Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.108
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062522

RESUMEN

Trinucleotide repeat (TNR) expansion is the cause of over 40 neurodegenerative diseases, including Huntington's disease and Friedreich's ataxia (FRDA). There are no effective treatments for these diseases due to the poor understanding of molecular mechanisms underlying somatic TNR expansion and contraction in neural systems. We and others have found that DNA base excision repair (BER) actively modulates TNR instability, shedding light on the development of effective treatments for the diseases by contracting expanded repeats through DNA repair. In this study, temozolomide (TMZ) was employed as a model DNA base damaging agent to reveal the mechanisms of the BER pathway in modulating GAA repeat instability at the frataxin (FXN) gene in FRDA neural cells and transgenic mouse mice. We found that TMZ induced large GAA repeat contraction in FRDA mouse brain tissue, neurons, and FRDA iPSC-differentiated neural cells, increasing frataxin protein levels in FRDA mouse brain and neural cells. Surprisingly, we found that TMZ could also inhibit H3K9 methyltransferases, leading to open chromatin and increasing ssDNA breaks and recruitment of the key BER enzyme, pol ß, on the repeats in FRDA neural cells. We further demonstrated that the H3K9 methyltransferase inhibitor BIX01294 also induced the contraction of the expanded repeats and increased frataxin protein in FRDA neural cells by opening the chromatin and increasing the endogenous ssDNA breaks and recruitment of pol ß on the repeats. Our study provides new mechanistic insight illustrating that inhibition of H3K9 methylation can crosstalk with BER to induce GAA repeat contraction in FRDA. Our results will open a new avenue for developing novel gene therapy by targeting histone methylation and the BER pathway for repeat expansion diseases.


Asunto(s)
Cromatina , Reparación del ADN , Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Ratones Transgénicos , Expansión de Repetición de Trinucleótido , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Animales , Ratones , Expansión de Repetición de Trinucleótido/genética , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Daño del ADN , Temozolomida/farmacología , Neuronas/metabolismo , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética
2.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980086

RESUMEN

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Asunto(s)
Ataxia Cerebelosa , Humanos , Ataxia Cerebelosa/tratamiento farmacológico , Ataxia Cerebelosa/genética , Terapia Genética/métodos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia
3.
Cells ; 13(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38920668

RESUMEN

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Asunto(s)
Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Animales , Humanos , Ataxia de Friedreich/genética , Regulación de la Expresión Génica , Proteínas de Unión a Hierro/genética
4.
Stem Cell Res ; 79: 103477, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936158

RESUMEN

Friedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette. Exogenous expression of NGN2 in iPSC derived neural crest progenitors efficiently generates functionally mature sensory neurons. These cell lines will provide a streamlined source of FRDA iPSC sensory neurons for studying both disease mechanism and screening potential therapeutics.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Proteínas del Tejido Nervioso , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ataxia de Friedreich/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Línea Celular , Diferenciación Celular , Frataxina
6.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891993

RESUMEN

Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.


Asunto(s)
Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Simulación de Dinámica Molecular , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Mutación Missense , Simulación por Computador , Variación Genética
7.
PLoS One ; 19(5): e0303969, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814901

RESUMEN

BACKGROUND: The left ventricular (LV) changes which occur in Friedreich ataxia (FRDA) are incompletely understood. METHODS: Cardiac magnetic resonance (CMR) imaging was performed using a 1.5T scanner in subjects with FRDA who are homozygous for an expansion of an intron 1 GAA repeat in the FXN gene. Standard measurements were performed of LV mass (LVM), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). Native T1 relaxation time and the extracellular volume fraction (ECV) were utilised as markers of left ventricular (LV) diffuse myocardial fibrosis and late gadolinium enhancement (LGE) was utilised as a marker of LV replacement fibrosis. FRDA genetic severity was assessed using the shorter FXN GAA repeat length (GAA1). RESULTS: There were 93 subjects with FRDA (63 adults, 30 children, 54% males), 9 of whom had a reduced LVEF (<55%). A LVEDV below the normal range was present in 39%, a LVM above the normal range in 22%, and an increased LVM/LVEDV ratio in 89% subjects. In adults with a normal LVEF, there was an independent positive correlation of LVM with GAA1, and a negative correlation with age, but no similar relationships were seen in children. GAA1 was positively correlated with native T1 time in both adults and children, and with ECV in adults, all these associations independent of LVM and LVEDV. LGE was present in 21% of subjects, including both adults and children, and subjects with and without a reduced LVEF. None of GAA1, LVM or LVEDV were predictors of LGE. CONCLUSION: An association between diffuse interstitial LV myocardial fibrosis and genetic severity in FRDA was present independently of FRDA-related LV structural changes. Localised replacement fibrosis was found in a minority of subjects with FRDA and was not associated with LV structural change or FRDA genetic severity in subjects with a normal LVEF.


Asunto(s)
Ataxia de Friedreich , Gadolinio , Ventrículos Cardíacos , Imagen por Resonancia Magnética , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/diagnóstico por imagen , Ataxia de Friedreich/patología , Ataxia de Friedreich/complicaciones , Masculino , Femenino , Adulto , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/patología , Niño , Adolescente , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Medios de Contraste , Volumen Sistólico , Fibrosis , Frataxina
8.
Hum Genomics ; 18(1): 50, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778374

RESUMEN

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Asunto(s)
Biomarcadores , Ataxia de Friedreich , MicroARNs , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ataxia de Friedreich/sangre , MicroARNs/genética , MicroARNs/sangre , Masculino , Biomarcadores/sangre , Pronóstico , Femenino , Adulto , RNA-Seq , Adolescente , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Niño , Adulto Joven , Persona de Mediana Edad , Preescolar , Curva ROC , Estudios de Casos y Controles
9.
Mov Disord ; 39(7): 1088-1098, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686449

RESUMEN

BACKGROUND: Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. OBJECTIVES: The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. METHODS: In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). RESULTS: We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. CONCLUSIONS: We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia de Friedreich , Hierro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/sangre , Ataxia de Friedreich/metabolismo , Femenino , Masculino , Adulto , Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Persona de Mediana Edad , Imagen por Resonancia Magnética , Adulto Joven , Bazo/metabolismo , Leucocitos Mononucleares/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ferritinas/sangre , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/sangre , Hepcidinas/metabolismo , Páncreas/metabolismo , Páncreas/patología
10.
Expert Opin Pharmacother ; 25(5): 529-539, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622054

RESUMEN

INTRODUCTION: Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED: The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION: The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.


Asunto(s)
Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , Humanos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Terapia Genética/métodos , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Proteínas de Unión a Hierro/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Triterpenos
11.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631900

RESUMEN

Immunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN. Remarkably, these microglia deficient in FXN display heightened reactive responses to inflammatory stimuli. Furthermore, our metabolomic analyses reveal a shift towards glycolysis and itaconate production in these cells. Remarkably, treatment with butyrate counteracts these immunometabolic changes, triggering an antioxidant response via the itaconate-Nrf2-GSH pathways and suppressing the expression of inflammatory genes. Furthermore, we identify Hcar2 (GPR109A) as a mediator involved in restoring the homeostasis of microglia without FXN. Motor function tests conducted on FRDA mice underscore the neuroprotective attributes of butyrate supplementation, enhancing neuromotor performance. In conclusion, our findings elucidate the role of disrupted homeostatic function in cerebellar microglia in the pathogenesis of FRDA. Moreover, they underscore the potential of butyrate to mitigate inflammatory gene expression, correct metabolic imbalances, and improve neuromotor capabilities in FRDA.


Asunto(s)
Frataxina , Ataxia de Friedreich , Succinatos , Animales , Ratones , Butiratos , Frataxina/genética , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Glucosa , Microglía/metabolismo
12.
Curr Opin Pediatr ; 36(3): 331-341, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38655812

RESUMEN

PURPOSE OF REVIEW: We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS: We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY: Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.


Asunto(s)
Trastornos del Movimiento , Niño , Humanos , Estimulación Encefálica Profunda , Ataxia de Friedreich/terapia , Ataxia de Friedreich/genética , Terapia Genética/métodos , Trastornos del Movimiento/terapia , Medicina de Precisión/métodos , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Tourette/terapia , Síndrome de Tourette/genética
13.
Ann Clin Transl Neurol ; 11(5): 1290-1300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556905

RESUMEN

OBJECTIVES: Friedreich ataxia (FRDA) is a rare genetic disorder caused by mutations in the FXN gene, leading to progressive coordination loss and other symptoms. The recently approved omaveloxolone targets this condition but is limited to patients over 16 years of age, highlighting the need for pediatric treatments due to the disorder's early onset and more rapid progression in children. This population also experiences increased non-neurological complications; the FACHILD study aimed to augment and expand the knowledge about the natural history of the disease and clinical outcome assessments for trials in children in FRDA. METHODS: The study enrolled 108 individuals aged 7-18 years with a confirmed FRDA diagnosis, with visits occurring from October 2017 to November 2022 across three institutions. Several measures were introduced to minimize the impact of the COVID-19 pandemic, including virtual visits. Outcome measures centered on the mFARS score and its subscores, and data were analyzed using mixed models for repeated measures. For context and to avoid misinterpretation, the analysis was augmented with data from patients enrolled in the Friedreich's Ataxia Clinical Outcome Measures Study. RESULTS: Results confirmed the general usefulness of the mFARS score in children, but also highlighted issues, particularly with the upper limb subscore (FARS B). Increased variability, limited homogeneity across study subgroups, and potential training effects might limit mFARS application in clinical trials in pediatric populations. INTERPRETATION: The FARS E (Upright Stability) score might be a preferred outcome measure in this patient population.


Asunto(s)
Ataxia de Friedreich , Humanos , Ataxia de Friedreich/fisiopatología , Ataxia de Friedreich/genética , Ataxia de Friedreich/diagnóstico , Niño , Adolescente , Masculino , Femenino , COVID-19/complicaciones , Evaluación de Resultado en la Atención de Salud , Índice de Severidad de la Enfermedad
15.
Stem Cell Res ; 77: 103382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484450

RESUMEN

Friedreich's ataxia is a spinocerebellar degenerative disease caused by microsatellite (GAA.TTC)n repeat expansion in the first intron of FXN gene. Here, we developed iPSC lines from an FRDA patient (IGIBi016-A) and non-FRDA healthy control (IGIBi017-A). Both iPSC lines displayed typical iPSC morphology, expression of pluripotency markers, regular karyotypes (46, XY; 46, XX), capacity to grow into three germ layers, and FRDA hallmark -GAA repeat expansion and decreased FXN mRNA. Through these iPSC lines, FRDA phenotypes may be replicated in the in vitro assays, by creating neuron subtypes, cardiomyocytes and 3D organoids, for molecular and cellular biomarkers and therapeutic applications.


Asunto(s)
Frataxina , Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Proteínas de Unión a Hierro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión a Hierro/genética , Intrones , Expansión de Repetición de Trinucleótido , Masculino , Línea Celular , Femenino
16.
EBioMedicine ; 102: 105077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513302

RESUMEN

BACKGROUND: An intronic GAA repeat expansion in FGF14 was recently identified as a cause of GAA-FGF14 ataxia. We aimed to characterise the frequency and phenotypic profile of GAA-FGF14 ataxia in a large Chinese ataxia cohort. METHODS: A total of 1216 patients that included 399 typical late-onset cerebellar ataxia (LOCA), 290 early-onset cerebellar ataxia (EOCA), and 527 multiple system atrophy with predominant cerebellar ataxia (MSA-c) were enrolled. Long-range and repeat-primed PCR were performed to screen for GAA expansions in FGF14. Targeted long-read and whole-genome sequencing were performed to determine repeat size and sequence configuration. A multi-modal study including clinical assessment, MRI, and neurofilament light chain was conducted for disease assessment. FINDINGS: 17 GAA-FGF14 positive patients with a (GAA)≥250 expansion (12 patients with a GAA-pure expansion, five patients with a (GAA)≥250-[(GAA)n (GCA)m]z expansion) and two possible patients with biallelic (GAA)202/222 alleles were identified. The clinical phenotypes of the 19 positive and possible positive cases covered LOCA phenotype, EOCA phenotype and MSA-c phenotype. Five of six patients with EOCA phenotype were found to have another genetic disorder. The NfL levels of patients with EOCA and MSA-c phenotypes were significantly higher than patients with LOCA phenotype and age-matched controls (p < 0.001). NfL levels of pre-ataxic GAA-FGF14 positive individuals were lower than pre-ataxic SCA3 (p < 0.001) and similar to controls. INTERPRETATION: The frequency of GAA-FGF14 expansion in a large Chinese LOCA cohort was low (1.3%). Biallelic (GAA)202/222 alleles and co-occurrence with other acquired or hereditary diseases may contribute to phenotypic variation and different progression. FUNDING: This study was funded by the National Key R&D Program of China (2021YFA0805200 to H.J.), the National Natural Science Foundation of China (81974176 and 82171254 to H.J.; 82371272 to Z.C.; 82301628 to L.W.; 82301438 to Z.L.; 82201411 to L.H.), the Innovation Research Group Project of Natural Science Foundation of Hunan Province (2020JJ1008 to H.J.), the Key Research and Development Program of Hunan Province (2020SK2064 to H.J.), the Innovative Research and Development Program of Development and Reform Commission of Hunan Province to H.J., the Natural Science Foundation of Hunan Province (2024JJ3050 to H.J.; 2022JJ20094 and 2021JJ40974 to Z.C.; 2022JJ40783 to L.H.; 2022JJ40703 to Z.L.), the Project Program of National Clinical Research Center for Geriatric Disorders (Xiangya Hospital, 2020LNJJ12 to H.J.), the Central South University Research Programme of Advanced Interdisciplinary Study (2023QYJC010 to H.J.) and the Science and Technology Innovation Program of Hunan Province (2022RC1027 to Z.C.). D.P. holds a Fellowship award from the Canadian Institutes of Health Research (CIHR).


Asunto(s)
Ataxia Cerebelosa , Ataxia de Friedreich , Anciano , Humanos , Canadá , Ataxia Cerebelosa/genética , Estudios de Cohortes , Ataxia de Friedreich/genética , Fenotipo , Expansión de Repetición de Trinucleótido
17.
Mov Disord ; 39(6): 965-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509638

RESUMEN

BACKGROUND: Patient-focused outcomes present a central need for trial-readiness across all ataxias. The Activities of Daily Living part of the Friedreich Ataxia Rating Scale (FARS-ADL) captures functional impairment and longitudinal change but is only validated in Friedreich Ataxia. OBJECTIVE: Validation of FARS-ADL regarding disease severity and patient-meaningful impairment, and its sensitivity to change across genetic ataxias. METHODS: Real-world registry data of FARS-ADL in 298 ataxia patients across genotypes were analyzed, including (1) cross-correlation with FARS-stage, Scale for the Assessment and Rating of Ataxia (SARA), Patient-Reported Outcome Measure (PROM)-ataxia, and European Quality of Life 5 Dimensions visual analogue scale (EQ5D-VAS); (2) sensitivity to change within a trial-relevant 1-year median follow-up, anchored in Patient Global Impression of Change (PGI-C); and (3) general linear modeling of factors age, sex, and depression (nine-item Patient Health Questionnaire [PHQ-9]). RESULTS: FARS-ADL correlated with overall disability (rhoFARS-stage = 0.79), clinical disease severity (rhoSARA = 0.80), and patient-reported impairment (rhoPROM-ataxia = 0.69, rhoEQ5D-VAS = -0.37), indicating comprehensive construct validity. Also at item level, and validated within genotype (SCA3, RFC1), FARS-ADL correlated with the corresponding SARA effector domains; and all items correlated to EQ5D-VAS quality of life. FARS-ADL was sensitive to change at a 1-year interval, progressing only in patients with worsening PGI-C. Minimal important change was 1.1. points based on intraindividual variability in patients with stable PGI-C. Depression was captured using FARS-ADL (+0.3 points/PHQ-9 count) and EQ5D-VAS, but not FARS-stage or SARA. CONCLUSION: FARS-ADL reflects both disease severity and patient-meaningful impairment across genetic ataxias, with sensitivity to change in trial-relevant timescales in patients perceiving change. It thus presents a promising patient-focused outcome for upcoming ataxia trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Actividades Cotidianas , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Calidad de Vida , Medición de Resultados Informados por el Paciente , Ataxia/fisiopatología , Ataxia/diagnóstico , Ataxia de Friedreich/fisiopatología , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Reproducibilidad de los Resultados , Anciano , Sistema de Registros , Adulto Joven , Diferencia Mínima Clínicamente Importante
19.
Ann Clin Transl Neurol ; 11(5): 1110-1121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396238

RESUMEN

OBJECTIVE: Most individuals with Friedreich ataxia (FRDA) have homozygous GAA triplet repeat expansions in the FXN gene, correlating with a typical phenotype of ataxia and cardiomyopathy. A minority are compound heterozygotes carrying a GAA expansion on one allele and a mutation on the other. The study aim was to examine phenotypic variation among compound heterozygotes. METHODS: Data on FXN mutations were obtained from the Friedreich Ataxia Clinical Outcome Measures Study (FA-COMS). We compared clinical features in a single-site FA-COMS cohort of 51 compound heterozygous and 358 homozygous patients, including quantitative measures of cardiac, neurologic, and visual disease progression. RESULTS: Non-GAA repeat mutations were associated with reduced cardiac disease, and patients with minimal/no function mutations otherwise had a typical FRDA phenotype but with significantly more severe progression. The partial function mutation group was characterized by relative sparing of bulbar and upper limb function, as well as particularly low cardiac involvement. Other clinical features in this group, including optic atrophy and diabetes mellitus, varied widely depending on the specific type of partial function mutation. INTERPRETATION: These data support that the typical FRDA phenotype is driven by frataxin deficiency, especially severe in compound heterozygotes with minimal/no function mutations, whereas the heterogeneous presentations of those with partial function mutations may indicate other contributing factors to FRDA pathogenesis.


Asunto(s)
Frataxina , Ataxia de Friedreich , Heterocigoto , Fenotipo , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Estudios de Cohortes , Ataxia de Friedreich/genética , Ataxia de Friedreich/fisiopatología , Mutación , Expansión de Repetición de Trinucleótido/genética
20.
Stem Cell Res ; 76: 103340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367363

RESUMEN

Friedreich's ataxia is a neurodegenerative disorder caused by the hyper expansion of (GAA-TTC)n triplet repeats in the first intron of the FXN gene. Here, we generated iPSC lines from two individuals with FRDA, both of whom have homozygous GAA repeat expansion in the first intron of FXN gene. Both iPSC lines demonstrated characteristics of pluripotency, including expression of pluripotency markers, stable karyotypes and ability to develop into all three germ layers, and presence of GAA repeat expansion with reduced FXN mRNA expression. These iPSC lines will serve as invaluable tools for investigating the pathophysiology and phenotypes of FRDA.


Asunto(s)
Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Expansión de Repetición de Trinucleótido/genética , Intrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA