Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.862
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microbiology (Reading) ; 170(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39177453

RESUMEN

Escherichia coli (E. coli) is a major cause of urinary tract infections, bacteraemia, and sepsis. CFT073 is a prototypic, urosepsis isolate of sequence type (ST) 73. This laboratory, among others, has shown that strain CFT073 is resistant to serum, with capsule and other extracellular polysaccharides imparting resistance. The interplay of such polysaccharides remains under-explored. This study has shown that CFT073 mutants deficient in lipopolysaccharide (LPS) O-antigen and capsule display exquisite serum sensitivity. Additionally, O-antigen and LPS outer core mutants displayed significantly decreased surface K2 capsule, coupled with increased unbound K2 capsule being detected in the supernatant. The R1 core and O6 antigen are involved in the tethering of K2 capsule to the CFT073 cell surface, highlighting the importance of the R1 core in serum resistance. The dependence of capsule on LPS was shown to be post-transcriptional and related to changes in cell surface hydrophobicity. Furthermore, immunofluorescence microscopy suggested that the surface pattern of capsule is altered in such LPS core mutants, which display a punctate capsule pattern. Finally, targeting LPS biosynthesis using sub-inhibitory concentrations of a WaaG inhibitor resulted in increased serum sensitivity and decreased capsule in CFT073. Interestingly, the dependency of capsule on LPS has been observed previously in other Enterobacteria, indicating that the synergy between these polysaccharides is not just strain, serotype or species-specific but may be conserved across several pathogenic Gram-negative species. Therefore, using WaaG inhibitor derivatives to target LPS is a promising therapeutic strategy to reduce morbidity and mortality by reducing or eliminating surface capsule.


Asunto(s)
Cápsulas Bacterianas , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Humanos , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/efectos de los fármacos , Escherichia coli Patógena Extraintestinal/metabolismo , Antígenos O/genética , Antígenos O/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación
2.
Nat Commun ; 15(1): 6504, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090110

RESUMEN

The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.


Asunto(s)
Antígenos O , Antígenos O/genética , Antígenos O/metabolismo , Antígenos O/biosíntesis , Salmonella/genética , Salmonella/metabolismo , Regulación Bacteriana de la Expresión Génica , Serogrupo , Regiones Promotoras Genéticas , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo
3.
J Am Chem Soc ; 146(27): 18427-18439, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946080

RESUMEN

Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-ß-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The ß-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.


Asunto(s)
Aminoglicósidos , Antígenos O , Pseudomonas aeruginosa , Trisacáridos , Pseudomonas aeruginosa/inmunología , Antígenos O/química , Antígenos O/inmunología , Trisacáridos/química , Trisacáridos/inmunología , Trisacáridos/síntesis química , Aminoglicósidos/química , Aminoglicósidos/síntesis química , Aminoglicósidos/inmunología
4.
J Microbiol Biotechnol ; 34(8): 1599-1608, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39081257

RESUMEN

Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.


Asunto(s)
Familia de Multigenes , Antígenos O , Serogrupo , Factores de Virulencia , Yersiniosis , Yersinia enterocolitica , Yersinia enterocolitica/genética , Yersinia enterocolitica/patogenicidad , Yersinia enterocolitica/clasificación , Antígenos O/genética , Factores de Virulencia/genética , Virulencia/genética , Yersiniosis/microbiología , Humanos , Microbiología de Alimentos , Proteínas Bacterianas/genética , Serotipificación
5.
Infect Genet Evol ; 123: 105640, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002874

RESUMEN

The Klebsiella oxytoca complex comprises diverse opportunistic bacterial pathogens associated with hospital and community-acquired infections with growing alarming antimicrobial resistance. We aimed to uncover the genomic features underlying the virulence and antimicrobial resistance of isolates from Mulago National Hospital in Uganda. We coupled whole genome sequencing with Pathogenwatch multilocus sequence typing (MLST) and downstream bioinformatic analysis to delineate sequence types (STs) capsular polysaccharide K- and O-antigen loci, along with antimicrobial resistance (AMR) profiles of eight clinical isolates from the National Referral Hospital of Uganda. Our findings revealed that only two isolates (RSM6774 and RSM7756) possess a known capsular polysaccharide K-locus (KL74). The rest carry various unknown K-loci (KL115, KL128, KLI52, KL161 and KLI63). We also found that two isolates possess unknown loci for the lipopolysaccharide O-antigen (O1/O2v1 type OL104 and unknown O1). The rest possess known O1 and O3 serotypes. From MLST, we found four novel sequence types (STs), carrying novel alleles for the housekeeping genes glyceraldehyde-6-phosphate dehydrogenase A (gapA), glucose-6-phosphate isomerase (pgi), and RNA polymerase subunit beta (rpoB). Our AMR analysis revealed that all the isolates are resistant to ampicillin and ceftriaxone, with varied resistance to other antibiotics, but all carry genes for extended-spectrum beta-lactamases (ESBLs). Notably, one strain (RSM7756) possesses outstanding chromosomal and plasmid-encoded AMR to beta-lactams, cephalosporins, fluoroquinolones and methoprims. Conclusively, clinical samples from Mulago National Referral Hospital harbor novel STs and multidrug resistant K. oxytoca strains, with significant public health importance, which could have been underrated.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Klebsiella oxytoca , Antígenos O , Uganda , Antígenos O/genética , Humanos , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella oxytoca/genética , Klebsiella oxytoca/efectos de los fármacos , Tipificación de Secuencias Multilocus , Genómica/métodos , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Secuenciación Completa del Genoma/métodos , Polisacáridos Bacterianos/genética
6.
Microb Genom ; 10(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39037209

RESUMEN

Klebsiella pneumoniae poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 K. pneumoniae and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (n=274/1072, 26 %), KL51 (n=249/1072, 24 %), and KL2 (n=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (n=471/1072, 44 %), O1/O2v2 (n=353/1072, 33 %), and OL101 (n=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson's diversity index and Fisher's exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (P<0.05) with KL types but no association with O antigen types (P>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian K. pneumoniae population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of K. pneumoniae strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of K. pneumoniae infections across India. This article contains data hosted by Microreact.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antígenos O , Serogrupo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/aislamiento & purificación , India/epidemiología , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/prevención & control , Antígenos O/genética , Secuenciación Completa del Genoma , Desarrollo de Vacunas , Factores de Virulencia/genética , Virulencia/genética , Genoma Bacteriano , Vacunas Bacterianas/inmunología , Farmacorresistencia Bacteriana Múltiple/genética , Antígenos Bacterianos/genética , Filogenia , Antígenos de Superficie
7.
Carbohydr Res ; 542: 109176, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851144

RESUMEN

Synthesis of the pentasaccharide repeating unit of the cell O-polysaccharide produced by Salmonella milwaukee O:43 strain (group U) has been achieved in very good yield adopting a convergent stereoselective [3 + 2] block glycosylation strategy. Thioglycosides and glycosyl trichloroacetimidate derivative were used as glycosyl donors in the presence of a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) as thiophilic activator and TMSOTf as trichloroacetimidate activator respectively. The stereochemical outcome of all glycosylation reactions was excellent.


Asunto(s)
Secuencia de Carbohidratos , Pared Celular , Antígenos O , Antígenos O/química , Pared Celular/química , Salmonella/química , Glicosilación , Oligosacáridos/química , Oligosacáridos/síntesis química , Succinimidas/química , Tioglicósidos/química , Tioglicósidos/síntesis química , Estereoisomerismo , Compuestos de Trimetilsililo/química , Acetamidas , Mesilatos , Cloroacetatos
8.
Sci Rep ; 14(1): 12719, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830875

RESUMEN

Polypeptide-targeted MALDI-TOF MS for microbial species identification has revolutionized microbiology. However, no practical MALDI-TOF MS identification method for O-antigen polysaccharides, a major indicator for epidemiological classification within a species of gram-negative bacteria, is available. We describe a simple MALDI glycotyping method for O-antigens that simultaneously identifies the molecular mass of the repeating units and the monosaccharide composition of the O-antigen. We analyzed the Escherichia coli O1, O6, and O157-type strains. Conventional species identification based on polypeptide patterns and O-antigen polysaccharide typing can be performed in parallel from a single colony using our MALDI-TOF MS workflow. Moreover, subtyping within the same O-antigen and parallel colony-specific O-antigen determination from mixed strains, including the simultaneous identification of multiple strains-derived O-antigens within selected colony, were performed. In MALDI glycotyping of two Enterobacteriaceae strains, a Citrobacter freundii strain serologically cross-reactive with E. coli O157 gave a MALDI spectral pattern identical to E. coli O157. On the other hand, an Edwardsiella tarda strain with no reported O-antigen cross-reactivity gave a MALDI spectral pattern of unknown O-antigen repeating units. The method described in this study allows the parallel and rapid identification of microbial genera, species, and serotypes of surface polysaccharides using a single MALDI-TOF MS instrument.


Asunto(s)
Antígenos O , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Antígenos O/química , Antígenos O/inmunología , Antígenos O/análisis , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/clasificación , Escherichia coli
9.
J Biol Chem ; 300(7): 107420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815868

RESUMEN

Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.


Asunto(s)
Proteínas Bacterianas , Klebsiella pneumoniae , Antígenos O , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Antígenos O/metabolismo , Antígenos O/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Familia de Multigenes
10.
Microbiol Spectr ; 12(6): e0421323, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38700324

RESUMEN

A US collection of invasive Escherichia coli serotype O1 bloodstream infection (BSI) isolates were assessed for genotypic and phenotypic diversity as the basis for designing a broadly protective O-antigen vaccine. Eighty percent of the BSI isolate serotype O1 strains were genotypically ST95 O1:K1:H7. The carbohydrate repeat unit structure of the O1a subtype was conserved in the three strains tested representing core genome multi-locus sequence types (MLST) sequence types ST95, ST38, and ST59. A long-chain O1a CRM197 lattice glycoconjugate antigen was generated using oxidized polysaccharide and reductive amination chemistry. Two ST95 strains were investigated for use in opsonophagocytic assays (OPA) with immune sera from vaccinated animals and in murine lethal challenge models. Both strains were susceptible to OPA killing with O1a glycoconjugate post-immune sera. One of these, a neonatal sepsis strain, was found to be highly lethal in the murine challenge model for which virulence was shown to be dependent on the presence of the K1 capsule. Mice immunized with the O1a glycoconjugate were protected from challenges with this strain or a second, genotypically related, and similarly virulent neonatal isolate. This long-chain O1a CRM197 lattice glycoconjugate shows promise as a component of a multi-valent vaccine to prevent invasive E. coli infections. IMPORTANCE: The Escherichia coli serotype O1 O-antigen serogroup is a common cause of invasive bloodstream infections (BSI) in populations at risk such as newborns and the elderly. Sequencing of US BSI isolates and structural analysis of O polysaccharide antigens purified from strains that are representative of genotypic sub-groups confirmed the relevance of the O1a subtype as a vaccine antigen. O polysaccharide was purified from a strain engineered to produce long-chain O1a O-antigen and was chemically conjugated to CRM197 carrier protein. The resulting glycoconjugate elicited functional antibodies and was protective in mice against lethal challenges with virulent K1-encapsulated O1a isolates.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Glicoconjugados , Antígenos O , Animales , Antígenos O/inmunología , Antígenos O/genética , Ratones , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Escherichia coli/genética , Escherichia coli/inmunología , Glicoconjugados/inmunología , Humanos , Serogrupo , Vacunas contra Escherichia coli/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Femenino , Virulencia , Vacunas Conjugadas/inmunología , Tipificación de Secuencias Multilocus , Modelos Animales de Enfermedad , Bacteriemia/prevención & control , Bacteriemia/microbiología , Bacteriemia/inmunología , Proteínas Bacterianas
11.
Appl Environ Microbiol ; 90(6): e0220323, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38747588

RESUMEN

The O antigen (OAg) polysaccharide is one of the most diverse surface molecules of Gram-negative bacterial pathogens. The structural classification of OAg, based on serological typing and sequence analysis, is important in epidemiology and the surveillance of outbreaks of bacterial infections. Despite the diverse chemical structures of OAg repeating units (RUs), the genetic basis of RU assembly remains poorly understood and represents a major limitation in assigning gene functions in polysaccharide biosynthesis. Here, we describe a genetic approach to interrogate the functional order of glycosyltransferases (GTs). Using Shigella flexneri as a model, we established an initial glycosyltransferase (IT)-controlled system, which allows functional order allocation of the subsequent GT in a 2-fold manner as follows: (i) first, by reporting the growth defects caused by the sequestration of UndP through disruption of late GTs and (ii) second, by comparing the molecular sizes of stalled OAg intermediates when each putative GT is disrupted. Using this approach, we demonstrate that for RfbF and RfbG, the GT involved in the assembly of S. flexneri backbone OAg RU, RfbG, is responsible for both the committed step of OAg synthesis and the third transferase for the second L-Rha. We also show that RfbF functions as the last GT to complete the S. flexneri OAg RU backbone. We propose that this simple and effective genetic approach can be also extended to define the functional order of enzymatic synthesis of other diverse polysaccharides produced both by Gram-negative and Gram-positive bacteria.IMPORTANCEThe genetic basis of enzymatic assembly of structurally diverse O antigen (OAg) repeating units (RUs) in Gram-negative pathogens is poorly understood, representing a major limitation in our understanding of gene functions for the synthesis of bacterial polysaccharides. We present a simple genetic approach to confidently assign glycosyltransferase (GT) functions and the order in which they act during assembly of the OAg RU. We employed this approach to determine the functional order of GTs involved in Shigella flexneri OAg assembly. This approach can be generally applied in interrogating GT functions encoded by other bacterial polysaccharides to advance our understanding of diverse gene functions in the biosynthesis of polysaccharides, key knowledge in advancing biosynthetic polysaccharide production.


Asunto(s)
Proteínas Bacterianas , Glicosiltransferasas , Antígenos O , Shigella flexneri , Shigella flexneri/genética , Shigella flexneri/enzimología , Shigella flexneri/metabolismo , Antígenos O/biosíntesis , Antígenos O/genética , Antígenos O/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748580

RESUMEN

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Asunto(s)
Glicosiltransferasas , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosilación , Citrobacter/metabolismo , Citrobacter/genética , Antígenos O/metabolismo , Antígenos O/química , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Polisacáridos Bacterianos/metabolismo
13.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767707

RESUMEN

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Asunto(s)
Proteínas del Sistema Complemento , Modelos Animales de Enfermedad , Lipopolisacáridos , Antígenos O , Salmonella enteritidis , Salmonella enteritidis/inmunología , Salmonella enteritidis/patogenicidad , Animales , Antígenos O/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Lipopolisacáridos/inmunología , Evasión Inmune , Viabilidad Microbiana , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/inmunología , Virulencia , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Activación de Complemento , Lepidópteros/inmunología , Lepidópteros/microbiología
14.
Org Lett ; 26(19): 4142-4146, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38717147

RESUMEN

Fusobacterium nucleatum, a colorectal-cancer-associated oncomicrobe, can trigger or accelerate numerous pathologies. We report the first synthesis of a conjugation-ready disaccharide containing six amino groups from F. nucleatum ATCC 23726 O-antigen. Rare 2,3-diamido-d-glucuronic acid amide and 2-acetamido-4-amino-d-fucose were synthesized from d-glucosamine through configuration inversion, nucleophilic substitution, C6 oxidation, and C6 deoxygenation. A judicious choice of protecting groups and reaction conditions enabled the selective installation of N-acetyl, N-propanoyl, N-formyl, and carboxamido groups.


Asunto(s)
Fusobacterium nucleatum , Antígenos O , Fusobacterium nucleatum/química , Antígenos O/química , Estructura Molecular , Disacáridos/química , Disacáridos/síntesis química
15.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612814

RESUMEN

Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.


Asunto(s)
Antígenos de Grupos Sanguíneos , Nanopartículas del Metal , Antioxidantes/farmacología , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier , Plata/farmacología , Antígenos Fúngicos , Antibacterianos/farmacología , Antígenos O , Dióxido de Silicio , Extractos Vegetales/farmacología
16.
Vet Microbiol ; 291: 110030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428226

RESUMEN

We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of twelve Spanish field isolates of Actinobacillus pleuropneumoniae biovar 2, eleven of them previously typed serologically as serovar 4 and one non-typable (NT) (Maldonado et al., 2009, 2011). These isolates have the common core genes of the type I CPS locus, sharing >98% identity with those of serovar 2. However, the former possesses the O-Ag locus as serovar 4, and the latter possesses the O-Ag locus as serovar 7. The main difference found between the CPS loci of the 11 isolates and that of serovar 2 reference strain S1536 are two deletions, one of an 8 bp sequence upstream of the coding sequence and one of 111 bp sequence at the 5' end of the cps2G gene. The deletion mutations mentioned lead to a defect in the production of CPS in these isolates, which contributed to their previous mis-identification. In order to complement the serotyping of A. pleuropneumoniae in diagnostics and epidemiology, we have developed a multiplex PCR for the comprehensive O-Ag typing of all A. pleuropneumoniae isolates.


Asunto(s)
Infecciones por Actinobacillus , Actinobacillus pleuropneumoniae , Enfermedades de los Porcinos , Animales , Porcinos , Serogrupo , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Antígenos O/genética , Infecciones por Actinobacillus/veterinaria , Serotipificación/veterinaria
17.
Front Cell Infect Microbiol ; 14: 1347813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487353

RESUMEN

Introduction: Different serovars of Salmonella enterica cause systemic diseases in humans including enteric fever, caused by S. Typhi and S. Paratyphi A, and invasive nontyphoidal salmonellosis (iNTS), caused mainly by S. Typhimurium and S. Enteritidis. No vaccines are yet available against paratyphoid fever and iNTS but different strategies, based on the immunodominant O-Antigen component of the lipopolysaccharide, are currently being tested. The O-Antigens of S. enterica serovars share structural features including the backbone comprising mannose, rhamnose and galactose as well as further modifications such as O-acetylation and glucosylation. The importance of these O-Antigen decorations for the induced immunogenicity and cross-reactivity has been poorly characterized. Methods: These immunological aspects were investigated in this study using Generalized Modules for Membrane Antigens (GMMA) as delivery systems for the different O-Antigen variants. This platform allowed the rapid generation and in vivo testing of defined and controlled polysaccharide structures through genetic manipulation of the O-Antigen biosynthetic genes. Results: Results from mice and rabbit immunization experiments highlighted the important role played by secondary O-Antigen decorations in the induced immunogenicity. Moreover, molecular modeling of O-Antigen conformations corroborated the likelihood of cross-protection between S. enterica serovars. Discussion: Such results, if confirmed in humans, could have a great impact on the design of a simplified vaccine composition able to maximize functional immune responses against clinically relevant Salmonella enterica serovars.


Asunto(s)
Infecciones por Salmonella , Vacunas contra la Salmonella , Salmonella enterica , Humanos , Animales , Ratones , Conejos , Antígenos O/genética , Salmonella enterica/genética , Salmonella typhimurium/genética , Serogrupo , Inmunidad , Modelos Animales , Vacunas contra la Salmonella/genética
18.
Angew Chem Int Ed Engl ; 63(17): e202401541, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38393988

RESUMEN

Veillonella parvula, prototypical member of the oral and gut microbiota, is at times commensal yet also potentially pathogenic. The definition of the molecular basis tailoring this contrasting behavior is key for broadening our understanding of the microbiota-driven pathogenic and/or tolerogenic mechanisms that take place within our body. In this study, we focused on the chemistry of the main constituent of the outer membrane of V. parvula, the lipopolysaccharide (LPS). LPS molecules indeed elicit pro-inflammatory and immunomodulatory responses depending on their chemical structures. Herein we report the structural elucidation of the LPS from two strains of V. parvula and show important and unprecedented differences in both the lipid and carbohydrate moieties, including the identification of a novel galactofuranose and mannitol-containing O-antigen repeating unit for one of the two strains. Furthermore, by harnessing computational studies, in vitro human cell models, as well as lectin binding solid-phase assays, we discovered that the two chemically diverse LPS immunologically behave differently and have attempted to identify the molecular determinant(s) governing this phenomenon. Whereas pro-inflammatory potential has been evidenced for the lipid A moiety, by contrast a plausible "immune modulating" action has been proposed for the peculiar O-antigen portion.


Asunto(s)
Lipopolisacáridos , Antígenos O , Humanos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Veillonella/metabolismo , Lípido A
19.
Microbiology (Reading) ; 170(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421161

RESUMEN

Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.


Asunto(s)
Francisella tularensis , Francisella , Transferasas de Hidroximetilo y Formilo , Tularemia , Animales , Ratones , Francisella tularensis/genética , Antígenos O/genética , Lipopolisacáridos , Transferasas de Hidroximetilo y Formilo/genética , Variación de la Fase , Mutación
20.
mBio ; 15(3): e0301323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349180

RESUMEN

A fundamental feature of Gram-negative bacteria is their outer membrane that protects the cell against environmental stressors. This defense is predominantly due to its asymmetry, with glycerophospholipids located in the inner leaflet and lipopolysaccharide (LPS) or lipooligosaccharide (LOS) confined to the outer leaflet. LPS consists of a lipid A anchor, a core oligosaccharide, and a distal O-antigen while LOS lacks O-antigen. While LPS/LOS is typically essential for growth, this is not the case for Acinetobacter baumannii. Despite this unique property, the synthesis of the core oligosaccharide of A. baumannii LOS is not well-described. Here, we characterized the LOS chemotypes of A. baumannii strains with mutations in a predicted core oligosaccharide locus via tandem mass spectrometry. This allowed for an extensive identification of genes required for core assembly that can be exploited to generate precise structural LOS modifications in many A. baumannii strains. We further investigated two chemotypically identical yet phenotypically distinct mutants, ∆2903 and ∆lpsB, that exposed a possible link between LOS and the peptidoglycan cell wall-two cell envelope components whose coordination has not yet been described in A. baumannii. Selective reconstruction of the core oligosaccharide via expression of 2903 and LpsB revealed that these proteins rely on each other for the unusual tandem transfer of two residues, KdoIII and N-acetylglucosaminuronic acid. The data presented not only allow for better usage of A. baumannii as a tool to study outer membrane integrity but also provide further evidence for a novel mechanism of core oligosaccharide assembly. IMPORTANCE: Acinetobacter baumannii is a multidrug-resistant pathogen that produces lipooligosaccharide (LOS), a glycolipid that confers protective asymmetry to the bacterial outer membrane. The core oligosaccharide is a ubiquitous component of LOS that typically follows a well-established model of synthesis. In addition to providing an extensive analysis of the genes involved in the synthesis of the core region, we demonstrate that this organism has evidently diverged from the long-held archetype of core synthesis. Moreover, our data suggest that A. baumannii LOS assembly is important for cell division and likely intersects with the synthesis of the peptidoglycan cell wall, another essential component of the Gram-negative cell envelope. This connection between LOS and cell wall synthesis provides an intriguing foundation for a unique method of outer membrane biogenesis and cell envelope coordination.


Asunto(s)
Acinetobacter baumannii , Lipopolisacáridos , Lipopolisacáridos/metabolismo , Acinetobacter baumannii/genética , Antígenos O/metabolismo , Peptidoglicano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA