Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Angew Chem Int Ed Engl ; : e202407909, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993054

RESUMEN

In-situ construction of solid electrolyte interfaces (SEI) is an effective strategy to enhance the reversibility of zinc (Zn) anodes. However, in-situ SEI to afford high reversibility under high current density conditions (≥ 20 mA cm-2) is highly desired yet extremely challenging. Herein, we propose a dual reaction strategy of spontaneous electrostatic reaction and electrochemical decomposition for the in-situ construction of SEI, which is composed of organic-rich upper layer and inorganic-rich inner layer. Particularly, in-situ SEI performs as "growth binder" at small current density and "orientation regulator" at high current density, which significantly suppresses side reactions and dendrite growth. The in-situ SEI affords the record-breaking reversibility of Zn anode under practical conditions, Zn//Zn symmetric cells can stably cycle for over 1300 h and 400 h at current densities of 50 mA cm-2 and 100 mA cm-2, respectively, showcasing an exceptional cumulative capacity of 67.5 Ah cm-2. Furthermore, the practicality of this in-situ SEI is verified in Zn//PANI pouch cells with high mass loading of 25.48 mg cm-2. This work provides a universal strategy to design advanced SEI for practical Zn-ion batteries.

2.
J Colloid Interface Sci ; 674: 713-721, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38950470

RESUMEN

Amino acids are among the most commercially promising additive solutions for achieving stable zinc anodes. However, greater attention should be given to the limitation arising from the protonation effects induced by high isoelectric point amino acids in the weakly acidic electrolytes of aqueous zinc-ion batteries (AZIBs). In this study, we introduce histidine (HIS) and ethylenediaminetetraacetic acid (EDTA) as hybrid additives into the aqueous electrolyte. Protonated HIS is adsorbed onto the anode interface, inducing uniform deposition and excluding H2O from the inner Helmholtz plane (IHP). Furthermore, the addition of EDTA compensates for the limitation of protonated HIS in excluding solvated H2O. EDTA reconstructs the solvation structure of Zn2+, resulting in a denser zinc deposition morphology. The results demonstrate that the Zn||Zn battery achieved a cycling lifespan exceeding 1480 h at 5 mA cm-2 and 5 mAh cm-2. It also reached over 900 h of cycling at a zinc utilization rate of 70 %. This study provides an innovative perspective for advancing the further development of AZIBs.

3.
Chemistry ; : e202401802, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946439

RESUMEN

How to coordinate electron and ion transport behavior across scales and interfaces within ion battery electrodes? The exponential increase in surface area observed in nanoscale electrode materials results in an incomprehensibly vast spatial interval. Herein, to address the problems of volume expansion, dissolution of cathode material, and the charge accumulation problem existing in manganiferous materials for zinc ion batteries, metal organic framework is utilized to form the architecture of non-interfacial blocking ~10 nm Mn2O3 nanoparticles and amorphous carbon hybrid electrode materials, demonstrating a high specific capacity of 361 mAh g-1 (0.1 A g-1), and excellent cycle stability of 105 mAh g-1 after 2000 cycles under 1 A g-1. The uniform and non-separated disposition of Mn and C atoms constitutes an interconnected network with high electronic and ionic conductivity, minimizing issues like structural collapse and volume expansion of the electrode material during cycling. The cooperative insert mechanism of H+ and Zn2+ are analyzed via ex-situ XRD and in-situ Raman tests. The model battery is assembled to present practical possibilities. The results indicate that MOF-derived carbonization provides an effective strategy for exploring Mn-based electrode materials with high ion and electron transport capacity.

4.
Materials (Basel) ; 17(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998410

RESUMEN

Manganese oxides (MnxOy) are considered a promising cathode material for aqueous zinc-ion batteries (AZIBs) due to their high theoretical specific capacity, various oxidation states and crystal phases, and environmental friendliness. Nevertheless, their practical application is limited by their intrinsic poor conductivity, structural deterioration, and manganese dissolution resulting from Jahn-Teller distortion. To address these problems, doping engineering is thought to be a favorable modification strategy to optimize the structure, chemistry, and composition of the material and boost the electrochemical performance. In this review, the latest progress on doped MnxOy-based cathodes for AZIBs has been systematically summarized. The contents of this review are as follows: (1) the classification of MnxOy-based cathodes; (2) the energy storage mechanisms of MnxOy-based cathodes; (3) the synthesis route and role of doping engineering in MnxOy-based cathodes; and (4) the doped MnxOy-based cathodes for AZIBs. Finally, the development trends of MnxOy-based cathodes and AZIBs are described.

5.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999098

RESUMEN

Aqueous zinc-ion batteries (ZIBs) have attracted burgeoning attention and emerged as prospective alternatives for scalable energy storage applications due to their unique merits such as high volumetric capacity, low cost, environmentally friendly, and reliable safety. Nevertheless, current ZIBs still suffer from some thorny issues, including low intrinsic electron conductivity, poor reversibility, zinc anode dendrites, and side reactions. Herein, conductive polyaniline (PANI) is intercalated as a pillar into the hydrated V2O5 (PAVO) to stabilize the structure of the cathode material. Meanwhile, graphene oxide (GO) was modified onto the glass fiber (GF) membrane through simple electrospinning and laser reduction methods to inhibit dendrite growth. As a result, the prepared cells present excellent electrochemical performance with enhanced specific capacity (362 mAh g-1 at 0.1 A g-1), significant rate capability (280 mAh g-1 at 10 A g-1), and admirable cycling stability (74% capacity retention after 4800 cycles at 5 A g-1). These findings provide key insights into the development of high-performance zinc-ion batteries.

6.
Angew Chem Int Ed Engl ; : e202410208, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988225

RESUMEN

Uncontrollable interfacial side reactions generated from common aqueous electrolytes, just like the hydrogen evolution reaction (HER) and dendrite growth, have severely prevented the practical application of zinc-ion batteries (ZIBs). Solid-state ZIBs are considered to be an efficient strategy by adopting high-quality solid-state electrolytes (SSEs). Here, by confining the deep eutectic electrolyte (DEE) into the nanochannels of the metal-organic framework (MOF)-PCN-222, a stable DEE@PCN-222 SSE with internal Zn2+ transport channels was obtained. A distinctive ion-transport network composed of DEE and PCN-222 in the interior of DEE@PCN-222 realizes the efficient Zn2+ conduction, contributing to a high ionic conductivity of 3.13 × 10-4 S cm-1 at room temperature, a low activation energy of 0.12 eV, and a high Zn2+ transference number of 0.76. Furthermore, experimental and theoretical investigations demonstrate that DEE@PCN-222 with its unique channel structure could homogeneously regulate the Zn2+ distribution and effectively alleviate the side reactions. Highly reversible Zn plating/stripping performance of 2476 h can be realized by the SSE. The solid-state ZIBs show a specific capacity of 306 mAh g-1 and display cycling stability of 517 cycles. This unique design concept provides a new perspective in realizing the high-safety and high-performance ZIBs.

7.
ChemSusChem ; : e202400886, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899510

RESUMEN

Recently, aqueous Zn-X (X=S, Se, Te, I2, Br2) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I2, Br2) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.

8.
ACS Nano ; 18(26): 16610-16621, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889966

RESUMEN

Manipulating the crystallographic orientation of zinc deposition is recognized as an effective approach to address zinc dendrites and side reactions for aqueous zinc-ion batteries (ZIBs). We introduce 2-methylimidazole (Mlz) additive in zinc sulfate (ZSO) electrolyte to achieve vertical electrodeposition with preferential orientation of the (100) and (110) crystal planes. Significantly, the zinc anode exhibited long lifespan with 1500 h endurance at 1 mA cm-2 and an excellent 400 h capability at a depth of discharge (DOD) of 34% in Zn||Zn battery configurations, while in Zn||MnO2 battery assemblies, a capacity retention of 68.8% over 800 cycles is attained. Theoretical calculation reveals that the strong interactions between Mlz and (002) plane impeding its growth, while Zn atoms exhibit lower migration energy barrier and superior mobility on (100) and (110) crystal planes guaranteed the heightened mobility of zinc atoms on the (100) and (110) crystal planes, thus ensuring their superior ZIB performance than that with only ZSO electrolyte, which offers a route for designing next-generation high energy density ZIB devices.

9.
ACS Appl Mater Interfaces ; 16(26): 33559-33570, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914926

RESUMEN

Aqueous zinc (Zn) ion batteries have received broad attention recently. However, their practical application is limited by severe Zn dendrite growth and the hydrogen evolution reaction. In this study, three alkali metal ions (Li+, Na+, and K+) are added in ZnSO4 electrolytes, which are subjected to electrochemical measurements and molecular dynamics simulations. The studies show that since K+ has the highest mobility and self-diffusion coefficient among the four ions (Li+, Na+, K+, and Zn2+), it enables K+ to preferentially approach a zinc dendrite at an earlier time, driven by a negative electric field during a cathodic process. The electric double layer, with K+ around the negatively charged Zn dendrite, inhibits dendrite growth and mitigates the hydrogen evolution reaction on the Zn anode. Under this kinetic effect, the Zn-Zn symmetric cell with K+ exhibits a long cycling stability of 1000 h at 1 mA·cm-2 of 1 mAh·cm-2 and 190 h at 30 mA·cm-2 of 2 mAh·cm-2. Such a kinetic effect is also observed with additives Na+ and Li+, though less profound than that of K+.

10.
Angew Chem Int Ed Engl ; : e202408667, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861650

RESUMEN

MXene usually exhibits weak pseudo-capacitance behavior in aqueous zinc-ion batteries, which cannot provide sufficient reversible capacity, resulting in the decline of overall capacity when used as the cathode materials. Taking inspiration from polymer electrolyte engineering, we have conceptualized an in-situ induced growth strategy based on MXene materials. Herein, 5.25 % MXene was introduced into the nucleation and growth process of vanadium oxide (HVO), providing the heterogeneous nucleation site and serving as an initiator to regulate the morphology and structural of vanadium oxide (T-HVO). The resulted materials can significantly improve the capacity and rate performance of zinc-ion batteries. The growth mechanism of T-HVO was demonstrated by both characterizations and DFT simulations, and the improved performance was systematically investigated through a series of in-situ experiments related to dynamic analysis steps. Finally, the evaluation and comparison of various defect introduction strategies revealed the efficient, safety, and high production output characteristics of the in-situ induced growth strategy. This work proposes the concept of in-situ induced growth strategy and discloses the induced chemical mechanism of MXene materials, which will aid the understanding, development, and application of cathode in aqueous zinc-ion batteries.

11.
ACS Appl Mater Interfaces ; 16(23): 30580-30588, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38822788

RESUMEN

Aqueous zinc ion batteries (AZIBs) are attracting increasing research interest due to their intrinsic safety, low cost, and scalability. However, the issues including hydrogen evolution, interface corrosion, and zinc dendrites at anodes have seriously limited the development of aqueous zinc ion batteries. Here, N,N-methylenebis(acrylamide) (MBA) additives with -CONH- groups are introduced to form hydrogen bonds with water and suppress H2O activity, inhibiting the occurrence of hydrogen evolution and corrosion reactions at the interface. In situ optical microscopy demonstrates that the MBA additive promotes the uniform deposition of Zn2+ and then suppresses the dendrite growth on the zinc anode. Therefore, Zn//Ti asymmetric batteries demonstrate a high plating/stripping efficiency of 99.5%, while Zn//Zn symmetric batteries display an excellent cycle stability for more than 1000 h. The Zn//MnO2 full cells exhibit remarkable cycling stability for 700 cycles in aqueous electrolytes with MBA additives. The additive engineering via MBA achieved the dendrite-free Zn anodes and stable full batteries, which is favorable for advanced AZIBs in practical applications.

12.
Adv Mater ; : e2406451, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888505

RESUMEN

Zinc metal is recognized as the most promising anode for aqueous energy storage but suffers from severe dendrite growth and poor reversibility. However, the coulombic efficiency lacks specificity for zinc dendrite growth, particularly in Zn||Zn symmetric cells. Herein, a novel indicator (fD) based on the characteristic crystallization peaks is proposed to evaluate the growth and distribution of zinc dendrites. As a proof of concept, triethylenetetramine (TETA) is adopted as an electrolyte additive to manipulate the zinc flux for uniform deposition, with a corroborating low fD value. A highly durable zinc symmetric cell is achieved, lasting over 2500 h at 10 mA cm-2 and 400 h at a large discharge of depth (10 mA cm-2, 10 mAh cm-2). Supported by the low fD value, the Zn||TETA-ZnSO4||MnO2 batteries overcome the sudden short circuit and fast capacity fading. The study provides a feasible method to evaluate zinc dendrites and sheds light on the design of highly reversible zinc anodes.

13.
ACS Appl Mater Interfaces ; 16(27): 35104-35113, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932475

RESUMEN

Aqueous zinc-ion batteries have attracted widespread attention due to their low cost and high safety. Unfortunately, their commercial applications are greatly inhibited by the negative effects of zinc dendrites and side reactions. A solution that utilizes a 3D host can help mitigate these issues. In this paper, we present a 3D host that is composed of an aerogel scaffold with a poly(vinyl alcohol) and MXene structure. The embedded Zn can be densely packed inside the host due to its zincophilic properties. During cycling, the fluorine-based functional groups on the surface of MXene were able to react with the electrolyte to form the ZnF2 solid electrolyte interphase, which can effectively protect the composite anode. As a result, the symmetrical battery was capable of stable cycling for >300 h at a high current density of 10 mA cm-2. More impressively, the assembled full cell retained 93.86% after 800 cycles at a current density of 5 A g-1. This work provides an effective idea for improving the cycling performance of aqueous zinc-ion batteries.

14.
ACS Appl Mater Interfaces ; 16(27): 35217-35224, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940306

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have emerged as one of the most promising energy storage technologies due to their high safety and cost-effectiveness. However, several challenges associated with the Zn metal anode, such as dendrite growth, corrosion, and hydrogen evolution reaction (HER), have hindered further applications of AZIBs. Herein, maltose (MT) is used as a functional electrolyte additive to protect the Zn metal electrode during the interface deposition process. The additive can effectively affect the interface of Zn metal, suppressing HER and corrosion reactions. Moreover, it facilitates the uniform deposition of Zn by inducing Zn2+ to form a stable (100) crystal plane. As a result, the symmetric cell exhibited stable cycling performance for 2000 h at a current density of 2 mA cm-2, and the Zn||NH4V4O10 full cell maintained steady cycling for 1000 cycles at 2 A g-1. This study provides an approach to achieve uniform Zn deposition through additives.

15.
Small ; : e2402811, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845061

RESUMEN

In this study, a novel approach is introduced to address the challenges associated with structural instability and sluggish reaction kinetics of δ-MnO2 in aqueous zinc ion batteries. By leveraging zwitterionic betaine (Bet) for intercalation, a departure from traditional cation intercalation methods, Bet-intercalated MnO2 (MnO2-Bet) is synthesized. The positively charged quaternary ammonium groups in Bet form strong electrostatic interactions with the negatively charged oxygen atoms in the δ-MnO2 layers, enhancing structural stability and preventing layer collapse. Concurrently, the negatively charged carboxylate groups in Bet facilitate the rapid diffusion of H+/Zn2+ ions through their interactions, thus improving reaction kinetics. The resulting MnO2-Bet cathode demonstrates high specific capacity, excellent rate capability, fast reaction kinetics, and extended cycle life. This dual-function intercalation strategy significantly optimizes the electrochemical performance of δ-MnO2, establishing it as a promising cathode material for advanced aqueous zinc ion batteries.

16.
Angew Chem Int Ed Engl ; : e202408414, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850273

RESUMEN

Transition metal oxides (TMOs) are promising cathode materials for aqueous zinc ion batteries (ZIBs), however, their performance is hindered by a substantial Hubbard gap, which limits electron transfer and battery cyclability. Addressing this, we introduce a heteroatom coordination approach, using triethanolamine to induce axial N coordination on Mn centers in MnO2, yielding N-coordinated MnO2 (TEAMO). This approach leverages the change of electronegativity disparity between Mn and ligands (O and N) to disrupt spin symmetry and augment spin polarization. This enhancement leads to the closure of the Hubbard gap, primarily driven by the intensified occupancy of the Mn eg orbitals. The resultant TEAMO exhibit a significant increase in storage capacity, reaching 351 mAh g-1 at 0.1 A g-1. Our findings suggest a viable strategy for optimizing the electronic structure of TMO cathodes, enhancing the potential of ZIBs in energy storage technology.

17.
J Colloid Interface Sci ; 674: 297-305, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38936086

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g-1 at 0.1 A g-1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.

18.
Angew Chem Int Ed Engl ; : e202410011, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937260

RESUMEN

The solar-driven photorechargeable zinc-ion batteries have emerged as a promising power solution for smart electronic devices and equipment. However, the subpar cyclic stability of the Zn anode remains a significant impediment to their practical application. Herein, poly(diethynylbenzene-1,3,5-triimine-2,4,6-trione) (PDPTT) was designed as a functional polymer coating of Zn. Theoretical calculations demonstrate that the PDPTT coating not only significantly homogenizes the electric field distribution on the Zn surface, but also promotes ion-accessible surface of Zn. With multiple N and C=O groups exhibiting strong adsorption energies, this polymer coating reduces the nucleation overpotential of Zn, alters the diffusion pathway of Zn2+ at the anode interface, and decreases the corrosion current and hydrogen evolution current. Leveraging these advantages, Zn-PDPTT//Zn-PDPTT exhibits an exceptionally long cycling time (≥4300 h, 1 mA cm-2). Zn-PDPTT//AC zinc-ion hybrid capacitors can withstand 50,000 cycles at 5 A/g. Zn-PDPTT//NVO zinc-ion battery exhibits a faster charge storage rate, higher capacity, and excellent cycling stability. Coupling Zn-PDPTT//NVO with high-performance perovskite solar cells results in a 13.12% overall conversion efficiency for the photorechargeable zinc-ion battery, showcasing significant value in advancing the efficiency and upgrading conversion of renewable energy utilization.

19.
Angew Chem Int Ed Engl ; : e202408218, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923694

RESUMEN

Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mAh∙g-1 at 2.0 A∙g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354%) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.

20.
ChemSusChem ; : e202400890, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924355

RESUMEN

Manganese-based compounds, especially manganese oxides, are one of the most exceptional electrode materials. Specifically, manganese oxides have gained significant interest owing to their unique crystal structures, high theoretical capacity, abundant natural availability and eco-friendly nature. However, as transition metal semiconductors, manganese oxide possess low electrical conductivity, limited rate capacity, and suboptical cycle stability. Thus, combining manganese oxides with carbon or other metallic materials can significantly improve their electrochemical performance. These composites increase active sites and conductivity, thereby improving electrode reaction kinetics, cycle stability, and lifespan of supercapacitors (SCs) and batteries. This paper reviews the latest applications of Mn-based cathodes in SCs and advanced batteries. Moreover, the energy storage mechanisms were also proposed. In this review, the development prospects and challenges for advanced energy storage applications of Mn-based cathodes are summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA