and naturally spontaneous.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cromo/química , Humanos , Concentración de Iones de Hidrógeno , Iones , Cinética , Bases de Schiff , Triazoles , Aguas Residuales , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
19.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35887444

RESUMEN

Candida albicans is the most dominant and prevalent cause of fungal infections in humans. Azoles are considered as first-line drugs for the treatment of these infections. However, their prolonged and insistent use has led to multidrug resistance and treatment failures. To overcome this, modification or derivatization of the azole ring has led to the development of new and effective antifungal molecules. In a previous study, we reported on the development of new triazole-based molecules as potential antifungal agents against Candida auris. In this study, the most potent molecules from the previous study were docked and simulated with lanosterol 14-alpha demethylase enzyme. These compounds were further evaluated for in vitro susceptibility testing against C. albicans. In silico results revealed favorable structural dynamics of the compounds, implying that the compounds would be able to effectively bind to the target enzyme, which was further manifested by the strong interaction of the test compounds with the amino acid residues of the target enzyme. In vitro studies targeting quantification of ergosterol content revealed that pta1 was the most active compound and inhibited ergosterol production by >90% in both drug-susceptible and resistant C. albicans isolates. Furthermore, RT-qPCR results revealed downregulation of ERG11 gene when C. albicans cells were treated with the test compound, which aligns with the decreased ergosterol content. In addition, the active triazole derivatives were also found to be potent inhibitors of biofilm formation. Both in silico and in vitro results indicate that these triazole derivatives have the potential to be taken to the next level of antifungal drug development.

20.
Z Naturforsch C J Biosci ; 77(11-12): 459-471, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35767726

RESUMEN

Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Venenos de Crotálidos/química , Antivenenos/farmacología , Triazoles , Hemorragia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA