Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
MethodsX ; 12: 102773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38846432

RESUMEN

In this paper, we introduce a methodology that can improve the estimations of Gross Primary Productivity (GPP) and ecosystem Respiration (Reco) processes at a regional scale. This method is based on a satellite data-driven approach which is suitable for regions like India where there exists a serious shortage of ground-based observations of biospheric carbon fluxes (e.g., Eddy Covariance (EC) flux measurements). We relied on the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance for capturing vegetation dynamics in the Light-Use Efficiency (LUE)-based vegetation model. Further, we utilised recently available satellite-based Solar-Induced Fluorescence (SIF) and other variables such as Soil Moisture (SM) and Soil Temperature (ST) to refine the predictions of GPP and Reco. The methodology involves establishing a relationship between SIF and GPP for different vegetation classes over India. The SIF-GPP relationship established across the biomes was then used to correct the GPP fluxes simulated by the LUE-based model. Similarly, the ecosystem respiration estimations by the model have undergone refinement by incorporating ST and SM information. This innovative method shows remarkable potential to improve biospheric CO2 uptake and release, especially for in situ data-constrained regions like India. • SIF-based information is introduced to a light-use efficiency-based vegetation model. • SIF-GPP relationship is established for major biomes across India. • SM and ST information is incorporated into the Reco simulations in the model.

3.
Glob Chang Biol ; 29(15): 4440-4452, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303068

RESUMEN

Dynamic Global Vegetation Models (DGVMs) provide a state-of-the-art process-based approach to study the complex interplay between vegetation and its physical environment. For example, they help to predict how terrestrial plants interact with climate, soils, disturbance and competition for resources. We argue that there is untapped potential for the use of DGVMs in ecological and ecophysiological research. One fundamental barrier to realize this potential is that many researchers with relevant expertize (ecology, plant physiology, soil science, etc.) lack access to the technical resources or awareness of the research potential of DGVMs. Here we present the Land Sites Platform (LSP): new software that facilitates single-site simulations with the Functionally Assembled Terrestrial Ecosystem Simulator, an advanced DGVM coupled with the Community Land Model. The LSP includes a Graphical User Interface and an Application Programming Interface, which improve the user experience and lower the technical thresholds for installing these model architectures and setting up model experiments. The software is distributed via version-controlled containers; researchers and students can run simulations directly on their personal computers or servers, with relatively low hardware requirements, and on different operating systems. Version 1.0 of the LSP supports site-level simulations. We provide input data for 20 established geo-ecological observation sites in Norway and workflows to add generic sites from public global datasets. The LSP makes standard model experiments with default data easily achievable (e.g., for educational or introductory purposes) while retaining flexibility for more advanced scientific uses. We further provide tools to visualize the model input and output, including simple examples to relate predictions to local observations. The LSP improves access to land surface and DGVM modelling as a building block of community cyberinfrastructure that may inspire new avenues for mechanistic ecosystem research across disciplines.


Asunto(s)
Clima , Ecosistema , Humanos , Fenómenos Fisiológicos de las Plantas , Programas Informáticos , Plantas
4.
Ecology ; 104(7): e4071, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37128704

RESUMEN

Long-distance movements are hypothesized to positively influence population size and stability of mobile species. We tested this hypothesis with a novel modeling approach in which moving herbivores interact with the environment created by a dynamic global vegetation model using highly mobile Mongolian gazelles in the eastern Mongolian grasslands as a case study. Gazelle population dynamics were modeled from 1901 to 2018 under two scenarios, one allowing free movement and one restricting movement. Gazelles were 2.2 times more abundant when they could move freely and were extirpated in 71% of the study area when mobility was restricted. Mobility resulted in greater population increases during times of abundant forage and smaller population decreases during drought. Reduced thermoregulatory costs associated with climate change, combined with an increase in vegetation biomass, increased gazelle abundance. Since high abundances often resulted in overgrazing and, thus, extirpation when movement was restricted, mobility had an important role in maintaining higher densities. The novel modeling approach shows how accounting for not just herbivore but also plant ecophysiology can improve our understanding of the population dynamics of highly mobile herbivores, in particular when examining the effects of habitat and climate change. Since the model simulates herbivores based on general physiological mechanisms that apply across large herbivores and the vegetation model can be applied globally, it is possible to adapt the model to other large-herbivore systems.


Asunto(s)
Antílopes , Animales , Antílopes/fisiología , Mamíferos , Ecosistema , Biomasa , Dinámica Poblacional , Herbivoria/fisiología
5.
Ecol Modell ; 478: 110278, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37013221

RESUMEN

With changing climate, the boreal forest could potentially migrate north and become threatened by droughts in the south. However, whether larches, the dominant tree species in eastern Siberia, can adapt to novel situations is largely unknown but is crucial for predicting future population dynamics. Exploring variable traits and trait adaptation through inheritance in an individual-based model can improve our understanding and help future projections. We updated the individual-based spatially explicit vegetation model LAVESI (Larix Vegetation Simulator), used for forest predictions in Eastern Siberia, with trait value variation and incorporated inheritance of parental values to their offspring. Forcing the model with both past and future climate projections, we simulated two areas - the expanding northern treeline and a southerly area experiencing drought. While the specific trait of 'seed weight' regulates migration, the abstract 'drought resistance' protects stands. We show that trait variation with inheritance leads to an increase in migration rate (∼ 3% area increase until 2100). The drought resistance simulations show that, under increasing stress, including adaptive traits leads to larger surviving populations (17% of threatened under RCP 4.5 (Representative Concentration Pathway)). We show that with the increase expected under the RCP 8.5 scenario vast areas (80% of the extrapolated area) of larch forest are threatened and could disappear due to drought as adaptation plays only a minor role under strong warming. We conclude that variable traits facilitate the availability of variants under environmental changes. Inheritance allows populations to adapt to environments and promote successful traits, which leads to populations that can spread faster and be more resilient, provided the changes are not too drastic in both time and magnitude. We show that trait variation and inheritance contribute to more accurate models that can improve our understanding of responses of boreal forests to global change.

6.
J Math Biol ; 85(5): 50, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36227425

RESUMEN

Vegetation patterns with a variety of structures is amazing phenomena in arid or semi-arid areas, which can identify the evolution law of vegetation and are typical signals of ecosystem functions. Many achievements have been made in this respect, yet the mechanisms of uptake-diffusion feedback on the pattern structures of vegetation is not fully understood. To well reveal the influences of parameters perturbation on the pattern formation of vegetation, we give a comprehensive analysis on a vegetation-water model in the forms of reaction-diffusion equation which is posed by Zelnik et al. (Proc Natl Acad Sci 112:12,327-12,331, 2015). We obtain the exact parameters range for stationary patterns and show the dynamical behaviors near the bifurcation point based on nonlinear analysis. It is found that the model has the properties of spot, labyrinth and gap patterns. Moreover, water diffusion rate prohibits the growth of vegetation while shading parameter promotes the increase of vegetation biomass. Our results show that gradual transitions from uniform state to gap pattern can occur for suitable value of parameters which may induce the emergence of desertification.


Asunto(s)
Clima Desértico , Ecosistema , Retroalimentación , Modelos Biológicos , Agua
7.
J Adv Model Earth Syst ; 14(2): e2021MS002676, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35860620

RESUMEN

Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901-2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges.

8.
Biology (Basel) ; 11(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625348

RESUMEN

Land use and cover changes (LUCC) have a fundamental impact on the terrestrial carbon cycle. The abandonment of cropland as a result of the collapse of the Soviet Union offers a typical case of the conversion from cropland to natural vegetation, which could have a significant effect on the terrestrial carbon cycle. Due to the inaccuracy of LUCC records, the corresponding impact on the terrestrial carbon cycle has not been well quantified. In this study, we estimated the carbon flux using the Vegetation-Global-Atmosphere-Soil (VEGAS) model over the region of Russia, Belarus and Ukraine during 1990-2017. We first optimized the LUCC input data by adjusting the Food and Agriculture Organization (FAO) data by Russian statistical data and redistributing the spatiotemporal input data from the Historical Database of the Global Environment (HYDE) to the original model. Between 1990 and 2017, the area of cropland abandonment was estimated to be 36.82 Mha, compared to 11.67 Mha estimated by FAO. At the same time, the carbon uptake from the atmosphere to the biosphere was 9.23 GtC (vs fixed cropland 8.24 and HYDE 8.25 GtC) during 1990-2017, which means by optimizing the cropland distribution data, the total carbon absorption during the abandonment process increased by 0.99 GtC. Meanwhile, the growth of the vegetation carbon pool was significantly higher than that of the soil carbon pool. Therefore, we further highlight the importance of accurate cropland distribution data in terrestrial carbon cycle simulation.

9.
Proc Natl Acad Sci U S A ; 119(20): e2101186119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533276

RESUMEN

Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate­fire­carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO2 emissions at today's levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate­carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems.


Asunto(s)
Incendios , Calentamiento Global , Carbono , Dióxido de Carbono , Cambio Climático , Demografía , Ecosistema , Humanos
10.
Environ Sci Technol ; 56(7): 3932-3940, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35298883

RESUMEN

Ozone (O3) pollution threatens global public health and damages ecosystem productivity. Droughts modulate surface O3 through meteorological processes and vegetation feedbacks. Unraveling these influences is difficult with traditional chemical transport models. Here, using an atmospheric chemistry-vegetation coupled model in combination with a suite of existing measurements, we investigate the drought impacts on global surface O3 and explore the main driving processes. Relative to the mean state, accelerated photochemical rates dominate the surface O3 enhancement during droughts except for eastern U.S. and western Europe, where reduced stomatal uptakes make comparable contributions. During 1990-2012, the simulated frequency of O3 pollution episodes in western Europe decreases greatly with a negative trend of -5.5 ± 6.6 days per decade following the reductions in anthropogenic emissions if meteorology is fixed. However, such decreased trend is weakened to -2.1 ± 3.8 days per decade, which is closer to the observed trend of -2.9 ± 1.1 days per decade when year-to-year meteorology is applied because increased droughts alone offset 43% of the effects from air pollution control. Our results highlight that more stringent controls of O3 precursors are necessary to mitigate the higher risks of O3 pollution episodes by more droughts in a warming world.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Sequías , Ecosistema , Monitoreo del Ambiente , Ozono/análisis
11.
Glob Chang Biol ; 28(2): 493-508, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644449

RESUMEN

The effect of nutrient availability on plant growth and the terrestrial carbon sink under climate change and elevated CO2 remains one of the main uncertainties of the terrestrial carbon cycle. This is partially due to the difficulty of assessing nutrient limitation at large scales over long periods of time. Consistent declines in leaf nitrogen (N) content and leaf δ15 N have been used to suggest that nitrogen limitation has increased in recent decades, most likely due to the concurrent increase in atmospheric CO2 . However, such data sets are often not straightforward to interpret due to the complex factors that contribute to the spatial and temporal variation in leaf N and isotope concentration. We use the land surface model (LSM) QUINCY, which has the unique capacity to represent N isotopic processes, in conjunction with two large data sets of foliar N and N isotope content. We run the model with different scenarios to test whether foliar δ15 N isotopic data can be used to infer large-scale N limitation and if the observed trends are caused by increasing atmospheric CO2 , changes in climate or changes in sources and magnitude of anthropogenic N deposition. We show that while the model can capture the observed change in leaf N content and predict widespread increases in N limitation, it does not capture the pronounced, but very spatially heterogeneous, decrease in foliar δ15 N observed in the data across the globe. The addition of an observation-based temporal trend in isotopic composition of N deposition leads to a more pronounced decrease in simulated leaf δ15 N. Our results show that leaf δ15 N observations cannot, on their own, be used to assess global-scale N limitation and that using such a data set in conjunction with an LSM can reveal the drivers behind the observed patterns.


Asunto(s)
Ecosistema , Nitrógeno , Ciclo del Carbono , Secuestro de Carbono , Cambio Climático , Hojas de la Planta
12.
J Ecol ; 110(10): 2288-2307, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36632361

RESUMEN

To assess the impacts of climate change on vegetation from stand to global scales, models of forest dynamics that include tree demography are needed. Such models are now available for 50 years, but the currently existing diversity of model formulations and its evolution over time are poorly documented. This hampers systematic assessments of structural uncertainties in model-based studies.We conducted a meta-analysis of 28 models, focusing on models that were used in the past five years for climate change studies. We defined 52 model attributes in five groups (basic assumptions, growth, regeneration, mortality and soil moisture) and characterized each model according to these attributes. Analyses of model complexity and diversity included hierarchical cluster analysis and redundancy analysis.Model complexity evolved considerably over the past 50 years. Increases in complexity were largest for growth processes, while complexity of modelled establishment processes increased only moderately. Model diversity was lowest at the global scale, and highest at the landscape scale. We identified five distinct clusters of models, ranging from very simple models to models where specific attribute groups are rendered in a complex manner and models that feature high complexity across all attributes.Most models in use today are not balanced in the level of complexity with which they represent different processes. This is the result of different model purposes, but also reflects legacies in model code, modelers' preferences, and the 'prevailing spirit of the epoch'. The lack of firm theories, laws and 'first principles' in ecology provides high degrees of freedom in model development, but also results in high responsibilities for model developers and the need for rigorous model evaluation. Synthesis. The currently available model diversity is beneficial: convergence in simulations of structurally different models indicates robust projections, while convergence of similar models may convey a false sense of certainty. The existing model diversity-with the exception of global models-can be exploited for improved projections based on multiple models. We strongly recommend balanced further developments of forest models that should particularly focus on establishment and mortality processes, in order to provide robust information for decisions in ecosystem management and policymaking.

13.
New Phytol ; 234(1): 21-27, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34679225

RESUMEN

Forests are a critical carbon sink and widespread tree mortality resulting from climate-induced drought stress has the potential to alter forests from a carbon sink to a source, causing a positive feedback on climate change. Process-based vegetation models aim to represent the current understanding of the underlying mechanisms governing plant physiological and ecological responses to climate. Yet model accuracy varies across scales, and regional-scale model predictive skill is frequently poor when compared with observations of drought-driven mortality. I propose a framework that leverages differences in model predictive skill across spatial scales, mismatches between model predictions and observations, and differences in the mechanisms included and absent across models to advance the understanding of the physiological and ecological processes driving observed patterns drought-driven mortality.


Asunto(s)
Sequías , Árboles , Cambio Climático , Ecosistema , Bosques , Fenómenos Fisiológicos de las Plantas , Árboles/fisiología
14.
Ecol Lett ; 25(2): 498-508, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34972244

RESUMEN

Carbon use efficiency (CUE) represents how efficient a plant is at translating carbon gains through gross primary productivity (GPP) into net primary productivity (NPP) after respiratory costs (Ra ). CUE varies across space with climate and species composition, but how CUE will respond to climate change is largely unknown due to uncertainty in Ra at novel high temperatures. We use a plant physiological model validated against global CUE observations and LIDAR vegetation canopy height data and find that model-predicted decreases in CUE are diagnostic of transitions from forests to shrubland at dry range edges. Under future climate scenarios, we show mean growing season CUE increases in core forested areas, but forest extent decreases at dry range edges, with substantial uncertainty in absolute CUE due to uncertainty in Ra . Our results highlight that future forest resilience is nuanced and controlled by multiple competing mechanisms.


Asunto(s)
Carbono , Cambio Climático , Ciclo del Carbono , Bosques , Plantas , Árboles
15.
Sci Total Environ ; 800: 149518, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34392204

RESUMEN

Accurate simulation of gross primary productivity (GPP) is essential for estimating the global carbon budget. However, GPP modeling is subject to various sources of uncertainties, among which the impacts of biases in climate forcing data have not been well quantified. Here, using a well-validated vegetation model, we compare site-level simulations using either ground-based meteorology or assimilated reanalyses to identify climate-driven uncertainties in the predicted GPP at 91 FLUXNET sites. Simulations yield the lowest root mean square errors (RMSE) in GPP relative to observations when all site-level meteorology and CO2 concentrations are used. Sensitivity tests conducted with Modern-Era Retrospective Analysis (MERRA) reanalyses increase GPP RMSE by 30%. Replacement of site-level CO2 with global annual average values provides limited contributions to these changes. In contrast, GPP uncertainties increase almost linearly with the biases in meteorology. Among all factors, photosynthetically active radiation (PAR), especially diffuse PAR, plays dominant roles in modulating GPP uncertainties. Simulations using all MERRA forcings but with site-level diffuse PAR help reduce over 50% of the climate-driven biases in GPP. Our study reveals that biases in meteorological forcings, especially the variabilities at diurnal to seasonal time scales, can induce significant uncertainties in the simulated GPP at FLUXET sites. We suggest cautions in simulating global GPP using climate reanalyses for dynamic global vegetation models and urgent improvements in climatic variability in reanalyses data, especially for diffuse radiation.


Asunto(s)
Carbono , Ecosistema , Estudios Retrospectivos , Estaciones del Año , Incertidumbre
16.
New Phytol ; 232(2): 551-566, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34228829

RESUMEN

Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61-72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Nutrientes , Plantas , Suelo
17.
New Phytol ; 231(6): 2125-2141, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34131932

RESUMEN

Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.


Asunto(s)
Ecosistema , Plantas , Cambio Climático , Hojas de la Planta , Fenómenos Fisiológicos de las Plantas
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074769

RESUMEN

The greening of the Sahara, associated with the African Humid Period (AHP) between ca. 14,500 and 5,000 y ago, is arguably the largest climate-induced environmental change in the Holocene; it is usually explained by the strengthening and northward expansion of the African monsoon in response to orbital forcing. However, the strengthened monsoon in Early to Middle Holocene climate model simulations cannot sustain vegetation in the Sahara or account for the increased humidity in the Mediterranean region. Here, we present an 18,500-y pollen and leaf-wax δD record from Lake Tislit (32° N) in Morocco, which provides quantitative reconstruction of winter and summer precipitation in northern Africa. The record from Lake Tislit shows that the northern Sahara and the Mediterranean region were wetter in the AHP because of increased winter precipitation and were not influenced by the monsoon. The increased seasonal contrast of insolation led to an intensification and southward shift of the Mediterranean winter precipitation system in addition to the intensified summer monsoon. Therefore, a winter rainfall zone must have met and possibly overlapped the monsoonal zone in the Sahara. Using a mechanistic vegetation model in Early Holocene conditions, we show that this seasonal distribution of rainfall is more efficient than the increased monsoon alone in generating a green Sahara vegetation cover, in agreement with observed vegetation. This conceptual framework should be taken into consideration in Earth system paleoclimate simulations used to explore the mechanisms of African climatic and environmental sensitivity.

19.
Glob Chang Biol ; 27(14): 3336-3349, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33910268

RESUMEN

The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants-that is, increased photosynthetic uptake of CO2 by leaves and enhanced water-use efficiency (WUE). Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture (SM) savings at large scale is poorly understood. Drylands provide a natural experimental setting to detect the CO2 fertilization effect on plant growth since foliage amount, plant water-use and photosynthesis are all tightly coupled in water-limited ecosystems. A long-term change in the response of leaf area index (LAI, a measure of foliage amount) to changes in SM is likely to stem from changing water demand of primary productivity in water-limited ecosystems and is a proxy for changes in WUE. Using 34-year satellite observations of LAI and SM over tropical and subtropical drylands, we identify that a 1% increment in SM leads to 0.15% (±0.008, 95% confidence interval) and 0.51% (±0.01, 95% confidence interval) increments in LAI during 1982-1998 and 1999-2015, respectively. The increasing response of LAI to SM has contributed 7.2% (±3.0%, 95% confidence interval) to total dryland greening during 1999-2015 compared to 1982-1998. The increasing response of LAI to SM is consistent with the CO2 fertilization effect on WUE in water-limited ecosystems, indicating that a given amount of SM has sustained greater amounts of photosynthetic foliage over time. The LAI responses to changes in SM from seven dynamic global vegetation models are not always consistent with observations, highlighting the need for improved process knowledge of terrestrial ecosystem responses to rising atmospheric CO2 concentration.


Asunto(s)
Dióxido de Carbono , Ecosistema , Dióxido de Carbono/análisis , Fertilización , Fotosíntesis , Suelo
20.
J Ecol ; 109(1): 519-540, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33536686

RESUMEN

Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long-term carbon sequestration.Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour-intensive and ecosystem-scale manipulation experiments, which are infeasible in most situations.We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process-based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana-infested forests. Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process-based vegetation model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA