Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802796

RESUMEN

RNA-binding proteins (RBPs) are key elements involved in post-transcriptional regulation. Ataxin-2 (ATXN2) is an evolutionarily conserved RBP protein, whose function has been studied in several model organisms, from Saccharomyces cerevisiae to the Homo sapiens. ATXN2 interacts with poly(A) binding proteins (PABP) and binds to specific sequences at the 3'UTR of target mRNAs to stabilize them. CTC-Interacting Domain3 (CID3) and CID4 are two ATXN2 orthologs present in plant genomes whose function is unknown. In the present study, phenotypical and transcriptome profiling were used to examine the role of CID3 and CID4 in Arabidopsis thaliana. We found that they act redundantly to influence pathways throughout the life cycle. cid3cid4 double mutant showed a delay in flowering time and a reduced rosette size. Transcriptome profiling revealed that key factors that promote floral transition and floral meristem identity were downregulated in cid3cid4 whereas the flowering repressor FLOWERING LOCUS C (FLC) was upregulated. Expression of key factors in the photoperiodic regulation of flowering and circadian clock pathways, were also altered in cid3cid4, as well as the expression of several transcription factors and miRNAs encoding genes involved in leaf growth dynamics. These findings reveal that ATXN2 orthologs may have a role in developmental pathways throughout the life cycle of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Ataxina-2/química , Luz , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Arabidopsis/genética , Regulación hacia Abajo/genética , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Mutación/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Transcriptoma/genética
2.
Biophys J ; 116(3): 540-550, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30638962

RESUMEN

The Rickettsia ∼1800-amino-acid autotransporter protein surface cell antigen 2 (Sca2) promotes actin polymerization on the surface of the bacterium to drive its movement using an actin comet-tail mechanism. Sca2 mimics eukaryotic formins in that it promotes both actin filament nucleation and elongation and competes with capping protein to generate filaments that are long and unbranched. However, despite these functional similarities, Sca2 is structurally unrelated to eukaryotic formins and achieves these functions through an entirely different mechanism. Thus, while formins are dimeric, Sca2 functions as a monomer. However, Sca2 displays intramolecular interactions and functional cooperativity between its N- and C-terminal domains that are crucial for actin nucleation and elongation. Here, we map the interaction of N- and C- terminal fragments of Sca2 and their contribution to actin binding and nucleation. We find that both the N- and C-terminal regions of Sca2 interact with actin monomers but only weakly, whereas the full-length protein binds two actin monomers with high affinity. Moreover, deletions at both ends of the N- and C-terminal regions disrupt their ability to interact with each other, suggesting that they form a contiguous ring-like structure that wraps around two actin subunits, analogous to the formin homology-2 domain. The discovery of Sca2 as an actin nucleator followed the identification of what appeared to be a repeat of three Wiskott-Aldrich syndrome homology 2 (WH2) domains in the middle of the molecule, consistent with the presence of WH2 domains in most actin nucleators. However, we show here that contrary to previous assumptions, Sca2 does not contain WH2 domains. Instead, our analysis indicates that the region containing the putative WH2 domains is folded as a globular domain that cooperates with other parts of the Sca2 molecule for actin binding and nucleation.


Asunto(s)
Actinas/química , Ataxina-2/química , Ataxina-2/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Subunidades de Proteína/metabolismo , Rickettsia , Actinas/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Dominios Proteicos
3.
Wiley Interdiscip Rev RNA ; 9(6): e1488, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29869836

RESUMEN

Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Asunto(s)
Ataxina-2/fisiología , Animales , Ataxina-2/química , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN
4.
J Cell Biochem ; 119(1): 499-510, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28612427

RESUMEN

Spinocerebellar degeneration, termed as ataxia is a neurological disorder of central nervous system, characterized by limb in-coordination and a progressive gait. The patient also demonstrates specific symptoms of muscle weakness, slurring of speech, and decreased vibration senses. Expansion of polyglutamine trinucleotide (CAG) within ATXN2 gene with 35 or more repeats, results in spinocerebellar ataxia type-2. Protein ataxin-2 coded by ATXN2 gene has been reported to have a crucial role in translation of the genetic information through sequestering the histone acetyl transferases (HAT) resulting in a state of hypo-acetylation. In the present study, we have evaluated the outcome for 122 non synonymous single nucleotide polymorphisms (nsSNPs) reported within ATXN2 gene through computational tools such as SIFT, PolyPhen 2.0, PANTHER, I-mutant 2.0, Phd-SNP, Pmut, MutPred. The apo and mutant (L305V and Q339L) form of structures for the ataxin-2 protein were modeled for gaining insights toward 3D spatial arrangement. Further, molecular dynamics simulations and structural analysis were performed to observe the brunt of disease associated nsSNPs toward the strength and secondary properties of ataxin-2 protein structure. Our results showed that, L305V is a highly deleterious and disease causing point substitution. Analysis based on RMSD, RMSF, Rg, SASA, number of hydrogen bonds (NH bonds), covariance matrix trace, projection analysis for eigen vector demonstrated a significant instability and conformation along with rise in mutant flexibility values in comparison to the apo form of ataxin-2 protein. The study provides a blue print of computational methodologies to examine the ataxin-blend SNPs. J. Cell. Biochem. 119: 499-510, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Ataxina-2/química , Ataxina-2/genética , Biología Computacional/métodos , Simulación de Dinámica Molecular , Polimorfismo de Nucleótido Simple , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Bases de Datos Factuales , Humanos , Enlace de Hidrógeno , Análisis de Componente Principal , Programas Informáticos
5.
Cell Syst ; 4(2): 157-170.e14, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28131822

RESUMEN

Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To "humanize" this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy.


Asunto(s)
Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Ataxina-2/química , Ataxina-2/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Susceptibilidad a Enfermedades , Retículo Endoplásmico/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Redes Reguladoras de Genes/genética , Genoma Fúngico , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/genética , Neuronas/citología , Neuronas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética
6.
J Biomol Struct Dyn ; 35(3): 504-519, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26861241

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of trinucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms.


Asunto(s)
Ataxina-2/química , Ataxina-3/química , Modelos Moleculares , Péptidos/química , Conformación Proteica , Pliegue de Proteína , Secuencia de Aminoácidos , Proteínas Portadoras/química , Secuencia Conservada , Péptidos/farmacología , Posición Específica de Matrices de Puntuación , Unión Proteica , Dominios Proteicos , Pliegue de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína
7.
Neurobiol Aging ; 36(3): 1603.e11-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25457026

RESUMEN

An effective treatment for amyotrophic lateral sclerosis (ALS) has not yet been found because the pathogenesis of this fatal disease is not well understood. A number of previous studies demonstrated that intermediate-length polyglutamine repeats within the ataxin-2 gene (ATXN2) might be a risk factor among patients with ALS in Western countries. Here, we aim to determine whether this sequence is a risk factor in Eastern Chinese ALS patients. Therefore, 379 unrelated sporadic ALS patients, 15 unrelated familial ALS patients, and 900 neurologically normal controls were studied. The ATXN2 CAG repeats were amplified using polymerase chain reaction. The products were separated on an 8% polyacrylamide gel and confirmed using Sanger sequencing. The results were evaluated using SPSS 17.0. We found that ATXN2 intermediate-length polyglutamine expansions greater than 24 and 27 repeats were associated with sporadic ALS. Our finding supports the hypothesis that ATXN2 plays an important role in the pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Péptidos/genética , Expansión de Repetición de Trinucleótido , Adolescente , Adulto , Anciano , Pueblo Asiatico/genética , Ataxina-2/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA