Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
Más filtros

Intervalo de año de publicación
1.
Rev Argent Microbiol ; 56(3): 232-240, 2024.
Artículo en Español | MEDLINE | ID: mdl-39218718

RESUMEN

Lysinibacillus sphaericus is a bacterium that, along with Bacillus thuringiensis var. israelensis, is considered the best biological insecticide for controlling mosquito larvae and an eco-friendly alternative to chemical insecticides. It depends on peptidic molecules such as N-acetylglucosamine to obtain carbon sources and possesses a phosphotransferase system (PTS) for their incorporation. Some strains carry S-layer proteins, whose involvement in metal retention and larvicidal activity against disease-carrying mosquitoes has been demonstrated. Alterations in the amino sugar incorporation system could affect the protein profile and functionality. Strain ASB13052 and the isogenic mutant in the ptsH gene, which is predominant in the PTS signaling pathway, were used in this study. For the first time, the presence of N-glycosylated S-layer proteins was confirmed in both strains, with a variation in their molecular weight pattern depending on the growth phase. In the exponential phase, an S-layer protein greater than 130 kDa was found in the ptsH mutant, which was absent in the wild-type strain. The mutant strain exhibited altered and incomplete low quality sporulation processes. Hemolysis analysis, associated with larvicidal activity, showed that the ptsH mutant has higher lytic efficiency, correlating with the high molecular weight protein. The results allow us to propose the potential effects that arise as a result of the absence of amino sugar transport on hemolytic activity, S-layer isoforms, and the role of N-acetylglucosamine in larvicidal activity.


Asunto(s)
Acetilglucosamina , Bacillaceae , Glicoproteínas de Membrana , Esporas Bacterianas , Bacillaceae/genética , Bacillaceae/metabolismo , Acetilglucosamina/metabolismo , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Hemólisis/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico
2.
BMC Genomics ; 25(1): 840, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242500

RESUMEN

BACKGROUND: Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS: High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS: Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.


Asunto(s)
Antozoos , Perfilación de la Expresión Génica , Larva , Metamorfosis Biológica , Animales , Antozoos/genética , Antozoos/crecimiento & desarrollo , Antozoos/microbiología , Metamorfosis Biológica/genética , Larva/crecimiento & desarrollo , Transcriptoma , Bacillaceae/genética , Bacillaceae/crecimiento & desarrollo , Arrecifes de Coral
3.
Parasit Vectors ; 17(1): 391, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272177

RESUMEN

BACKGROUND: Microbial larvicides containing both LysiniBacillus sphaericus and Bacillus thuringiensis svar. israelensis (Bti) insecticidal crystals can display advantages for mosquito control. This includes a broader action against larvae that are refractory to the Binary (Bin) toxin from L. sphaericus, as Bin-resistant Culex quinquefasciatus and Aedes aegypti naturally refractory larvae, which often co-habit urban areas of endemic countries for arboviruses. Our principal goal was to assess the toxicity of a combined L. sphaericus/Bti larvicide (Vectomax FG™) to Cx. quinquefasciatus (susceptible CqS and Bin-resistant CqR) and Ae. aegypti (Rocke) and to determine its persistence in the breeding sites with those larvae. METHODS: The toxicity of a combined L. sphaericus/Bti product (VectoMax FG™) to larvae was performed using bioassays, and persistence was evaluated in simulate field trials carried out under the shade, testing two label concentrations during 12 weeks. A laboratory strain SREC, established with CqS and CqR larvae, was kept during four generations to evaluate the ability of the L. sphaericus/Bti to eliminate resistant larvae. RESULTS: The L. sphaericus/Bti showed toxicity (mg/L) to larvae from all strains with a decreasing pattern for CqS (LC50 = 0.006, LC90 = 0.030), CqR (LC50 = 0.009, LC90 = 0.069), and Rocke (LC50 = 0.042, LC90 = 0.086). In a simulated field trial, the larvicide showed a persistence of 6 weeks and 8 weeks, controlling larvae from all strains in containers with 100 L of water, using 2 g or 4 g per container (100 L), respectively. The treatment of SREC larvae with L. sphaericus/Bti showed its capacity to eliminate the Bin-resistant individuals using suitable concentrations to target those larvae. CONCLUSIONS: Our results showed the high efficacy and persistence of the L. sphaericus/Bti larvicide to control Cx. quinquefasciatus and Ae. aegypti that might cohabit breeding sites. These findings demonstrated that such larvicides can be an effective tool for controlling those species in urban areas with a low potential for selecting resistance.


Asunto(s)
Aedes , Bacillaceae , Bacillus thuringiensis , Culex , Insecticidas , Larva , Control de Mosquitos , Control Biológico de Vectores , Animales , Culex/efectos de los fármacos , Aedes/efectos de los fármacos , Larva/efectos de los fármacos , Control de Mosquitos/métodos , Insecticidas/farmacología , Bacillaceae/química , Control Biológico de Vectores/métodos , Resistencia a los Insecticidas , Mosquitos Vectores/efectos de los fármacos
4.
Int J Biol Macromol ; 277(Pt 4): 134583, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122074

RESUMEN

Laccase (EC 1.10.3.2), as eco-friendly biocatalysts, holds immense potential for sustainable applications across various environmental and industrial sectors. Despite the growing interest, the exploration of cold-adapted laccases, especially their unique properties and applicability, remains limited. In this study, we have isolated, cloned, expressed, and purified a novel laccase from Peribacillus simplex (GenBank: PP430751), which was derived from permafrost layer. The recombinant laccase (PsLac) exhibited optimal activity at 30 °C and a pH optimum of 3.5. Remarkably, PsLac exhibited remarkable stability in the presence of organic solvents, with its enzyme activity increasing by 20 % after being incubated in a 30 % trichloromethane solution for 12 h, compared to its initial activity. Furthermore, the enzyme preserved 100 % of its activity after undergoing eight freeze-thaw cycles. Notably, the catalytic center of PsLac contains Zn2+ instead of the typically observed Cu2+ found in other laccases, and metal-ion substitution experiments raised the catalytic efficiency to 3-fold when Zn2+ was replaced with Fe2+. Additionally, PsLac has demonstrated a proficient ability to degrade phenolic pollutants, such as hydroquinone, even at a low temperature of 16 °C, positioning it as a promising candidate for environmental bioremediation and contributing to cleaner production processes.


Asunto(s)
Biodegradación Ambiental , Frío , Lacasa , Lacasa/química , Lacasa/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Bacillaceae/enzimología , Fenoles/metabolismo , Fenoles/química , Clonación Molecular , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Cinética
5.
World J Microbiol Biotechnol ; 40(10): 296, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122994

RESUMEN

Steroid hormones exhibit potent endocrine disrupting activity and have been shown to disrupt the equilibrium of aquatic ecosystems and pose a threat to public health through their persistent and carcinogenic effects. Pontibacillus chungwhensis HN14, a moderately halophilic bacterium with the capacity to effectively degrade various polycyclic aromatic hydrocarbons and other organic pollutants, was previously isolated. Additionally, the strain HN14 showed strong environmental adaptability under various environmental stress conditions. In this study, the steroid degradation by strain HN14 was studied for the first time. We demonstrated that strain HN14 could degrade estradiol (E2) to maintain the growth of the strain and could convert E2 to estrone. Additionally, the efficient substrate degradation efficiency of P. chungwhensis HN14 under high salinity and high substrate concentration conditions was demonstrated. Furthermore, a 17ß-hydroxysteroid dehydrogenase, 17ß-HSD(HN14), was identified in strain HN14. Comparative analysis reveals that 17ß-HSD(HN14) shares approximately 38% sequence identity with 17ß-HSDx from Rhodococcus sp. P14. In addition, 100 µg of purified 17ß-HSD(HN14) could effectively convert about 40% of 0.25 mM of E2 within 1 h period, with an enzyme activity of 17.5 U/mg, and catalyze the dehydrogenation of E2 and testosterone at the C-17 position. The characterization of purified enzyme properties reveals that 17ß-HSD(HN14) exhibits exceptional structural robustness and enzymatic efficacy even under high salinity conditions of up to 20%. Overall, this study enhances our comprehension of steroid biodegradation in strain HN14 and contributes novel ideas and theoretical underpinnings for advancing bioremediation technologies targeting steroid pollution in high-saline environments.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Biodegradación Ambiental , Salinidad , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/genética , Bacillaceae/enzimología , Bacillaceae/genética , Bacillaceae/metabolismo , Estradiol/metabolismo , Estrona/metabolismo , Filogenia , Disruptores Endocrinos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Esteroides/metabolismo
6.
Water Environ Res ; 96(8): e11102, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39155050

RESUMEN

Magnetite nanoparticles (nano-Fe3O4) and nano-Fe3O4 immobilized with bacterial extracellular polymeric substances (EPSs) extracted from Lysinibacillus sp. WH (Fe3O4/bact) were comparatively studied for the removal of Cr (VI) ions from aqueous solution in batch study. The objectives were to explore the removal of Cr (VI) efficiency by nano-Fe3O4 and Fe3O4/bact under varying bacterial concentrations at a range of acidic pH. Results indicated that 150 ppm Cr (VI) could be effectively removed by 5 g/L of nano-Fe3O4 at pH 4, with the efficiency of 89.2 ± 12%. The equilibrium time, determined by a pseudo-second-order model (R2 = 0.9983), was after 5 h, indicating chemical adsorption. The Cr (VI) removal by the nano-Fe3O4 immobilized with bacterial EPS was effective and steady under a wide range of acidic conditions although bacterial EPS has an alkaline nature. Here, we are the first to demonstrate that Cr (VI) removal efficiency by different concentrations of EPS was not significantly different, suggesting EPS concentration is possibly not the most crucial factor to be optimized for Cr (VI) removal in the future. This study shows the potential application of nano-Fe3O4 immobilized with bacterial EPS for wastewater treatment. PRACTITIONER POINTS: The equilibrium time for magnetite nanoparticles to remove Cr (VI) is 5 h, suggesting chemical adsorption. The Cr (VI) removal efficiency of either magnetite nanoparticles or bacterial EPS is stable under a wide range of acidic conditions. Magnetite nanoparticles immobilized with bacterial EPS extracted from Lysinibacillus sp. WH has a potential application for Cr (VI) removal in wastewater.


Asunto(s)
Bacillaceae , Cromo , Nanopartículas de Magnetita , Contaminantes Químicos del Agua , Nanopartículas de Magnetita/química , Bacillaceae/metabolismo , Cromo/química , Contaminantes Químicos del Agua/química , Matriz Extracelular de Sustancias Poliméricas/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Adsorción
7.
Microb Cell Fact ; 23(1): 220, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107838

RESUMEN

BACKGROUND: Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS: A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS: These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Compuestos de Plata , Humanos , Nanopartículas del Metal/química , Compuestos de Plata/farmacología , Compuestos de Plata/química , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Pruebas de Sensibilidad Microbiana , Bacillaceae/metabolismo , Óxidos/farmacología , Óxidos/química , Fibroblastos/efectos de los fármacos , Apoptosis/efectos de los fármacos
8.
Toxins (Basel) ; 16(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39195779

RESUMEN

Lysinibacillus sphaericus harboring Binary (BinA and BinB) toxins is highly toxic against Anopheles and Culex mosquito larvae. The Anopheles Ag55 cell line is a suitable model for investigating the mode of Bin toxin action. Based on the low-levels of α-glycosidase Agm3 mRNA in Ag55 cells and the absence of detectable Agm3 proteins, we hypothesized that a scavenger receptor could be mediating Bin cytotoxicity. Preliminary RNA interference knockdown of the expressed scavenger receptors, combined with Bin cytotoxicity assays, was conducted. The scavenger Receptor C1 (SCRC1) became the focus of this study, as a putative receptor for Bin toxins in Ag55 cells, and SCRBQ2 was selected as a negative control. Open reading frames encoding SCRC1 and SCRBQ2 were cloned and expressed in vitro, and polyclonal antibodies were prepared for immunological analyses. The RNAi silencing of SCRC1 and SCRBQ2 resulted in the successful knockdown of both SCRC1 and SCRBQ2 transcripts and protein levels. The cytolytic toxicity of Bin against Ag55 cells was severely reduced after the SCRC1-RNAi treatment. The phagocytic receptor protein SCRC1 mediates endocytosis of the Bin toxin into Ag55 cells, thereby facilitating its internal cytological activity. The results support a mechanism of the Bin toxin entering Ag55 cells, possibly via SCRC1-mediated endocytosis, and encourage investigations into how Bin is transferred from its bound form on the midgut epithelial cells into the epithelial endocytic system.


Asunto(s)
Anopheles , Bacillaceae , Toxinas Bacterianas , Animales , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/genética , Bacillaceae/genética , Bacillaceae/metabolismo , Línea Celular , Anopheles/genética , Anopheles/efectos de los fármacos , Interferencia de ARN , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
9.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956295

RESUMEN

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Asunto(s)
Bacillaceae , Polilisina , Serina Proteasas , Streptomyces , Streptomyces/enzimología , Polilisina/farmacología , Polilisina/química , Polilisina/metabolismo , Serina Proteasas/metabolismo , Bacillaceae/enzimología , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Genoma Viral , Animales , Norovirus/efectos de los fármacos , Norovirus/genética , Inactivación de Virus/efectos de los fármacos , Caliciviridae/genética , Antivirales/farmacología
10.
Mol Biol Rep ; 51(1): 800, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001994

RESUMEN

BACKGROUND: Mosquitoes are widespread globally and have contributed to transmitting pathogens to humans and the burden of vector-borne diseases. They are effectively controlled at their larval stages by biocontrol agents. Unravelling natural sources for microbial agents can lead us to novel potential candidates for managing mosquito-borne diseases. In the present study, an attempt was made to isolate a novel bacterium from the field-collected agricultural soil for larvicidal activity and promising bacterial metabolites for human healthcare. METHODS AND RESULTS: Field-collected soil samples from the Union territory of Puducherry, India, have been used as the source of bacteria. Isolate VCRC B655 belonging to the genus Lysinibacillus was identified by 16S rRNA gene sequencing and exhibited promising larvicidal activity against different mosquito species, including Culex (Cx.) quinquefasciatus, Anopheles (An.) stephensi, and Aedes (Ae.) aegypti. The lethal concentration (LC) of Lysinibacillus sp. VCRCB655 was observed to be high for Cx. quiquefasciatus: LC50 at 0.047 mg/l, LC90 at 0.086 mg/l, followed by An. stephensi and Ae. aegypti (LC50: 0.6952 mg/l and 0.795 mg/l) respectively. Additionally, metabolic profiling of the culture supernatant was carried out through Gas chromatography and Mass spectrophotometry (GC/MS) and identified 15 major secondary metabolites of different metabolic classes. Diketopiperazine (DKPs), notably pyro lo [1, 2-a] pyrazine1, 4-dione, are the abundant compounds reported for antioxidant activity, and an insecticide compound benzeneacetic acid was also identified. CONCLUSIONS: A new bacterial isolate, Lysinibacillus sp. VCRC B655 has been identified with significant larvicidal activity against mosquito larvae with no observed in non-target organisms. GC-MS analysis revealed diverse bioactive compounds with substantial biological applications. In conclusion, Lysinibacillus sp. VCRC B655 showed promise as an alternative biocontrol agent for mosquito vector control, with additional biological applications further enhancing its significance.


Asunto(s)
Bacillaceae , Cromatografía de Gases y Espectrometría de Masas , Larva , Control de Mosquitos , ARN Ribosómico 16S , Animales , Bacillaceae/aislamiento & purificación , Bacillaceae/metabolismo , Bacillaceae/genética , Cromatografía de Gases y Espectrometría de Masas/métodos , Control de Mosquitos/métodos , Larva/microbiología , ARN Ribosómico 16S/genética , India , Microbiología del Suelo , Anopheles/microbiología , Culex/microbiología , Filogenia , Aedes/microbiología , Insecticidas/farmacología
11.
Antonie Van Leeuwenhoek ; 117(1): 100, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001997

RESUMEN

An isolate of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from soil when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain was closely related to Lysinibacillus fusiformis NRRL NRS-350T (99.7%) and Lysinibacillus sphaericus NRRL B-23268T (99.2%). In phenotypic characterization, the novel strain was found to grow between 10 and 45 °C and tolerate up to 8% (w/v) NaCl. Furthermore, the strain grew in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15: 0 (52.3%), anteiso-C15: 0 (14.8%), C16:1ω7C alcohol (11.2%), and C16: 0 (9.5%). The cell-wall peptidoglycan contained lysine-aspartic acid, the same as congeners. A draft genome was assembled and the DNA G+C content was determined to be 37.1% (mol content). A phylogenomic analysis on the core genome of the new strain and 5 closest type strains of Lysinibacillus revealed this strain formed a distinct monophyletic clade with the nearest neighbor being Lysinibacillus fusiformis. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed this species was below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus pinottii sp. nov. is proposed, with type strain PB211T (= NRRL B-65672T, = CCUG 77181T).


Asunto(s)
Bacillaceae , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Bacillaceae/genética , Bacillaceae/clasificación , Bacillaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Peptidoglicano , Animales , Genoma Bacteriano , Análisis de Secuencia de ADN , Pared Celular/química
12.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38991993

RESUMEN

AIMS: Temperate phages insert their genome into the host's chromosome. As prophages, they remain latent in the genome until an induction event leads to lytic phage production. When this occurs in a starter culture that has been added to food fermentation, this can impair the fermentation success. This study aimed to analyze prophage inducibility in the Latilactobacillus curvatus TMW 1.591 strain during meat fermentation and investigate whether an induction signal before cryopreservation is maintained during storage and can lead to phage-induced lysis after culture activation. METHODS AND RESULTS: A prophage-free isogenic derivative of the model starter organism, L. curvatus TMW 1.591, was developed as a negative control (L. curvatus TMW 1.2406). Raw meat fermentation was performed with the wild-type (WT) and phage-cured strains. The WT strain produced high numbers of phages (5.2 ± 1.8 × 107 plaque-forming units g-1) in the meat batter. However, the prophage did not significantly affect the meat fermentation process. Induction experiments suggested an acidic environment as a potential trigger for prophage induction. Phage induction by ultraviolet light before strain cryopreservation remains functional for at least 10 weeks of storage. CONCLUSIONS: Intact prophages are active during meat fermentation. However, in this study, this has no measurable consequences for fermentation, suggesting a high resiliency of meat fermentation against phages. Inadequate handling of lysogenic starter strains, even before preservation, can lead to phage introduction into food fermentation and unintended host lysis.


Asunto(s)
Bacteriófagos , Fermentación , Microbiología de Alimentos , Productos de la Carne , Profagos , Productos de la Carne/microbiología , Profagos/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Animales , Bacillaceae/virología , Bacillaceae/genética , Bacillaceae/metabolismo , Activación Viral
13.
BMC Genomics ; 25(1): 723, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054411

RESUMEN

BACKGROUND: The genus Geobacillus and its associated taxa have been the focal point of numerous thermophilic biotechnological investigations, both at the whole cell and enzyme level. By contrast, comparatively little research has been done on its recently delineated sister genus, Parageobacillus. Here we performed pan-genomic analyses on a subset of publicly available Parageobacillus and Saccharococcus genomes to elucidate their biotechnological potential. RESULTS: Phylogenomic analysis delineated the compared taxa into two distinct genera, Parageobacillus and Saccharococcus, with P. caldoxylosilyticus isolates clustering with S. thermophilus in the latter genus. Both genera present open pan-genomes, with the species P. toebii being characterized with the highest novel gene accrual. Diversification of the two genera is driven through the variable presence of plasmids, bacteriophages and transposable elements. Both genera present a range of potentially biotechnologically relevant features, including a source of novel antimicrobials, thermostable enzymes including DNA-active enzymes, carbohydrate active enzymes, proteases, lipases and carboxylesterases. Furthermore, they present a number of metabolic pathways pertinent to degradation of complex hydrocarbons and xenobiotics and for green energy production. CONCLUSIONS: Comparative genomic analyses of Parageobacillus and Saccharococcus suggest that taxa in both of these genera can serve as a rich source of biotechnologically and industrially relevant secondary metabolites, thermostable enzymes and metabolic pathways that warrant further investigation.


Asunto(s)
Bacillaceae , Genoma Bacteriano , Genómica , Filogenia , Genómica/métodos , Bacillaceae/genética , Bacillaceae/clasificación , Biotecnología
14.
Appl Microbiol Biotechnol ; 108(1): 370, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861018

RESUMEN

Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.


Asunto(s)
Bacillaceae , Genoma Bacteriano , Genómica , Bacillaceae/genética , Bacillaceae/metabolismo , Composición de Base , Familia de Multigenes , Arecaceae/microbiología , Desarrollo de la Planta , Secuenciación Completa del Genoma , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/biosíntesis , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Estrés Fisiológico
15.
Microb Cell Fact ; 23(1): 165, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840167

RESUMEN

The increased use of biofuels in place of fossil fuels is one strategy to support the transition to net-zero carbon emissions, particularly in transport applications. However, expansion of the use of 1st generation crops as feedstocks is unsustainable due to the conflict with food use. The use of the lignocellulosic fractions from plants and/or co-products from food production including food wastes could satisfy the demand for biofuels without affecting the use of land and the availability of food, but organisms which can readily ferment all the carbohydrates present in these feedstocks often suffer from more severe bioethanol inhibition effects than yeast. This paper demonstrates the potential of hot gas microbubbles to strip ethanol from a thermophilic fermentation process using Parageobacillus thermoglucosidasius TM333, thereby reducing product inhibition and allowing production to continue beyond the nominal toxic ethanol concentrations of ≤ 2% v/v. Using an experimental rig in which cells were grown in fed-batch cultures on sugars derived from waste bread, and the broth continuously cycled through a purpose-built microbubble stripping unit, it was shown that non/low-inhibitory dissolved ethanol concentrations could be maintained throughout, despite reaching productivities equivalent to 4.7% v/v dissolved ethanol. Ethanol recovered in the condensate was at a concentration appropriate for dewatering to be cost effective and not prohibitively energy intensive. This suggests that hot microbubble stripping could be a valuable technology for the continuous production of bioethanol from fermentation processes which suffer from product inhibition before reaching economically viable titres, which is typical of most thermophilic ethanologenic bacteria.


Asunto(s)
Biocombustibles , Etanol , Fermentación , Etanol/metabolismo , Calor , Microburbujas , Gases/metabolismo , Bacillaceae/metabolismo
16.
World J Microbiol Biotechnol ; 40(7): 232, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834810

RESUMEN

Microbially induced carbonate precipitation (MICP) has been used to cure rare earth slags (RES) containing radionuclides (e.g. Th and U) and heavy metals with favorable results. However, the role of microbial extracellular polymeric substances (EPS) in MICP curing RES remains unclear. In this study, the EPS of Lysinibacillus sphaericus K-1 was extracted for the experiments of adsorption, inducing calcium carbonate (CaCO3) precipitation and curing of RES. The role of EPS in in MICP curing RES and stabilizing radionuclides and heavy metals was analyzed by evaluating the concentration and morphological distribution of radionuclides and heavy metals, and the compressive strength of the cured body. The results indicate that the adsorption efficiencies of EPS for Th (IV), U (VI), Cu2+, Pb2+, Zn2+, and Cd2+ were 44.83%, 45.83%, 53.7%, 61.3%, 42.1%, and 77.85%, respectively. The addition of EPS solution resulted in the formation of nanoscale spherical particles on the microorganism surface, which could act as an accumulating skeleton to facilitate the formation of CaCO3. After adding 20 mL of EPS solution during the curing process (Treat group), the maximum unconfined compressive strength (UCS) of the cured body reached 1.922 MPa, which was 12.13% higher than the CK group. The contents of exchangeable Th (IV) and U (VI) in the cured bodies of the Treat group decreased by 3.35% and 4.93%, respectively, compared with the CK group. Therefore, EPS enhances the effect of MICP curing RES and reduces the potential environmental problems that may be caused by radionuclides and heavy metals during the long-term sequestration of RES.


Asunto(s)
Bacillaceae , Carbonato de Calcio , Matriz Extracelular de Sustancias Poliméricas , Metales Pesados , Torio , Uranio , Uranio/química , Uranio/metabolismo , Carbonato de Calcio/química , Torio/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Bacillaceae/metabolismo , Metales de Tierras Raras/química , Adsorción , Precipitación Química
17.
Artículo en Inglés | MEDLINE | ID: mdl-38913036

RESUMEN

A novel chemoheterotrophic iron-reducing micro-organism, designated as strain LSZ-M11000T, was isolated from sediment of the Marianas Trench. Phylogenetic analysis based on the 16S rRNA gene revealed that strain LSZ-M11000T belonged to genus Tepidibacillus, with 97 % identity to that of Tepidibacillus fermentans STGHT, a mesophilic bacterium isolated from the Severo-Stavropolskoye underground gas storage facility in Russia. The polar lipid profile of strain LSZ-M11000T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as other unidentified phospholipids and lipids. The major fatty acids were C16 : 0 (28.4 %), C18 : 0 (15.8 %), iso-C15 : 0 (12.9 %), and anteiso-C15 : 0 (12.0 %). Strain LSZ-M11000T had no menaquinone. Genome sequencing revealed that the genome size of strain LSZ-M11000T was 2.97 Mb and the DNA G+C content was 37.9 mol%. The average nucleotide identity values between strain LSZ-M11000T and its close phylogenetic relatives, Tepidibacillus fermentans STGHT and Tepidibacillus decaturensis Z9T, were 76.4 and 72.6 %, respectively. The corresponding DNA-DNA hybridization estimates were 20.9 and 23.4 %, respectively. Cells of strain LSZ-M11000T were rod-shaped (1.0-1.5×0.3-0.5 µm). Using pyruvate as an electron donor, it was capable of reducing KMnO4, MnO2, As(V), NaNO3, NaNO2, Na2SO4, Na2S2O3, and K2Cr2O7. Based on phenotypic, genotypic, and phylogenetic evidence, strain LSZ-M11000T is proposed to be a novel strain of the genus Tepidibacillus, for which the name Tepdibacillus marianensis is proposed. The type strain is LSZ-M11000T (=CCAM 1008T=JCM 39431T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hierro , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , ADN Bacteriano/genética , Federación de Rusia , Hierro/metabolismo , Procesos Heterotróficos , Hibridación de Ácido Nucleico , Bacillaceae/clasificación , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Secuenciación Completa del Genoma , Oxidación-Reducción
18.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 474-492, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935340

RESUMEN

Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.


Asunto(s)
Proteínas Fimbrias , Fimbrias Bacterianas , Fimbrias Bacterianas/química , Cristalografía por Rayos X , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Modelos Moleculares , Dominios Proteicos , Bacillaceae , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Conformación Proteica
19.
Microb Cell Fact ; 23(1): 158, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812023

RESUMEN

BACKGROUND: This study explores the biosynthesis, characteristics, and functional properties of exopolysaccharide produced by the strain Liquorilactobacillus mali T6-52. The strain demonstrated significant EPS production with a non-ropy phenotype. RESULTS: The genomic analysis unveiled genes associated with EPS biosynthesis, shedding light on the mechanism behind EPS production. These genes suggest a robust EPS production mechanism, providing insights into the strain's adaptability and ecological niche. Chemical composition analysis identified the EPS as a homopolysaccharide primarily composed of glucose, confirming its dextran nature. Furthermore, it demonstrated notable functional properties, including antioxidant activity, fat absorption capacity, and emulsifying activity. Moreover, the EPS displayed promising cryoprotective activities, showing notable performance comparable to standard cryoprotective agents. The EPS concentration also demonstrated significant freeze-drying protective effects, presenting it as a potential alternative cryoprotectant for bacterial storage. CONCLUSIONS: The functional properties of L. mali T6-52 EPS reveal promising opportunities across various industrial domains. The strain's safety profile, antioxidant prowess, and exceptional cryoprotective and freeze-drying characteristics position it as an asset in food processing and pharmaceuticals.


Asunto(s)
Polisacáridos Bacterianos , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Bacillaceae/metabolismo , Bacillaceae/genética , Liofilización , Antioxidantes/metabolismo , Genómica/métodos , Crioprotectores/farmacología , Crioprotectores/metabolismo , Genoma Bacteriano
20.
J Hazard Mater ; 472: 134568, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749246

RESUMEN

Cadmium (Cd) is a heavy metal that significantly impacts human health and the environment. Microorganisms play a crucial role in reducing heavy metal stress in plants; however, the mechanisms by which microorganisms enhance plant tolerance to Cd stress and the interplay between plants and microorganisms under such stress remain unclear. In this study, Oceanobacillus picturae (O. picturae) was isolated for interaction with soybean seedlings under Cd stress. Results indicated that Cd treatment alone markedly inhibited soybean seedling growth. Conversely, inoculation with O. picturae significantly improved growth indices such as plant height, root length, and fresh weight, while also promoting recovery in soil physiological indicators and pH. Metabolomic and transcriptomic analyses identified 157 genes related to aspartic acid, cysteine, and flavonoid biosynthesis pathways. Sixty-three microbial species were significantly associated with metabolites in these pathways, including pathogenic, adversity-resistant, and bioconductive bacteria. This research experimentally demonstrates, for the first time, the growth-promoting effect of the O. picturae strain on soybean seedlings under non-stress conditions. It also highlights its role in enhancing root growth and reducing Cd accumulation in the roots under Cd stress. Additionally, through the utilization of untargeted metabolomics, metagenomics, and transcriptomics for a multi-omics analysis, we investigated the impact of O. picturae on the soil microbiome and its correlation with differential gene expression in plants. This innovative approach unveils the molecular mechanisms underlying O. picturae's promotion of root growth and adaptation to Cd stress.


Asunto(s)
Cadmio , Glycine max , Plantones , Estrés Fisiológico , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/microbiología , Glycine max/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cadmio/toxicidad , Estrés Fisiológico/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Bacillaceae/crecimiento & desarrollo , Bacillaceae/metabolismo , Bacillaceae/genética , Bacillaceae/efectos de los fármacos , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA