RESUMEN
Coronaviruses rely on host proteases to activate the viral spike protein, which facilitates fusion with the host cell membrane and the release of viral genomic RNAs into the host cell cytoplasm. The distribution of specific host proteases in the host determines the host, tissue, and cellular tropism of these viruses. Here, we identified the kallikrein (KLK) family member KLK5 as a major host protease secreted by human airway cells and exploited by multiple human betacoronaviruses. KLK5 cleaved both the priming (S1/S2) and activation (S2') sites of spike proteins from various human betacoronaviruses in vitro. In contrast, KLK12 and KLK13 displayed preferences for either the S2' or S1/S2 site, respectively. Whereas KLK12 and KLK13 worked in concert to activate SARS-CoV-2 and MERS-CoV spike proteins, KLK5 by itself efficiently activated spike proteins from several human betacoronaviruses, including SARS-CoV-2. Infection of differentiated human bronchial epithelial cells (HBECs) with human betacoronaviruses induced an increase in KLK5 that promoted virus replication. Furthermore, ursolic acid and other related plant-derived triterpenoids that inhibit KLK5 effectively suppressed the replication of SARS-CoV, MERS-CoV, and SARS-CoV-2 in HBECs and mitigated lung inflammation in mice infected with MERS-CoV or SARS-CoV-2. We propose that KLK5 is a pancoronavirus host factor and a promising therapeutic target for current and future coronavirus-induced diseases.
Asunto(s)
Calicreínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Replicación Viral , Humanos , Calicreínas/metabolismo , Calicreínas/genética , Animales , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Ratones , SARS-CoV-2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/fisiología , COVID-19/metabolismo , COVID-19/virología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Células HEK293 , Pulmón/virología , Pulmón/metabolismoRESUMEN
Spike (S) glycoprotein is the largest structural protein of SARS-CoV-2 virus and the main one involved in anchoring of the host receptor ACE2 through the receptor binding domain (RBD). S protein secondary structure is of great interest for shedding light on various aspects, from functionality to pathogenesis, finally to spectral fingerprint for the design of optical biosensors. In this paper, the secondary structure of SARS-CoV-2 S protein and its constituting components, namely RBD, S1 and S2 regions, are investigated at serological pH by measuring their amide I infrared absorption bands through Attenuated Total Reflection Infrared (ATR-IR) spectroscopy. Experimental data in combination with MultiFOLD predictions, Define Secondary Structure of Proteins (DSSP) web server and Gravy value calculations, provide a comprehensive understanding of RBD, S1, S2, and S proteins in terms of their secondary structure content, conformational order, and interaction with the solvent.
Asunto(s)
SARS-CoV-2 , Espectrofotometría Infrarroja , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Espectrofotometría Infrarroja/métodos , Humanos , COVID-19/virología , COVID-19/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Unión Proteica , Betacoronavirus/química , Betacoronavirus/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.
Asunto(s)
SARS-CoV-2 , SARS-CoV-2/metabolismo , Humanos , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , COVID-19/metabolismo , COVID-19/virología , Lípidos de la Membrana/metabolismo , Ensamble de Virus , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Aniones/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Membrana Celular/metabolismo , Betacoronavirus/metabolismoRESUMEN
INTRODUCTION: Several factors influence transmission of 2019-nCoV from mother to fetus during pregnancy, thus the dynamics of vertical transmission is unclear. The role of cellular protective factors, namely a 90 KDa glycoprotein, Early pregnancy-associated protein (Epap-1), expressed by placental endothelial cells in women during early pregnancy would provide an insight into role of placental factors in virus transmission. Since viral spike protein binding to the ACE2 receptors of the host cells promotes virus invasion in placental tissue, an analysis of effects of Epap-1 on the Spike-ACE2 protein binding was studied. METHODS: Epap-1 was isolated from MTP placental tissue. Molecular interaction of Epap-1 and variants of the spike was analyzed in silco. The interaction of Epap-1 with Spike and RBD were analyzed using ELISA and immunofluorescence studies. RESULTS: The results in silico showed an interaction of Epap-1 with S-protein at RBD region involving K417, Y449, Y453, Y456, Y473, Q474, F486, Q498, N501 residues of spike with Y61, F287, I302, N303, N305, S334, N465, G467, N468 residues of Epap-1 leading to interference of S-protein and ACE2 interaction [1]. Further, the interaction is conserved among the variants. The studies in vitro confirm that Epap-1 affects S protein-ACE2 and RBD- ACE2 binding, thus suggesting that during early pregnancy, SARS CoV-2 infection may be protected by Epap-1 protein present in placental tissue. The results were further confirmed by pseudovirus expressing Spike and RBD in an infection assay. DISCUSSION: Epap-1 interferes with Spike and RBD interaction with ACE2, suggesting a possible mechanism of the antiviral environment during pregnancy.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Transmisión Vertical de Enfermedad Infecciosa , Placenta , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Femenino , Humanos , Embarazo , Enzima Convertidora de Angiotensina 2/metabolismo , Betacoronavirus/metabolismo , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , COVID-19/transmisión , COVID-19/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Placenta/metabolismo , Placenta/virología , Neumonía Viral/metabolismo , Neumonía Viral/transmisión , Neumonía Viral/virología , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/virología , Proteínas Gestacionales/metabolismo , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE: The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , Artiodáctilos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Artiodáctilos/virología , Betacoronavirus/genética , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19/virología , COVID-19/metabolismo , Microscopía por Crioelectrón , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three-SARS, SARS-CoV-2 and MERS-are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them.
Asunto(s)
Microvasos , Polisacáridos , SARS-CoV-2 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Betacoronavirus/metabolismo , COVID-19/metabolismo , COVID-19/virología , Tratamiento Farmacológico de COVID-19 , Células Endoteliales/metabolismo , Células Endoteliales/virología , Agregación Eritrocitaria , Eritrocitos/metabolismo , Eritrocitos/virología , Microvasos/metabolismo , Microvasos/virología , Polisacáridos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acoplamiento ViralRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has rapidly spread worldwide since its emergence in late 2019. Its ongoing evolution poses challenges for antiviral drug development. Coronavirus nsp6, a multiple-spanning transmembrane protein, participates in the biogenesis of the viral replication complex, which accommodates the viral replication-transcription complex. The roles of its structural domains in viral replication are not well studied. Herein, we predicted the structure of the SARS-CoV-2 nsp6 protein using AlphaFold2 and identified a highly folded C-terminal region (nsp6C) downstream of the transmembrane helices. The enhanced green fluorescent protein (EGFP)-fused nsp6C was found to cluster in the cytoplasm and associate with membranes. Functional mapping identified a minimal membrane-associated element (MAE) as the region from amino acids 237 to 276 (LGV-KLL), which is mainly composed of the α-helix H1 and the α-helix H2; the latter exhibits characteristics of an amphipathic helix (AH). Mutagenesis studies and membrane flotation experiments demonstrate that AH-like H2 is required for MAE-mediated membrane association. This MAE was functionally conserved across MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63, all capable of mediating membrane association. In a SARS-CoV-2 replicon system, mutagenesis studies of H2 and replacements of H1 and H2 with their homologous counterparts demonstrated requirements of residues on both sides of the H2 and properly paired H1-H2 for MAE-mediated membrane association and viral replication. Notably, mutations I266A and K274A significantly attenuated viral replication without dramatically affecting membrane association, suggesting a dual role of the MAE in viral replication: mediating membrane association as well as participating in protein-protein interactions.IMPORTANCESevere acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) assembles a double-membrane vesicle (DMV) by the viral non-structural proteins for viral replication. Understanding the mechanisms of the DMV assembly is of paramount importance for antiviral development. Nsp6, a multiple-spanning transmembrane protein, plays an important role in the DMV biogenesis. Herein, we predicted the nsp6 structure of SARS-CoV-2 and other human coronaviruses using AlphaFold2 and identified a putative membrane-associated element (MAE) in the highly conserved C-terminal regions of nsp6. Experimentally, we verified a functionally conserved minimal MAE composed of two α-helices, the H1, and the amphipathic helix-like H2. Mutagenesis studies confirmed the requirement of H2 for MAE-mediated membrane association and viral replication and demonstrated a dual role of the MAE in viral replication, by mediating membrane association and participating in residue-specific interactions. This functionally conserved MAE may serve as a novel anti-viral target.
Asunto(s)
SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Animales , Humanos , Secuencia de Aminoácidos , Betacoronavirus/genética , Betacoronavirus/fisiología , Betacoronavirus/metabolismo , Membrana Celular/metabolismo , Chlorocebus aethiops , COVID-19/virología , Células HEK293 , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Células Vero , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/químicaRESUMEN
Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , Betacoronavirus , Pangolines , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , Chlorocebus aethiops , Pulmón/virología , Pulmón/patología , Ratones Transgénicos , Pangolines/virología , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Células Vero , Replicación ViralRESUMEN
Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.
Asunto(s)
Betacoronavirus , Resfriado Común , Humanos , Betacoronavirus/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas/metabolismo , Fosforilación , Biosíntesis de Proteínas , Factor 2 Eucariótico de Iniciación/metabolismo , eIF-2 Quinasa/genéticaRESUMEN
Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.
Asunto(s)
Betacoronavirus , Receptores Virales , Serina Endopeptidasas , Glicoproteína de la Espiga del Coronavirus , Humanos , Betacoronavirus/metabolismo , Bronquios/citología , Bronquios/virología , Resfriado Común/tratamiento farmacológico , Resfriado Común/virología , Fusión de Membrana , Receptores Virales/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del VirusRESUMEN
Bat-origin RshSTT182 and RshSTT200 coronaviruses (CoV) from Rhinolophus shameli in Southeast Asia (Cambodia) share 92.6% whole-genome identity with SARS-CoV-2 and show identical receptor-binding domains (RBDs). In this study, we determined the structure of the RshSTT182/200 receptor binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (hACE2) and identified the key residues that influence receptor binding. The binding of the RshSTT182/200 RBD to ACE2 orthologs from 39 animal species, including 18 bat species, was used to evaluate its host range. The RshSTT182/200 RBD broadly recognized 21 of 39 ACE2 orthologs, although its binding affinities for the orthologs were weaker than those of the RBD of SARS-CoV-2. Furthermore, RshSTT182 pseudovirus could utilize human, fox, and Rhinolophus affinis ACE2 receptors for cell entry. Moreover, we found that SARS-CoV-2 induces cross-neutralizing antibodies against RshSTT182 pseudovirus. Taken together, these findings indicate that RshSTT182/200 can potentially infect susceptible animals, but requires further evolution to obtain strong interspecies transmission abilities like SARS-CoV-2.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , Betacoronavirus , Quirópteros , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virología , Especificidad del Huésped , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
HCoV-HKU1 is a [Formula: see text]-coronavirus with low pathogenicity, which usually leads to respiratory diseases. At present, a controversial issue is that whether the receptor binding site (RBS) of HCoV-HKU1 is located in the N-terminal domain (NTD) or the C-terminal domain (CTD) in the HCoV-HKU1 S protein. To address this issue, we used molecular docking technology to dock the NTD and CTD with 9-oxoacetylated sialic acid (9-O-Ac-Sia), respectively, with the results showing that the RBS of HCoV-HKU1 is located in the NTD (amino acid residues 80-95, 25-32). Our findings clarified the structural basis and molecular mechanism of the HCoV-HKU1 infection, providing important information for the development of therapeutic antibody drugs and the design of vaccines.
Asunto(s)
Coronavirus , Glicoproteína de la Espiga del Coronavirus , Betacoronavirus/metabolismo , Sitios de Unión , Simulación del Acoplamiento Molecular , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
In 2019, a new pandemic virus belonging to the betacoronavirus family emerged, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This new coronavirus appeared in Wuhan, China, and is responsible for severe respiratory pneumonia in humans, namely, coronavirus disease 2019 (COVID-19). Having infected almost 200 million people worldwide and caused more than 4.1 million deaths as of today, this new disease has raised a significant number of questions about its molecular mechanism of replication and, in particular, how infectious viral particles are produced. Although viral entry is well characterized, the full assembly steps of SARS-CoV-2 have still not been fully described. Coronaviruses, including SARS-CoV-2, have four main structural proteins, namely, the spike glycoprotein (S), the membrane glycoprotein (M), the envelope protein (E), and the nucleocapsid protein (N). All these proteins have key roles in the process of coronavirus assembly and budding. In this review, we gathered the current knowledge about betacoronavirus structural proteins involved in viral particle assembly, membrane curvature and scission, and then egress in order to suggest and question a coherent model for SARS-CoV-2 particle production and release.
Asunto(s)
Betacoronavirus/metabolismo , SARS-CoV-2/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Nucleocápside/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ensamble de Virus/fisiologíaRESUMEN
BACKGROUND: The effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. OBJECTIVES: We sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). METHODS: Groups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n = 14 per group) were analyzed for these same antibodies. RESULTS: Mice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P = 0.012), these titers correlated positively with both SARS-CoV-2 binding (r = 0.7577, P<0.001) and neutralizing (r = 0.6201, P = 0.001) antibodies. CONCLUSIONS: Prior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Betacoronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Animales , Anticuerpos Antivirales/inmunología , Reacciones Antígeno-Anticuerpo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Niño , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismoRESUMEN
Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses, with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing a pandemic in 2020. Coronaviral non-structural proteins (nsps) form the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complexes has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations, SARS-CoV-2 nsp7+8 consists primarily of heterotetramers. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model proposed.
Asunto(s)
Alphacoronavirus/metabolismo , Betacoronavirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Reactivos de Enlaces Cruzados/química , Modelos Moleculares , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Especificidad de la Especie , Proteínas no Estructurales Virales/química , Difracción de Rayos XRESUMEN
The angiotensin-converting enzyme 2 (ACE2) receptor is a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host range determinant, and understanding SARS-CoV-2-ACE2 interactions will provide important insights into COVID-19 pathogenesis and animal model development. SARS-CoV-2 cannot infect mice due to incompatibility between its receptor binding domain and the murine ACE2 receptor. Through molecular modeling and empirical in vitro validation, we identified 5 key amino acid differences between murine and human ACE2 that mediate SARS-CoV-2 infection, generating a chimeric humanized murine ACE2. Additionally, we examined the ability of the humanized murine ACE2 receptor to permit infection by an additional preemergent group 2B coronavirus, WIV-1, providing evidence for the potential pan-virus capabilities of this chimeric receptor. Finally, we predicted the ability of these determinants to inform host range identification of preemergent coronaviruses by evaluating hot spot contacts between SARS-CoV-2 and additional potential host receptors. Our results identify residue determinants that mediate coronavirus receptor usage and host range for application in SARS-CoV-2 and emerging coronavirus animal model development.IMPORTANCE SARS-CoV-2 (the causative agent of COVID-19) is a major public health threat and one of two related coronaviruses that have caused epidemics in modern history. A method of screening potential infectible hosts for preemergent and future emergent coronaviruses would aid in mounting rapid response and intervention strategies during future emergence events. Here, we evaluated determinants of SARS-CoV-2 receptor interactions, identifying key changes that enable or prevent infection. The analysis detailed in this study will aid in the development of model systems to screen emergent coronaviruses as well as treatments to counteract infections.
Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Betacoronavirus/fisiología , Replicación Viral , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Animales , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19/virología , Línea Celular , Infecciones por Coronavirus/virología , Especificidad del Huésped , Humanos , Ratones , Modelos Moleculares , Mutación , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Imitación Molecular/fisiología , Dominios y Motivos de Interacción de Proteínas/inmunología , Betacoronavirus/genética , COVID-19/metabolismo , COVID-19/virología , Infecciones por Coronavirus/genética , Bases de Datos Genéticas , Interacciones Huésped-Patógeno , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas/genética , Proteoma , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismoRESUMEN
BACKGROUND: Globally, the current medical emergency for novel coronavirus 2019 (COVID-19) leads to respiratory distress syndrome and death. PURPOSE: This review highlighted the effect of COVID-19 on systemic multiple organ failure syndromes. This review is intended to fill a gap in information about human physiological response to COVID-19 infections. This review may shed some light on other potential mechanisms and approaches in COVID -19 infections towards systemic multiorgan failure syndromes. FINDING: SARS-CoV-2 intervened mainly in the lung with progression to pneumonia and acute respiratory distress syndrome (ARDS) via the angiotensin-converting enzyme 2(ACE2) receptor. Depending on the viral load, infection spread through the ACE2 receptor further to various organs such as heart, liver, kidney, brain, endothelium, GIT, immune cell, and RBC (thromboembolism). This may be aggravated by cytokine storm with the extensive release of proinflammatory cytokines from the deregulating immune system. CONCLUSION: The widespread and vicious combinations of cytokines with organ crosstalk contribute to systemic hyper inflammation and ultimately lead to multiple organ dysfunction (Fig. 1). This comprehensive study comprises various manifestations of different organs in COVID-19 and may assist the clinicians and scientists pertaining to a broad approach to fight COVID 19.
Asunto(s)
Infecciones por Coronavirus/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Insuficiencia Multiorgánica/inmunología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/fisiopatología , Enzima Convertidora de Angiotensina 2 , Arritmias Cardíacas/inmunología , Arritmias Cardíacas/fisiopatología , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/fisiopatología , Síndrome de Liberación de Citoquinas/fisiopatología , Citocinas/inmunología , Endotelio Vascular/metabolismo , Eritrocitos/metabolismo , Enfermedades Gastrointestinales/inmunología , Enfermedades Gastrointestinales/fisiopatología , Tracto Gastrointestinal/metabolismo , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamación/inmunología , Riñón/metabolismo , Hígado/metabolismo , Hepatopatías/inmunología , Hepatopatías/fisiopatología , Pulmón/metabolismo , Insuficiencia Multiorgánica/fisiopatología , Miocardio/metabolismo , Pandemias , Neumonía Viral/fisiopatología , Síndrome de Dificultad Respiratoria/fisiopatología , SARS-CoV-2 , Tromboembolia/inmunología , Tromboembolia/fisiopatología , Carga ViralRESUMEN
The Coronaviridae family includes the seven known human coronaviruses (CoV) that cause mild to moderate respiratory infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1) as well as severe illness and death (MERS-CoV, SARS-CoV, SARS-CoV-2). Severe infections induce hyperinflammatory responses that are often intensified by host adaptive immune pathways to profoundly advance disease severity. Proinflammatory responses are triggered by CoV entry mediated by host cell surface receptors. Interestingly, five of the seven strains use three cell surface metallopeptidases (CD13, CD26, and ACE2) as receptors, whereas the others employ O-acetylated-sialic acid (a key feature of metallopeptidases) for entry. Why CoV evolved to use peptidases as their receptors is unknown, but the peptidase activities of the receptors are dispensable, suggesting the virus uses/benefits from other functions of these molecules. Indeed, these receptors participate in the immune modulatory pathways that contribute to the pathological hyperinflammatory response. This review will focus on the role of CoV receptors in modulating immune responses.
Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Inmunomodulación , Metaloproteasas/inmunología , Receptores de Superficie Celular/inmunología , Receptores de Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Betacoronavirus/metabolismo , Infecciones por Coronavirus/virología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Humanos , Inmunidad , Interleucina-6/inmunología , Internalización del VirusRESUMEN
Epigenetics studies focused on SARS-CoV-2 infection to assist in the perception of pathophysiology can direct prospective approaches for the COVID-19 treatment. There is an intrinsic relationship between epigenetic marks and the adaptation of the immune system, which determines the outcome of the pathogen-host interaction. Recently, studies have shown that there is an increased expression of the ACE2 receptor in individuals with Lupus, the origin of this phenomenon is from DNA's methylation deregulation process that consequently, become this group more suitable to be infected by SARS-CoV-2. There is evidence for the use of some epigenetic modifiers known as Epidrugs, which might be a promising approach to be deeper investigated. Here we emphasize the importance of this glance upon Epigenetic and its modulators in the promising therapeutic in the COVID-19 disease context.