Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.392
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 195: 114961, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277234

RESUMEN

Monacolin K (MK), also known as lovastatin, is a polyketide compound with the ability to reduce plasma cholesterol levels and many other bio-activities. Red yeast rice (also named Hongqu) rich in MK derived from Monascus fermentation has attracted widespread attention due to its excellent performance in reducing blood lipids. However, industrial Monascus fermentation suffers from the limitations such as low yield of MK, long fermentation period, and susceptibility to contamination. In this study, we firstly blocked the competitive pathway of MK biosynthesis to create polyketide synthase gene pigA (the key gene responsible for the biosynthesis of Monascus azaphilone pigments) deficient strain A1. Then, based on the strategies to increase precursor supply for MK biosynthesis, acetyl-CoA carboxylase gene acc overexpression strains C1 and C2 were constructed with WT and A1 as the parent, respectively. Finally, histone deacetylase gene hos2 overexpression strain H1 was constructed by perturbation of histone acetylation modification. HPLC detection revealed all these four strains significantly increased their abilities to produce MK. After 14 days of solid-state fermentation, the MK yields of strains A1, C1, C2, and H1 reached 2.03 g/100 g, 1.81 g/100 g, 2.45 g/100 g and 2.52 g/100 g, which increased by 28.5 %, 14.7 %, 43.9 % and 36.1 % compared to WT, respectively. RT-qPCR results showed that overexpression of hos2 significantly increased the expression level of almost all genes responsible for MK biosynthesis after 5-day growth. Overall, the abilities of these strains to produce MK has been greatly improved, and MK production period has been shortened to 14 days from 20 days, providing new approaches for efficient production of Hongqu rich in MK.


Asunto(s)
Fermentación , Histonas , Lovastatina , Monascus , Monascus/metabolismo , Monascus/genética , Acetilación , Histonas/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Hipolipemiantes/farmacología , Productos Biológicos/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética
2.
Int J Mol Sci ; 25(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39337655

RESUMEN

We have previously shown that the overexpression of acetyl-CoA carboxylase 1 (ACC1) was associated with the poor prognosis of cholangiocarcinoma (CCA) patients, and suppression of its expression in CCA cell lines deteriorated cell growth. The present study explored the mechanism by which ACC1 inhibition affects global protein acetylation, using genetic knockdown and pharmacological inhibition with an ACC1 inhibitor ND-646 as models. Both ACC1 knockdown and ACC1-inhibitor-treated cells displayed the hyperacetylation of proteins, accompanied by impaired growth and migration. The immunoprecipitation of hyperacetylated proteins using the anti-acetylated lysine antibody, followed by tandem mass spectrometry, identified three potential verification candidates, namely POTE ankyrin domain family member E, peroxisomal biogenesis factor 1, and heat shock protein 90 beta (HSP90B). HSP90 acetylation was the candidate selected for the verification of protein acetylation. To establish the effects of protein hyperacetylation, treatment with suberoylanilide hydroxamic acid (SAHA), a lysine deacetylase inhibitor, was conducted, and this served as an independent model. Decreased tumor growth but increased acetylated protein levels were observed in ACC1-KD xenograft tumors. Hyperacetylated-alleviated cell growth and migration were consistently observed in the SAHA-treated models. The molecular linkage between protein hyperacetylation and the AKT/GSK3ß/Snail pathway was demonstrated. This study highlighted the importance of protein acetylation in CCA progression, suggesting that ACC1 and KDAC are potential targets for CCA treatment.


Asunto(s)
Acetil-CoA Carboxilasa , Neoplasias de los Conductos Biliares , Movimiento Celular , Proliferación Celular , Colangiocarcinoma , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Acetilación , Humanos , Animales , Línea Celular Tumoral , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Ratones , Acetil-CoA Carboxilasa/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1914): 20230353, 2024 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-39343023

RESUMEN

The committed step for de novo fatty acid (FA) synthesis is the ATP-dependent carboxylation of acetyl-coenzyme A catalysed by acetyl-CoA carboxylase (ACCase). In most plants, ACCase is a multi-subunit complex orthologous to prokaryotes. However, unlike prokaryotes, the plant and algal orthologues are comprised both catalytic and additional dedicated regulatory subunits. Novel regulatory subunits, biotin lipoyl attachment domain-containing proteins (BADC) and carboxyltransferase interactors (CTI) (both three-gene families in Arabidopsis) represent new effectors specific to plants and certain algal species. The evolutionary history of these genes in autotrophic eukaryotes remains elusive, making it an ongoing area of research. Analyses of potential protein-protein and co-occurrence interactions, informed by gene network patterns using the STRING database, in Arabidopsis thaliana and Chlamydomonas reinhardtii unveil intricate gene associations with ACCase, suggesting a complex interplay between FA synthesis and other cellular processes. Among both species, a higher number of co-expressed genes was identified in Arabidopsis, indicating a wider potential regulatory network of ACCase in plants. This review investigates the extent to which these genes arose in autotrophic eukaryotes and provides insights into their evolutionary trajectory. This article is part of the theme issue 'The evolution of plant metabolism'.


Asunto(s)
Acetil-CoA Carboxilasa , Arabidopsis , Evolución Molecular , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Arabidopsis/genética , Arabidopsis/enzimología , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/enzimología
4.
J Agric Food Chem ; 72(39): 21380-21392, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39311764

RESUMEN

Postemergence control of grass weeds has become problematic due to the evolution of resistance to 5-enolpyruvylshikimate-3-phosphate synthase, acetyl-CoA carboxylase (ACCase), and acetolactate synthase-inhibiting herbicides. Herein we describe the invention and synthesis journey toward metproxybicyclone, the first commercial carbocyclic aryl-dione ACCase-inhibiting herbicide for the cost-effective management of grass weeds in dicotyledonous crops and in preplant burndown applications. Glasshouse and field experiments have shown that metproxybicyclone is safe for use on soybean, cotton, and sugar beet, among other crops. It is effective on a variety of key grass weeds including Eleusine indica, Digitaria insularis, Sorghum halepense, and Echinochloa crus-galli. Importantly, metproxybicyclone was more efficacious at killing resistant grass weed populations than current ACCase herbicides. Metproxybicyclone controlled the main ACCase target-site and nontarget site resistant mechanisms in characterized Lolium multiflorum and E. indica populations under glasshouse conditions. Excellent control of a broad resistance-causing D2078G target-site mutant E. indica population was also observed under field conditions.


Asunto(s)
Acetil-CoA Carboxilasa , Resistencia a los Herbicidas , Herbicidas , Malezas , Poaceae , Control de Malezas , Herbicidas/farmacología , Herbicidas/química , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Malezas/efectos de los fármacos , Malezas/enzimología , Resistencia a los Herbicidas/genética , Poaceae/efectos de los fármacos , Poaceae/química , Poaceae/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
5.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337707

RESUMEN

Isoflavones belong to the class of flavonoid compounds, which are important secondary metabolites that play a crucial role in plant development and defense. Acetyl-CoA carboxylase (ACCase) is a biotin-dependent enzyme that catalyzes the conversion of Acetyl-CoA into Malonyl-CoA in plants. It is a key enzyme in fatty acid synthesis and also catalyzes the production of various secondary metabolites. However, information on the ACC gene family in the soybean (Glycine max L. Merr.) genome and the specific members involved in isoflavone biosynthesis is still lacking. In this study, we identified 20 ACC family genes (GmACCs) from the soybean genome and further characterized their evolutionary relationships and expression patterns. Phylogenetic analysis showed that the GmACCs could be divided into five groups, and the gene structures within the same groups were highly conserved, indicating that they had similar functions. The GmACCs were randomly distributed across 12 chromosomes, and collinearity analysis suggested that many GmACCs originated from tandem and segmental duplications, with these genes being under purifying selection. In addition, gene expression pattern analysis indicated that there was functional divergence among GmACCs in different tissues. The GmACCs reached their peak expression levels during the early or middle stages of seed development. Based on the transcriptome and isoflavone content data, a weighted gene co-expression network was constructed, and three candidate genes (Glyma.06G105900, Glyma.13G363500, and Glyma.13G057400) that may positively regulate isoflavone content were identified. These results provide valuable information for the further functional characterization and application of GmACCs in isoflavone biosynthesis in soybean.


Asunto(s)
Acetil-CoA Carboxilasa , Regulación de la Expresión Génica de las Plantas , Glycine max , Isoflavonas , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/enzimología , Isoflavonas/metabolismo , Isoflavonas/biosíntesis , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
6.
Cells ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39195229

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.


Asunto(s)
Acetil-CoA Carboxilasa , Diferenciación Celular , Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Inhibidores Enzimáticos/farmacología , Animales
7.
Biochem Biophys Res Commun ; 733: 150601, 2024 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-39213703

RESUMEN

Biotin is an essential coenzyme involved in various metabolic processes across all known organisms, with biotinylation being crucial for the activity of carboxylases. BirA from Haemophilus influenzae is a bifunctional protein that acts as a biotin protein ligase and a transcriptional repressor. This study reveals the crystal structures of Hin BirA in both its apo- and holo-(biotinyl-5'-AMP bound) forms. As a class II BirA, it consists of three domains: N-terminal DNA binding domain, central catalytic domain, and C-terminal SH3-like domain. The structural analysis shows that the biotin-binding loop forms an ordered structure upon biotinyl-5'-AMP binding. This facilitates its interaction with the ligand and promotes protein dimerization. Comparative studies with other BirA homologs from different organisms indicate that the residues responsible for binding biotinyl-5'-AMP are highly conserved. This study also utilized AlphaFold2 to model the potential heterodimeric interaction between Hin BirA and biotin carboxyl carrier protein, thereby providing insights into the structural basis for biotinylation. These findings enhance our understanding of the structural and functional characteristics of Hin BirA, highlighting its potential as a target for novel antibiotics that disrupt the bacterial biotin synthesis pathways.


Asunto(s)
Proteínas Bacterianas , Biotina , Ligasas de Carbono-Nitrógeno , Haemophilus influenzae , Modelos Moleculares , Proteínas Represoras , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimología , Biotina/metabolismo , Biotina/química , Biotina/análogos & derivados , Proteínas Represoras/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Cristalografía por Rayos X , Secuencia de Aminoácidos , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/análogos & derivados , Multimerización de Proteína , Unión Proteica , Conformación Proteica , Sitios de Unión , Biotinilación , Acetil-CoA Carboxilasa , Acido Graso Sintasa Tipo II
8.
ACS Synth Biol ; 13(8): 2611-2620, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39092606

RESUMEN

3-Hydroxypropionic acid (3-HP) is a highly sought-after platform chemical serving as a precursor to a variety of high value-added chemical products. In this study, we designed and constructed a novel light-powered in vitro synthetic enzymatic biosystem comprising acetyl-CoA ligase, acetyl-CoA carboxylase, malonyl-CoA reductase, and phosphotransferase to efficiently produce 3-HP through CO2 fixation from acetate, a cost-effective and readily available substrate. The system employed natural thylakoid membranes (TMs) for the regeneration of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Comprehensive investigations were conducted on the effects of buffer solutions, substrate concentrations, enzyme loading levels, and TMs loading levels to optimize the yield of 3-HP. Following optimization, a production of 0.46 mM 3-HP was achieved within 6 h from an initial 0.5 mM acetate, with a yield nearing 92%. This work underscores the simplicity of 3-HP production via an in vitro biomanufacturing platform and highlights the potential for incorporating TMs as a sustainable and environmentally friendly approach in biomanufacturing processes.


Asunto(s)
Acetil-CoA Carboxilasa , Dióxido de Carbono , Ácido Láctico , Dióxido de Carbono/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/análogos & derivados , Luz , Tilacoides/metabolismo , Adenosina Trifosfato/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Acetatos/metabolismo , Acetatos/química , Oxidorreductasas
9.
J Agric Food Chem ; 72(34): 18809-18815, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145990

RESUMEN

Novel approaches for pest control are essential to ensure a sufficient food supply for the growing global population. The development of new insecticides must meet rigorous regulatory requirements for safety and address the resistance issues of existing insecticides. Proteolysis-targeting chimeras (PROTACs), originally developed for human diseases, show promise in agriculture. They offer innovative insecticides tailored to overcome resistance, opening avenues for agricultural applications. In this study, we developed small-molecule degraders by incorporating pomalidomide as an E3 ligand. These degraders were linked to a ligand (spirotetratmat enol) targeting the ACC protein through a flexible chain, aiming to achieve the efficient control of insects. Compounds 9a-9d were designed, synthesized, and evaluated for biological activities and mechanisms. Among them, 9b exhibited superior potency against Aphis craccivora (LC50 = 107.8 µg mL-1) compared to others and effectively degraded ACC proteins through the ubiquitin-proteasome system. These findings highlight the potential of utilizing PROTAC-based approaches in the development of insecticides for efficient pest control.


Asunto(s)
Acetil-CoA Carboxilasa , Insecticidas , Proteolisis , Insecticidas/química , Insecticidas/farmacología , Animales , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Diseño de Fármacos , Talidomida/química , Talidomida/análogos & derivados , Talidomida/farmacología
10.
Int J Biol Macromol ; 278(Pt 1): 134363, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089556

RESUMEN

Acetyl-coenzyme A carboxylase (ACC) and diacylglycerol acyltransferase 2 (DGAT2) are recognized as potential therapeutic targets for nonalcoholic fatty liver disease (NAFLD). Inhibitors targeting ACC and DGAT2 have exhibited the capacity to reduce hepatic fat in individuals afflicted with NAFLD. However, there are no reports of dual inhibitors targeting ACC and DGAT2 for the treatment of NAFLD. Here, we aimed to identify potential dual inhibitors of ACC and DGAT2 using an integrated in silico approach. Machine learning-based virtual screening of commercial molecule databases yielded 395,729 hits, which were subsequently subjected to molecular docking aimed at both the ACC and DGAT2 binding sites. Based on the docking scores, nine compounds exhibited robust interactions with critical residues of both ACC and DGAT2, displaying favorable drug-like features. Molecular dynamics simulations (MDs) unveiled the substantial impact of these compounds on the conformational dynamics of the proteins. Furthermore, binding free energy assessments highlighted the notable binding affinities of specific compounds (V003-8107, G340-0503, Y200-1700, E999-1199, V003-6429, V025-4981, V006-1474, V025-0499, and V021-8916) to ACC and DGAT2. The compounds proposed in this study, identified using a multifaceted computational strategy, warrant experimental validation as potential dual inhibitors of ACC and DGAT2, with implications for the future development of novel drugs targeting NAFLD.


Asunto(s)
Acetil-CoA Carboxilasa , Diacilglicerol O-Acetiltransferasa , Inhibidores Enzimáticos , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Sitios de Unión , Unión Proteica , Evaluación Preclínica de Medicamentos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
11.
Pestic Biochem Physiol ; 203: 105985, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084789

RESUMEN

Avena fatua L. is one of the most damaging and malignant weeds in wheat fields in China. Fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon, which belong to Acetyl-CoA carboxylase- (ACCase), acetolactate synthase- (ALS), and photosystem II- (PS II) inhibitors, respectively, are commonly used in wheat fields and have a long history of use on A. fatua. An A. fatua population (R) resistant to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon was collected from a wheat field in 2020. This study explored the mechanisms of target site resistance (TSR) and non-target site resistance (NTSR) in the multi-resistant A. fatua. Whole-plant bioassays showed that the R population had evolved high resistance to fenoxaprop-P-ethyl and moderate resistance to mesosulfuron-methyl and isoproturon. However, no mutations were detected in the ACCase, ALS, or psbA genes in the R population. In addition, the ACCase and ALS gene expression levels in the R group were significantly higher than those in the susceptible population (S) after treatment with fenoxaprop-P-ethyl or mesosulfuron-methyl. In vitro ACCase and ALS activity assays showed that ACCase and ALS from the R population were insensitive to fenoxaprop and mesosulfuron-methyl, respectively, with resistance indices 6.12-fold and 17.46-fold higher than those of the S population. Furthermore, pretreatment with P450 inhibitors significantly (P < 0.05) reversed the multi-resistant A. fatua's resistance to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon. Sethoxydim, flucarbazone­sodium, chlortoluron, and cypyrafluone were effective in controlling multi-resistance A. fatua. Therefore, the overexpression of ACCase and ALS to synthesize sufficient herbicide-targeting proteins, along with P450-mediated metabolism, conferred resistance to fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon in the R population.


Asunto(s)
Acetolactato Sintasa , Acetil-CoA Carboxilasa , Resistencia a los Herbicidas , Herbicidas , Oxazoles , Compuestos de Fenilurea , Propionatos , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Oxazoles/farmacología , China , Compuestos de Fenilurea/farmacología , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Propionatos/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Poaceae/efectos de los fármacos , Fenilpropionatos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compuestos de Sulfonilurea
12.
J Agric Food Chem ; 72(31): 17499-17509, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39045837

RESUMEN

The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in ß-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.


Asunto(s)
Proteínas Bacterianas , Ingeniería Metabólica , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Fermentación , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
13.
Sci Rep ; 14(1): 17072, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048608

RESUMEN

Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH. SomaSignal NASH probability scores and expression data for 7000+ analytes were analyzed to identify potential biomarkers associated with baseline clinical measures of NAFLD/NASH [Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] as well as biomarkers of treatment response to ACCi. SomaSignal NASH probability scores identified biopsy-proven/clinically defined NIT-based (Presumed) NASH classification of the cohort with > 70% agreement. Clesacostat-induced reduction in steatosis probability scores aligned with observed clinical reduction in hepatic steatosis based on MRI-PDFF. We identify a set of 69 analytes that robustly correlate with clinical measures of hepatic inflammation and steatosis (MRI-PDFF, ALT and AST), 27 of which were significantly reversed with ACC inhibition. Clesacostat treatment dramatically upregulated Wnt5a protein and Apolipoproteins C3 and E, with drug-induced changes significantly correlating to changes on MRI-PDFF. Our data demonstrate the utility of SomaLogic- analyte panel for diagnosis and treatment response in NAFLD/NASH and provide potential new mechanistic insights into liver steatosis reduction, inflammation and serum triglyceride elevation with ACC inhibition. (Clinical Trial Identifier: NCT03248882).


Asunto(s)
Acetil-CoA Carboxilasa , Biomarcadores , Enfermedad del Hígado Graso no Alcohólico , Proteómica , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Biomarcadores/sangre , Proteómica/métodos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Hígado/patología , Hígado/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología
14.
Int J Biol Macromol ; 275(Pt 1): 133580, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960227

RESUMEN

Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and is responsible for acute invasive and non-invasive infections. Fight against pneumococcus is currently hampered by insufficient vaccine coverage and rising antimicrobial resistance, making the research necessary on novel drug targets. High-throughput mutagenesis has shown that acetyl-CoA carboxylase (ACC) is an essential enzyme in S. pneumoniae which converts acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis. ACC has four subunits; Biotin carboxyl carrier protein (BCCP), Biotin carboxylase (BC), Carboxyl transferase subunit α and ß. Biotinylation of S. pneumoniae BCCP (SpBCCP) is required for the activation of ACC complex. In this study, we have biophysically characterized the apo- and holo- biotinylating domain SpBCCP80. We have performed 2D and 3D NMR experiments to analyze the changes in amino acid residues upon biotinylation of SpBCCP80. Further, we used NMR backbone chemical shift assignment data for bioinformatical analyses to determine the secondary and tertiary structure of proteins. We observed major changes in AMKVM motif and thumb region of SpBCCP80 upon biotinylation. Overall, this work provides structural insight into the apo- to holo- conversion of SpBCCP80 which can be further used as a drug target against S. pneumoniae.


Asunto(s)
Biotinilación , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominios Proteicos , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/genética , Biotina/química , Biotina/metabolismo , Modelos Moleculares , Acido Graso Sintasa Tipo II
15.
Cancer Lett ; 598: 217069, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38901666

RESUMEN

Papillary thyroid cancer (PTC) is an endocrine malignant tumor with a rapidly increasing incidence in recent years. Although the disease prognosis is good in general, there are still some patients with local invasion, distant metastasis and recurrence, which make treatment difficult. This study aimed to investigate the effect of a novel circRNA, circPCNXL2, on the progression of PTC and to explore its underlying mechanism in PTC. In this study, we found that the expression of circPCNXL2 was upregulated in PTC, which was positively correlated with the proliferation of PTC, and knockdown of circPCNXL2 enhanced the cell cycle arrest of PTC and promoted cell apoptosis. Further research revealed that circPCNXL2 can interact with ACC1, a key enzyme of cellular lipid metabolism, and then promote cell growth by affecting the de novo synthesis of fatty acids. Mechanistically, circPCNXL2 enhances the protein activity of ACC1 by reducing ACC1 phosphorylation of ser 79, thereby promoting the formation of fatty acids such as free fatty acids and triglycerides in cells to meet the energy metabolism needs of cells and promote cell growth. In a nude mouse subcutaneous tumorigenesis model, knockdown of circPCNXL2 inhibited the growth of PTC tumors while high levels of circPCNXL2 expression promoted tumor proliferation. This study revealed that circPCNXL2 regulates PTC lipid metabolism by enhancing the protein activity of ACC1 and identified a novel signaling pathway, the circPCNXL2-ACC1 axis, that can be targeted for the treatment of PTC.


Asunto(s)
Acetil-CoA Carboxilasa , Proliferación Celular , Progresión de la Enfermedad , Ácidos Grasos , Ratones Desnudos , ARN Circular , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Animales , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Ratones , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Ácidos Grasos/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Línea Celular Tumoral , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Apoptosis , Metabolismo de los Lípidos , Persona de Mediana Edad , Ratones Endogámicos BALB C
16.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892011

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by diffuse hepatocellular steatosis due to fatty deposits in hepatocytes, excluding alcohol and other known liver injury factors. However, there are no specific drugs for the clinical treatment of NAFLD. Therefore, research on the pathogenesis of NAFLD at the cellular and molecular levels is a promising approach to finding therapeutic targets and developing targeted drugs for NAFLD. Pin1 is highly expressed during adipogenesis and contributes to adipose differentiation, but its specific mechanism of action in NAFLD is unclear. In this study, we investigated the role of Pin1 in promoting the development of NAFLD and its potential mechanisms in vitro and in vivo. First, Pin1 was verified in the NAFLD model in vitro using MCD diet-fed mice by Western Blot, RT-qPCR and immunohistochemistry (IHC) assays. In the in vitro study, we used the oleic acid (OA) stimulation-induced lipid accumulation model and examined the lipid accumulation in each group of cells by oil red O staining as well as BODIPY staining. The results showed that knockdown of Pin1 inhibited lipid accumulation in hepatocytes in an in vitro lipid accumulation model and improved lipid indices and liver injury levels. Moreover, in vivo, WT and Pin1-KO mice were fed a methionine-choline deficient (MCD) diet for 4 weeks to induce the NAFLD model. The effects of Pin1 on lipid accumulation, hepatic fibrosis, and oxidative stress were evaluated by biochemical analysis, glucose and insulin tolerance tests, histological analysis, IHC, RT-qPCR and Western blot assays. The results indicate that Pin1 knockdown significantly alleviated hepatic steatosis, fibrosis and inflammation in MCD-induced NAFLD mice, improved glucose tolerance and alleviated insulin resistance in mice. Further studies showed that the AMPK/ACC1 signalling pathway might take part in the process by which Pin1 regulates NAFLD, as evidenced by the inhibition of the AMPK/ACC1 pathway. In addition, immunofluorescence (IF), coimmunoprecipitation (Co-IP) and GST pull-down experiments also showed that Pin1 interacts directly with ACC1 and inhibits ACC1 phosphorylation levels. Our study suggests that Pin1 promotes NAFLD progression by inhibiting the activation of the AMPK/ACC1 signalling pathway, and it is possible that this effect is achieved by Pin1 interacting with ACC1 and inhibiting the phosphorylation of ACC1.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Enfermedad del Hígado Graso no Alcohólico , Animales , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratones , Masculino , Ratones Noqueados , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Unión Proteica , Acetil-CoA Carboxilasa
17.
Lipids Health Dis ; 23(1): 201, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937844

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prevalent chronic liver condition. However, the potential therapeutic benefits and underlying mechanism of nicotinate-curcumin (NC) in the treatment of NASH remain uncertain. METHODS: A rat model of NASH induced by a high-fat and high-fructose diet was treated with nicotinate-curcumin (NC, 20, 40 mg·kg- 1), curcumin (Cur, 40 mg·kg- 1) and metformin (Met, 50 mg·kg- 1) for a duration of 4 weeks. The interaction between NASH, Cur and Aldo-Keto reductase family 1 member B10 (AKR1B10) was filter and analyzed using network pharmacology. The interaction of Cur, NC and AKR1B10 was analyzed using molecular docking techniques, and the binding energy of Cur and NC with AKR1B10 was compared. HepG2 cells were induced by Ox-LDL (25 µg·ml- 1, 24 h) in high glucose medium. NC (20µM, 40µM), Cur (40µM) Met (150µM) and epalrestat (Epa, 75µM) were administered individually. The activities of ALT, AST, ALP and the levels of LDL, HDL, TG, TC and FFA in serum were quantified using a chemiluminescence assay. Based on the changes in the above indicators, score according to NAS standards. The activities of Acetyl-CoA and Malonyl-CoA were measured using an ELISA assay. And the expression and cellular localization of AKR1B10 and Acetyl-CoA carboxylase (ACCα) in HepG2 cells were detected by Western blotting and immunofluorescence. RESULTS: The results of the animal experiments demonstrated that NASH rat model induced by a high-fat and high-fructose diet exhibited pronounced dysfunction in liver function and lipid metabolism. Additionally, there was a significant increase in serum levels of FFA and TG, as well as elevated expression of AKR1B10 and ACCα, and heightened activity of Acetyl-CoA and Malonyl-CoA in liver tissue. The administration of NC showed to enhance liver function in rats with NASH, leading to reductions in ALT, AST and ALP levels, and decrease in blood lipid and significant inhibition of FFA and TG synthesis in the liver. Network pharmacological analysis identified AKR1B10 and ACCα as potential targets for NASH treatment. Molecular docking studies revealed that both Cur and NC are capable of binding to AKR1B10, with NC exhibiting a stronger binding energy to AKR1B10. Western blot analysis demonstrated an upregulation in the expression of AKR1B10 and ACCα in the liver tissue of NASH rats, accompanied by elevated Acetyl-CoA and Malonyl-CoA activity, and increased levels of FFA and TG. The results of the HepG2 cell experiments induced by Ox-LDL suggest that NC significantly inhibited the expression and co-localization of AKR1B10 and ACCα, while also reduced levels of TC and LDL-C and increased level of HDL-C. These effects are accompanied by a decrease in the activities of ACCα and Malonyl-CoA, and levels of FFA and TG. Furthermore, the impact of NC appears to be more pronounced compared to Cur. CONCLUSION: NC could effectively treat NASH and improve liver function and lipid metabolism disorder. The mechanism of NC is related to the inhibition of AKR1B10/ACCα pathway and FFA/TG synthesis of liver.


Asunto(s)
Aldo-Ceto Reductasas , Curcumina , Enfermedad del Hígado Graso no Alcohólico , Triglicéridos , Curcumina/farmacología , Curcumina/análogos & derivados , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Células Hep G2 , Aldo-Ceto Reductasas/metabolismo , Ratas , Masculino , Triglicéridos/sangre , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/antagonistas & inhibidores , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Metformina/farmacología , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Rodanina/análogos & derivados , Tiazolidinas
18.
J Biol Chem ; 300(7): 107412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796064

RESUMEN

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.


Asunto(s)
Ácidos Grasos , Insulina , Miocardio , Oxidación-Reducción , Complejo Piruvato Deshidrogenasa , Animales , Insulina/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Ratones , Miocardio/metabolismo , Miocardio/enzimología , Ácidos Grasos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Malonil Coenzima A/metabolismo , Masculino , Ratones Noqueados , Glucosa/metabolismo , Ratones Endogámicos C57BL
19.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744825

RESUMEN

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Asunto(s)
Acetil-CoA Carboxilasa , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Supervivencia Celular , Ácidos Grasos , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Animales , Humanos , Ratones , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , NADP/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Biosíntesis de Proteínas
20.
Curr Opin Hematol ; 31(5): 217-223, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727017

RESUMEN

PURPOSE OF REVIEW: Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS: Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA 2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY: The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.


Asunto(s)
Plaquetas , Lipidómica , Lipogénesis , Humanos , Plaquetas/metabolismo , Animales , Lipidómica/métodos , Acetil-CoA Carboxilasa/metabolismo , Metabolismo de los Lípidos , Activación Plaquetaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA