Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Evol Dev ; 22(3): 257-268, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31682317

RESUMEN

Developmental plasticity allows the matching of adult phenotypes to different environments. Although considerable effort has gone into understanding the evolution and ecology of plasticity, less is known about its developmental genetic basis. We focused on the pea aphid wing polyphenism, in which high- or low-density environments cause viviparous aphid mothers to produce winged or wingless offspring, respectively. Maternally provided ecdysone signals to embryos to be winged or wingless, but it is unknown how embryos respond to that signal. We used transcriptional profiling to investigate the gene expression state of winged-destined (WD) and wingless-destined (WLD) embryos at two developmental stages. We found that embryos differed in a small number of genes, and that gene sets were enriched for the insulin-signaling portion of the FoxO pathway. To look for a global signature of insulin signaling, we examined the size and stage of WD and WLD embryos but found no differences. These data suggest the hypothesis that FoxO signaling is important for morph development in a tissue-specific manner. We posit that maternally supplied ecdysone affects embryonic FoxO signaling, which ultimately plays a role in alternative morph development. Our study is one of an increasing number that implicate insulin signaling in the generation of alternative environmentally induced morphologies.


Asunto(s)
Áfidos/embriología , Embrión no Mamífero/embriología , Transducción de Señal , Alas de Animales/embriología , Animales , Proteínas de Insectos/metabolismo , Insulina/metabolismo , Somatomedinas/metabolismo
2.
Insect Mol Biol ; 27(6): 752-765, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29892979

RESUMEN

In animals, differentiation of germline from soma usually takes place during embryogenesis. Genes and their products that are preferentially expressed in the embryonic germ cells are regarded as candidates for maintaining germline fate or promoting germline identity. In Drosophila, for example, the protein encoded by the germline gene vasa is specifically restricted to the germ cells, while products of the gap gene hunchback (hb), a somatic gene, are preferentially expressed in the neuroblasts. In this study, we report the expression of both messenger RNA and protein encoded by Aphb, an hb orthologue in the asexual viviparous pea aphid Acyrthosiphon pisum, in germ cells as well as in neuroblasts. We infer that expression of Aphb messenger RNA in the germ cells during the formation of germaria is required for the anterior localization of Aphb in the protruding oocytes. Germarial expression and anterior localization of ApKrüppel was also identified but, unlike Aphb, its expression was not detected in the migrating germ cells. Very similar patterns of hb expression were also identified in the green peach aphid Myzus persicae, suggesting that germline expression of hb is conserved within the Aphididae. To date, this pattern of hb germline expression has not been reported in other insects.


Asunto(s)
Áfidos/metabolismo , Células Germinativas/metabolismo , Proteínas de Insectos/metabolismo , Animales , Áfidos/embriología , Secuencia de Bases , Proteínas de Unión al ADN , Proteínas de Drosophila , Desarrollo Embrionario , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción
3.
Proc Natl Acad Sci U S A ; 114(6): 1419-1423, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115695

RESUMEN

The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.


Asunto(s)
Áfidos/efectos de los fármacos , Ecdisona/farmacología , Morfogénesis/efectos de los fármacos , Alas de Animales/efectos de los fármacos , Animales , Áfidos/embriología , Áfidos/genética , Aglomeración , Ecdisona/metabolismo , Ecdisterona/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Morfogénesis/genética , Pisum sativum/parasitología , Fenotipo , Interferencia de ARN , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transducción de Señal , Triterpenos/farmacología , Alas de Animales/embriología , Alas de Animales/metabolismo
4.
Sci Rep ; 6: 34321, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694983

RESUMEN

Phenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development.


Asunto(s)
Áfidos/embriología , Fertilidad , Longevidad , Partenogénesis , Fenilalanina Hidroxilasa/genética , Pisum sativum/parasitología , Animales , Áfidos/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Filogenia
5.
J Vis Exp ; (108): e53883, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26862939

RESUMEN

The pea aphid Acyrthosiphon pisum, with a sequenced genome and abundant phenotypic plasticity, has become an emerging model for genomic and developmental studies. Like other aphids, A. pisum propagate rapidly via parthenogenetic viviparous reproduction, where the embryos develop within egg chambers in an assembly-line fashion in the ovariole. Previously we have established a robust platform of whole-mount in situ hybridization allowing detection of mRNA expression in the aphid embryos. For analyzing the expression of protein, though, established protocols for immunostaining the ovarioles of asexual viviparous aphids did not produce satisfactory results. Here we report conditions optimized for increasing tissue permeability and decreasing background staining, both of which were problems when applying established approaches. Optimizations include: (1) incubation of proteinase K (1 µg/ml, 10 min), which was found essential for antibody penetration in mid- and late-stage aphid embryos; (2) replacement of normal goat serum/bovine serum albumin with a blocking reagent supplied by a Digoxigenin (DIG)-based buffer set and (3) application of methanol rather hydrogen peroxide (H2O2) for bleaching endogenous peroxidase; which significantly reduced the background staining in the aphid tissues. These critical conditions optimized for immunostaining will allow effective detection of gene products in the embryos of A. pisum and other aphids.


Asunto(s)
Áfidos/embriología , Peróxido de Hidrógeno/metabolismo , Permeabilidad , Pisum sativum/embriología , Reproducción/fisiología , Animales , Hibridación in Situ , Pisum sativum/metabolismo
6.
PLoS One ; 9(12): e115099, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25501006

RESUMEN

Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.


Asunto(s)
Áfidos/embriología , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Insectos/metabolismo , Meiosis/fisiología , Oogénesis/fisiología , Partenogénesis/fisiología , Animales , Cartilla de ADN/genética , Endodesoxirribonucleasas/metabolismo , Femenino , Hibridación in Situ , Meiosis/genética , Oogénesis/genética , Reacción en Cadena de la Polimerasa
7.
Arch Insect Biochem Physiol ; 84(4): 209-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24222010

RESUMEN

Aphid, a short germband insect, displays an embryogenesis different from that of long germband insect species. Furthermore, the development of its parthenogenetic and viviparous embryo is different from that of the embryo resulting from sexual reproduction. To better understand the genetic regulation of this type of embryogenesis, the functions of hunchback in asexual Acyrthosiphon pisum were investigated by parental RNAi. Microinjection of Aphb double-stranded RNA yielded several defective phenotypes. Quantitative real-time PCR analysis revealed that these defects resulted from reduction of Aphb mRNA level in injected aphids. All these results suggested that the hb gene in parthenogenetic and viviparous Acyrthosiphon pisum was involved in abdominal identity suppression and germband growth as its homologue does in sexual insects.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Proteínas de Insectos/metabolismo , Factores de Transcripción/metabolismo , Abdomen/embriología , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Ninfa , Interferencia de ARN , Factores de Transcripción/genética
8.
Insect Mol Biol ; 22(4): 442-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23683148

RESUMEN

Previously we identified anterior localization of hunchback (Aphb) mRNA in oocytes and early embryos of the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, suggesting that the breaking of anterior asymmetry in the oocytes leads to the formation of the anterior axis in embryos. In order to study posterior development in the asexual pea aphid, we cloned and analysed the developmental expression of caudal (Apcad), a posterior gene highly conserved in many animal phyla. We found that transcripts of Apcad were not detected in germaria, oocytes and embryos prior to the formation of the blastoderm in the asexual (viviparous) pea aphid. This unusual expression pattern differs from that of the existing insect models, including long- and short-germ insects, where maternal cad mRNA is passed to the early embryos and forms a posterior-anterior gradient. The first detectable Apcad expression occurred in the newly formed primordial germ cells and their adjacent blastodermal cells during late blastulation. From gastrulation onward, and as in other insects, Apcad mRNA is restricted to the posteriormost region of the germ band. Similarly, in the sexual (oviparous) oocytes we were able to identify anterior localization of Aphb mRNA but posterior localization of Apcad was not detected. This suggests that cad-driven posterior development is not conserved during early embryogenesis in asexual and sexual pea aphids.


Asunto(s)
Áfidos/embriología , Desarrollo Embrionario , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Secuencia de Aminoácidos , Animales , Áfidos/genética , Áfidos/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Ovario/metabolismo , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
9.
BMC Genomics ; 14: 235, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575215

RESUMEN

BACKGROUND: Nutritional symbioses play a central role in insects' adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. RESULTS: We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are essential for the switch over to the late embryonic stages in pea aphid development. CONCLUSIONS: Our data show that, in the development of A. pisum, a specific host gene set regulates the biosynthetic pathways of amino acids, demonstrating how the regulation of gene expression enables an insect to control the production of metabolites crucial for its own development and symbiotic metabolism.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Pisum sativum , Simbiosis , Tirosina/metabolismo , Animales , Áfidos/metabolismo , Áfidos/fisiología , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Dev Biol ; 377(1): 245-61, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23438815

RESUMEN

Patterning of the terminal regions of the Drosophila embryo is achieved by an exquisitely regulated signal that passes between the follicle cells of the ovary, and the developing embryo. This pathway, however, is missing or modified in other insects. Here we trace the evolution of this pathway by examining the origins and expression of its components. The three core components of this pathway: trunk, torso and torso-like have different evolutionary histories and have been assembled step-wise to form the canonical terminal patterning pathway of Drosophila and Tribolium. Trunk, torso and a gene unrelated to terminal patterning, prothoraciotrophic hormone (PTTH), show an intimately linked evolutionary history, with every holometabolous insect, except the honeybee, possessing both PTTH and torso genes. Trunk is more restricted in its phylogenetic distribution, present only in the Diptera and Tribolium and, surprisingly, in the chelicerate Ixodes scapularis, raising the possibility that trunk and torso evolved earlier than previously thought. In Drosophila torso-like restricts the activation of the terminal patterning pathway to the poles of the embryo. Torso-like evolved in the pan-crustacean lineage, but based on expression of components of the canonical terminal patterning system in the hemimetabolous insect Acyrthosiphon pisum and the holometabolous insect Apis mellifera, we find that the canonical terminal-patterning system is not active in these insects. We therefore propose that the ancestral function of torso-like is unrelated to terminal patterning and that torso-like has become co-opted into terminal patterning in the lineage leading to Coleoptera and Diptera. We also show that this co-option has not resulted in changes to the molecular function of this protein. Torso-like from the pea aphid, honeybee and Drosophila, despite being expressed in different patterns, are functionally equivalent. We propose that co-option of torso-like into restricting the activity of trunk and torso facilitated the final step in the evolution of this pathway; the capture of transcriptional control of target genes such as tailless and huckebein by this complex and novel patterning pathway.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Insectos/embriología , Animales , Áfidos/citología , Áfidos/embriología , Áfidos/genética , Teorema de Bayes , Abejas/citología , Abejas/embriología , Abejas/genética , Tipificación del Cuerpo/genética , Drosophila/citología , Drosophila/embriología , Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/citología , Insectos/genética , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Oogénesis , Ovario/citología , Ovario/metabolismo , Filogenia
11.
Dev Biol ; 377(1): 262-74, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23416037

RESUMEN

The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single species.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos/genética , Pisum sativum/parasitología , Citoesqueleto de Actina/metabolismo , Animales , Áfidos/citología , Secuencia de Bases , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Femenino , Genes de Insecto/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/metabolismo , Ovario/citología , Ovario/metabolismo , Oviparidad/genética , ARN/genética , ARN/metabolismo , Transporte de ARN/genética , Reproducción Asexuada/genética , Viviparidad de Animales no Mamíferos/genética , Cigoto/citología , Cigoto/metabolismo
12.
Pak J Biol Sci ; 16(15): 743-6, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24506004

RESUMEN

The development of cowpea aphid larvae was monitored on seven cowpea genotypes (IAR-48, TVu-15866, IT84S-2246-4, SAKA BABBA SATA, IT90K-76, KANANNADO and TVX 3236). The aim of the study was to determine the developmental response of the larvae as an indication of antibiotic resistance of the genotypes. Highly significant differences (p < 0.01) were observed with respect to fertility, larval development, adult longevity, life span, multiplication rate and intrinsic rate of increase. KANANNADO and TVX 3236 show minimum antibiotic effects while a landrace SAKA BABBA SATA shows relatively high antibiotic effects. This result further reveals the potential of SAKA BABBA SATA as a resistance source to aphid. The reaction of IT84S-2246-4, a hitherto aphid resistant genotype, which supported higher levels of survival of the larvae relative to other known susceptible genotype IAR-48, may be an indication of the presence of a new biotype of Aphis craccivora endemic to Zaria environs, or that of the ability of insects to overcome hindrances to their survival including various forms of resistance.


Asunto(s)
Áfidos/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/parasitología , Fabaceae/genética , Fabaceae/parasitología , Interacciones Huésped-Parásitos/genética , Animales , Áfidos/embriología , Farmacorresistencia Bacteriana/genética , Fertilidad , Genotipo , Larva/crecimiento & desarrollo , Longevidad , Fenotipo , Factores de Tiempo
13.
PLoS One ; 7(1): e30702, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22292023

RESUMEN

Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.


Asunto(s)
Áfidos/microbiología , Toxinas Bacterianas/metabolismo , Dickeya chrysanthemi/fisiología , Infecciones por Enterobacteriaceae/microbiología , Sepsis/microbiología , Animales , Animales Modificados Genéticamente , Áfidos/embriología , Áfidos/genética , Áfidos/fisiología , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Dickeya chrysanthemi/patogenicidad , Vectores de Enfermedades , Embrión no Mamífero/microbiología , Endotoxinas/genética , Endotoxinas/metabolismo , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/veterinaria , Regulación de la Expresión Génica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Intestinos/embriología , Intestinos/microbiología , Pisum sativum/parasitología , Enfermedades de las Plantas/microbiología , Sepsis/genética , Sepsis/veterinaria
14.
PLoS One ; 6(7): e21944, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21789197

RESUMEN

SMLS (Sitobion miscanthi L type symbiont) is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.


Asunto(s)
Áfidos/microbiología , Especificidad del Huésped/fisiología , Rickettsiaceae/clasificación , Rickettsiaceae/crecimiento & desarrollo , Simbiosis/fisiología , Tropismo/fisiología , Animales , Áfidos/embriología , Áfidos/genética , Secuencia de Bases , Buchnera/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/microbiología , Genes Bacterianos/genética , Hemolinfa/microbiología , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , ARN Ribosómico 16S/genética , Rickettsiaceae/genética , Análisis de Secuencia de ADN
15.
Insect Mol Biol ; 19 Suppl 2: 75-85, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20482641

RESUMEN

In the dipteran Drosophila, the genes bicoid and hunchback work synergistically to pattern the anterior blastoderm during embryogenesis. bicoid, however, appears to be an innovation of the higher Diptera. Hence, in some non-dipteran insects, anterior specification instead relies on a synergistic interaction between maternally transcribed hunchback and orthodenticle. Here we describe how orthologues of hunchback and orthodenticle are expressed during oogenesis and embryogenesis in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum. A. pisum hunchback (Aphb) mRNA is localized to the anterior pole in developing oocytes and early embryos prior to blastoderm formation - a pattern strongly reminiscent of bicoid localization in Drosophila. A. pisum orthodenticle (Apotd), on the other hand, is not expressed prior to gastrulation, suggesting that it is the asymmetric localization of Aphb, rather than synergy between Aphb and Apotd, that regulates anterior specification in asexual pea aphids.


Asunto(s)
Áfidos/embriología , Áfidos/genética , Genes de Insecto , Secuencia de Aminoácidos , Animales , Áfidos/patogenicidad , Áfidos/fisiología , Secuencia de Bases , Tipificación del Cuerpo/genética , Clonación Molecular , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Oogénesis/genética , Partenogénesis/genética , Pisum sativum/parasitología , ARN/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factores de Transcripción/genética , Viviparidad de Animales no Mamíferos/genética
16.
Insect Mol Biol ; 19 Suppl 2: 63-73, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20482640

RESUMEN

Little is known about when, how or even if the wing development gene network elucidated in Drosophila is deployed in direct-developing insects. Here we identify the wing development genes (as determined in Drosophila) of the pea aphid (Acyrthosiphon pisum), which produces winged or unwinged adults in response to environmental cues. We find that the principal wing development genes studied in Drosophila are present in the aphid genome and that apterous and decapentaplegic exhibit duplications. We followed expression levels of 11 of these developmental genes at embryogenesis and across the nymphal instars. Six showed significant stage-specific expression level effects and apterous1 exhibited significantly different expression levels between winged and unwinged morphs, suggesting this gene acts proximately to realize polyphenic development.


Asunto(s)
Áfidos/crecimiento & desarrollo , Áfidos/genética , Genes de Insecto , Alas de Animales/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Áfidos/embriología , Secuencia de Bases , Tipificación del Cuerpo/genética , Cartilla de ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genoma de los Insectos , Proteínas de Insectos/genética , Insectos/clasificación , Insectos/embriología , Insectos/genética , Insectos/crecimiento & desarrollo , Datos de Secuencia Molecular , Pisum sativum/parasitología , Filogenia , Homología de Secuencia de Aminoácido , Alas de Animales/embriología
17.
Int J Dev Biol ; 53(1): 169-76, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19123140

RESUMEN

Among genes that are preferentially expressed in germ cells, nanos and vasa are the two most conserved germline markers in animals. Both genes are usually expressed in germ cells in the adult gonads, and often also during embryogenesis. Both nanos-first or vasa-first expression patterns have been observed in embryos, implying that the molecular networks governing germline development vary among species. Previously we identified Apvasa, a vasa homologue expressed in germ cells throughout all developmental stages in the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum. In asexual A. pisum, oogenesis is followed by embryogenesis, and both occur within the ovarioles. In order to understand the temporal and spatial distribution of nanos versus vasa during oogenesis and embryogenesis, we isolated a nanos homologue, Apnanos, and studied its expression. In adults, Apnanos is preferentially expressed in the ovaries. In early embryos, Apnanos transcripts are localized to the cytoplasm of cellularizing germ cells, and soon thereafter are restricted to the newly segregated germ cells in the posterior region of the cellularized blastoderm. These results strongly suggest that the Apnanos gene is a germline marker and is involved in germline specification in asexual A. pisum. However, during the middle stages of development, when germline migration occurs, Apnanos is not expressed in the migrating germ cells expressing Apvasa, suggesting that Apnanos is not directly associated with germline migration.


Asunto(s)
Áfidos/embriología , Áfidos/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Oogénesis/fisiología , Secuencia de Aminoácidos , Animales , Áfidos/genética , Áfidos/metabolismo , Secuencia de Bases , Movimiento Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Datos de Secuencia Molecular , ARN Mensajero/genética , Alineación de Secuencia , Homología de Secuencia , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 105(39): 14934-9, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18815381

RESUMEN

Among host-dependent bacteria that have evolved by extreme reductive genome evolution, long-term bacterial endosymbionts of insects have the smallest (160-790 kb) and most A + T-rich (>70%) bacterial genomes known to date. These genomes are riddled with poly(A) tracts, and 5-50% of genes contain tracts of 10 As or more. Here, we demonstrate transcriptional slippage at poly(A) tracts within genes of Buchnera aphidicola associated with aphids and Blochmannia pennsylvanicus associated with ants. Several tracts contain single frameshift deletions; these apparent pseudogenes showed patterns of constraint consistent with purifying selection on the encoded proteins. Transcriptional slippage yielded a heterogeneous population of transcripts with variable numbers of As in the tract. Across several frameshifted genes, including B. aphidicola cell wall biosynthesis genes and a B. pennsylvanicus histidine biosynthesis gene, 12-50% of transcripts contained corrected reading frames that could potentially yield full-length proteins. In situ immunostaining confirmed the production of the cell wall biosynthetic enzyme UDP-N-acetylmuramyl pentapeptide synthase encoded by the frameshifted murF gene. Simulation studies indicated an overrepresentation of poly(A) tracts in endosymbiont genomes relative to other A + T-rich bacterial genomes. Polymerase infidelity at poly(A) tracts rescues the functionality of genes with frameshift mutations and, conversely, reduces the efficiency of expression for in-frame genes carrying poly(A) regions. These features of homopolymeric tracts could be exploited to manipulate gene expression in small synthetic genomes.


Asunto(s)
Buchnera/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Poliadenilación/genética , ARN Mensajero/biosíntesis , Simbiosis/genética , Animales , Áfidos/embriología , Áfidos/enzimología , Áfidos/microbiología , Secuencia de Bases , Buchnera/fisiología , Pared Celular/genética , Simulación por Computador , Embrión no Mamífero/embriología , Embrión no Mamífero/enzimología , Embrión no Mamífero/microbiología , Mutación del Sistema de Lectura , Expresión Génica , Genoma Bacteriano , Histidina/biosíntesis , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Péptido Sintasas/biosíntesis , Péptido Sintasas/genética , ARN Mensajero/genética , Transcripción Genética
19.
BMC Dev Biol ; 8: 19, 2008 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-18294398

RESUMEN

BACKGROUND: The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions, average body asymmetry (or "fluctuating asymmetry") can estimate the developmental instability of the population. The component of developmental instability not explained by intrapopulational differences in gene or environment (or their interaction) can be further defined as internal developmental noise. Surprisingly, developmental noise remains largely unexplored despite its potential influence on our interpretations of developmental stability, canalization, and evolvability. Proponents of fluctuating asymmetry as a bioindicator of environmental or genetic stress, often make the assumption that developmental noise is minimal and, therefore, that phenotype can respond sensitively to the environment. However, biologists still have not measured whether developmental noise actually comprises a significant fraction of the overall environmental response of fluctuating asymmetry observed within a population. RESULTS: In a morphometric study designed to partition developmental noise from fluctuating asymmetry in the wing morphology of a monoclonal culture of cotton aphid, Aphis gosspyii, it was discovered that fluctuating asymmetry in the aphid wing was nearly four times higher than in other insect species. Also, developmental noise comprised a surprisingly large fraction ( approximately 50%) of the overall response of fluctuating asymmetry to a controlled graded temperature environment. Fluctuating asymmetry also correlated negatively with temperature, indicating that environmentally-stimulated changes in developmental instability are mediated mostly by changes in the development time of individuals. CONCLUSION: The amount of developmental noise revealed in this trait potentially does interfere with a substantial amount of the sensitivity of fluctuating asymmetry to change in temperature. Assuming that some genetic-based variation in individual buffering of developmental instability exists in natural aphid populations, the amount of internal developmental noise determined in this study could also substantially reduce evolvability of the aphid wing. The overall findings here suggest that individual response to the seemingly high cost of stabilizing some aspects of the phenotype may account for the frequent observation of trait and species specificity in levels of fluctuating asymmetry.


Asunto(s)
Áfidos/embriología , Clonación de Organismos , Gossypium/parasitología , Animales , Modelos Biológicos , Fenotipo , Plantones , Temperatura , Alas de Animales/anatomía & histología , Alas de Animales/embriología
20.
Dev Genes Evol ; 217(4): 275-87, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17333259

RESUMEN

In the parthenogenetic and viviparous pea aphid Acyrthosiphon pisum, germline specification depends on the germ plasm localized to the posterior region of the egg chamber before the formation of the blastoderm. During blastulation, germline segregation occurs at the egg posterior, and in early gastrulation germ cells are pushed inward by the invaginating germ band. Previous studies suggest that germ cells remain dorsal in the embryo in subsequent developmental stages. In fact, though, it is not known whether germ cells remain in place or migrate dynamically during katatrepsis and germ-band retraction. We cloned Apvasa, a pea aphid homologue of Drosophila vasa, and used it as a germline marker to monitor the migration of germ cells. Apvasa messenger RNA (mRNA) was first restricted to morphologically identifiable germ cells after blastoderm formation but that expression soon faded. Apvasa transcripts were again identified in germ cells from the stage when the endosymbiotic bacteria invaded the embryo, and after that, Apvasa mRNA was present in germ cells throughout all developmental stages. At the beginning of katatrepsis, germ cells were detected at the anteriormost region of the egg chamber as they were migrating into the body cavity. During the early period of germ-band retraction, germ cells were separated into several groups surrounded by a layer of somatic cells devoid of Apvasa staining, suggesting that the coalescence between migrating germ cells and the somatic gonadal mesoderm occurs between late katatrepsis and early germ-band retraction.


Asunto(s)
Áfidos/metabolismo , Movimiento Celular , Células Germinativas/citología , Proteínas de Insectos/metabolismo , Partenogénesis , Pisum sativum/parasitología , Secuencia de Aminoácidos , Animales , Áfidos/embriología , Áfidos/genética , Embrión no Mamífero/citología , Gástrula , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Insectos/química , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Oocitos/citología , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA