Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Front Immunol ; 12: 786617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868073

RESUMEN

Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico , Antígenos Virales/inmunología , Antígenos Virales/ultraestructura , Dominio Catalítico/genética , Dominio Catalítico/inmunología , Protección Cruzada , Evolución Molecular , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/virología , Alphainfluenzavirus/enzimología , Alphainfluenzavirus/genética , Alphainfluenzavirus/inmunología , Betainfluenzavirus/enzimología , Betainfluenzavirus/genética , Betainfluenzavirus/inmunología , Mutación , Nanopartículas , Neuraminidasa/administración & dosificación , Neuraminidasa/genética , Neuraminidasa/ultraestructura , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/ultraestructura , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/ultraestructura
2.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326020

RESUMEN

CD4+ follicular regulatory T (Tfr) cells control B cell responses through the modulation of follicular helper T (Tfh) cells and germinal center development while suppressing autoreactivity; however, their role in the regulation of productive germinal center B cell responses and humoral memory is incompletely defined. We show that Tfr cells promote antigen-specific germinal center B cell responses upon influenza virus infection. Following viral challenge, we found that Tfr cells are necessary for robust generation of virus-specific, long-lived plasma cells, antibody production against both hemagglutinin (HA) and neuraminidase (NA), the two major influenza virus glycoproteins, and appropriate regulation of the BCR repertoire. To further investigate the functional relevance of Tfr cells during viral challenge, we used a sequential immunization model with repeated exposure of antigenically partially conserved strains of influenza viruses, revealing that Tfr cells promote recall antibody responses against the conserved HA stalk region. Thus, Tfr cells promote antigen-specific B cell responses and are essential for the development of long-term humoral memory.


Asunto(s)
Linfocitos B/inmunología , Betainfluenzavirus/inmunología , Antígenos CD4/metabolismo , Inmunidad , Linfocitos T Reguladores/inmunología , Animales , Formación de Anticuerpos/inmunología , Antígenos/metabolismo , Modelos Animales de Enfermedad , Epítopos/inmunología , Factores de Transcripción Forkhead/metabolismo , Centro Germinal/inmunología , Humanos , Memoria Inmunológica , Gripe Humana/inmunología , Gripe Humana/virología , Integrasas/metabolismo , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Receptores de Antígenos de Linfocitos B/metabolismo , Especificidad de la Especie , Vacunación
3.
J Infect Dis ; 222(8): 1383-1391, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32407535

RESUMEN

BACKGROUND: We analyzed data from a randomized controlled trial on the reactogenicity of 3 enhanced influenza vaccines compared with standard-dose (SD) inactivated influenza vaccine. METHODS: We enrolled community-dwelling older adults in Hong Kong, and we randomly allocated them to receive 2017-2018 northern hemisphere formulations of SD vaccine (FluQuadri; Sanofi Pasteur), MF59-adjuvanted vaccine (FLUAD; Seqirus), high-dose (HD) vaccine (Fluzone High-Dose; Sanofi Pasteur), or recombinant hemagglutinin vaccine (Flublok; Sanofi Pasteur). Local and systemic reactions were evaluated at days 1, 3, 7, and 14 after vaccination. RESULTS: Reported reactions were generally mild and short-lived. Systemic reactions occurred in similar proportions of participants by vaccine. Some local reactions were slightly more frequently reported among recipients of the MF59-adjuvanted and HD vaccines than among SD vaccine recipients. Participants reporting feverishness 1 day after vaccination had mean fold rises in postvaccination hemagglutination inhibition titers that were 1.85-fold higher (95% confidence interval, 1.01-3.38) for A(H1N1) than in those who did not report feverishness. CONCLUSIONS: Some acute local reactions were more frequent after vaccination with MF59-adjuvanted and HD influenza vaccines, compared with SD inactivated influenza vaccine, whereas systemic symptoms occurred at similar frequencies in all groups. The association between feverishness and immunogenicity should be further investigated in a larger population. CLINICAL TRIALS REGISTRATION: NCT03330132.


Asunto(s)
Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Pruebas de Inhibición de Hemaglutinación , Hong Kong/epidemiología , Humanos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Betainfluenzavirus/inmunología , Masculino , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología
4.
Lancet Respir Med ; 7(11): 951-963, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31582358

RESUMEN

BACKGROUND: Since the 1918 influenza pandemic, non-randomised studies and small clinical trials have suggested that convalescent plasma or anti-influenza hyperimmune intravenous immunoglobulin (hIVIG) might have clinical benefit for patients with influenza infection, but definitive data do not exist. We aimed to evaluate the safety and efficacy of hIVIG in a randomised controlled trial. METHODS: This randomised, double-blind, placebo-controlled trial was planned for 45 hospitals in Argentina, Australia, Denmark, Greece, Mexico, Spain, Thailand, UK, and the USA over five influenza seasons from 2013-14 to 2017-18. Adults (≥18 years of age) were admitted for hospital treatment with laboratory-confirmed influenza A or B infection and were randomly assigned (1:1) to receive standard care plus either a single 500-mL infusion of high-titre hIVIG (0·25 g/kg bodyweight, 24·75 g maximum; hIVIG group) or saline placebo (placebo group). Eligible patients had a National Early Warning score of 2 points or greater at the time of screening and their symptoms began no more than 7 days before randomisation. Pregnant and breastfeeding women were excluded, as well as any patients for whom the treatment would present a health risk. Separate randomisation schedules were generated for each participating clinical site using permuted block randomisation. Treatment assignments were obtained using a web-based application by the site pharmacist who then masked the solution for infusion. Patients and investigators were masked to study treatment. The primary endpoint was a six-category ordinal outcome of clinical status at day 7, ranging in severity from death to resumption of normal activities after discharge. The choice of day 7 was based on haemagglutination inhibition titres from a pilot study. It was analysed with a proportional odds model, using all six categories to estimate a common odds ratio (OR). An OR greater than 1 indicated that, for a given category, patients in the hIVIG group were more likely to be in a better category than those in the placebo group. Prespecified primary analyses for safety and efficacy were based on patients who received an infusion and for whom eligibility could be confirmed. This trial is registered with ClinicalTrials.gov, NCT02287467. FINDINGS: 313 patients were enrolled in 34 sites between Dec 11, 2014, and May 28, 2018. We also used data from 16 patients enrolled at seven of the 34 sites during the pilot study between Jan 15, 2014, and April 10, 2014. 168 patients were randomly assigned to the hIVIG group and 161 to the placebo group. 21 patients were excluded (12 from the hIVIG group and 9 from the placebo group) because they did not receive an infusion or their eligibility could not be confirmed. Thus, 308 were included in the primary analysis. hIVIG treatment produced a robust rise in haemagglutination inhibition titres against influenza A and smaller rises in influenza B titres. Based on the proportional odds model, the OR on day 7 was 1·25 (95% CI 0·79-1·97; p=0·33). In subgroup analyses for the primary outcome, the OR in patients with influenza A was 0·94 (0·55-1·59) and was 3·19 (1·21-8·42) for those with influenza B (interaction p=0·023). Through 28 days of follow-up, 47 (30%) of 156 patients in the hIVIG group and in 45 (30%) of 152 patients in the placebo group had the composite safety outcome of death, a serious adverse event, or a grade 3 or 4 adverse event (hazard ratio [HR] 1·06, 95% CI 0·70-1·60; p=0·79). Six (4%) patients in the hIVIG group and five (3%) in the placebo group died, but these deaths were not necessarily related to treatment. INTERPRETATION: When administered alongside standard care (most commonly oseltamivir), hIVIG was not superior to placebo for adults hospitalised with influenza infection. By contrast with our prespecified subgroup hypothesis that hIVIG would result in more favourable responses in patients with influenza A than B, we found the opposite effect. The clinical benefit of hIVIG for patients with influenza B is supported by antibody affinity analyses, but confirmation is warranted. FUNDING: NIAID and NIH. Partial support was provided by the Medical Research Council (MRC_UU_12023/23) and the Danish National Research Foundation.


Asunto(s)
Antivirales/uso terapéutico , Betainfluenzavirus/inmunología , Inmunoglobulinas Intravenosas/uso terapéutico , Virus de la Influenza A/inmunología , Gripe Humana/tratamiento farmacológico , Adulto , Método Doble Ciego , Quimioterapia Combinada , Femenino , Hospitalización , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Oseltamivir/uso terapéutico , Proyectos Piloto , Resultado del Tratamiento
5.
Bull Exp Biol Med ; 167(3): 384-387, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31346883

RESUMEN

We studied the constellation of genes encoding polymerase complex proteins of master donor viruses for Russian live attenuated influenza vaccine type B. Reassortants of the reserve attenuation donor B/Leningrad/14/17/55 with B/USSR/60/69 master donor virus currently used for manufacturing seasonal influenza vaccine were prepared and examined. Most reassortants obtained by the classical reassortment method inherited all genes from the B/Leningrad/14/17/55 virus except the gene encoding PB1 subunit of the polymerase complex. One reassortant was selected for further evaluation of the role of PB1 gene. Greater attenuation of the strain for experimental animals (mice) in comparison with the original strains was demonstrated. This indicates high degree of constellation of genes of cold-adapted master donor viruses and the important compensating role of amino acid substitutions in the PB1 protein of B/Leningrad/14/17/55 donor virus in preventing viral hyperattenuation.


Asunto(s)
Betainfluenzavirus/genética , Gripe Humana/prevención & control , Proteínas Virales/genética , Sustitución de Aminoácidos/genética , Animales , Embrión de Pollo , Frío , Humanos , Vacunas contra la Influenza/inmunología , Betainfluenzavirus/inmunología , Ratones , Virus Reordenados/genética , Virus Reordenados/inmunología , Vacunas Atenuadas/inmunología
6.
Emerg Infect Dis ; 24(10): 1825-1834, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30226188

RESUMEN

The World Health Organization selects influenza vaccine compositions biannually to cater to peaks in temperate regions. In tropical and subtropical regions, where influenza seasonality varies and epidemics can occur year-round, the choice of vaccine remains uncertain. Our 17-year molecular epidemiologic survey showed that most influenza A(H3N2) (9/11) and B (6/7) vaccine strains had circulated in East Asia >1 year before inclusion into vaccines. Northern Hemisphere vaccine strains and circulating strains in East Asia were closely matched in 7 (20.6%) of 34 seasons for H3N2 and 5 (14.7%) of 34 seasons for B. Southern Hemisphere vaccines also had a low probability of matching (H3N2, 14.7%; B, 11.1%). Strain drift among seasons was common (H3N2, 41.2%; B, 35.3%), and biannual vaccination strategy (Northern Hemisphere vaccines in November followed by Southern Hemisphere vaccines in May) did not improve matching. East Asia is an important contributor to influenza surveillance but often has mismatch between vaccine and contemporarily circulating strains.


Asunto(s)
Alphainfluenzavirus/genética , Betainfluenzavirus/genética , Variación Genética , Vacunas contra la Influenza/genética , Gripe Humana/epidemiología , Gripe Humana/virología , Estaciones del Año , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Historia del Siglo XX , Historia del Siglo XXI , Hong Kong/epidemiología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/historia , Gripe Humana/prevención & control , Alphainfluenzavirus/clasificación , Alphainfluenzavirus/inmunología , Betainfluenzavirus/clasificación , Betainfluenzavirus/inmunología , Epidemiología Molecular , Filogenia , ARN Viral , Estudios Retrospectivos
7.
Nutrients ; 10(4)2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587438

RESUMEN

Influenza virus infection is a major global public health problem, and the efficacy of influenza vaccination is not satisfactory. Vitamin D is involved in many immune-mediated inflammatory processes. The impact of vitamin D levels on the immunogenic response to influenza vaccination is not clear. We performed a comprehensive literature search and systematic review of studies that investigated vitamin D and influenza vaccination. Data pertaining to study population, vaccine components, vitamin D levels, and immunogenic response were analyzed. Nine studies, with a combined study population of 2367 patients, were included in the systematic review. Four studies were included in the meta-analysis to investigate the influence of vitamin D deficiency (VDD) on the seroprotection (SP) rates and seroconversion (SC) rates following influenza vaccination. We found no significant association between vitamin D level and the immunogenic response to influenza vaccination. However, strain-specific differences may exist. We observed lower SP rates of influenza A virus subtype H3N2 (A/H3N2) and B strain in VDD patients than patients with normal vitamin D levels (A/H3N2: 71.8% vs. 80.1%, odds ratio (OR): 0.63, 95% confidence interval (CI): 0.43-0.91, p = 0.01; B strain: 69.6% vs. 76.4%, OR: 0.68, 95% CI: 0.5-0.93, p = 0.01). However, the SP rates of A/H1N1 and SC rates of all three strains were not significantly different in VDD and control groups. In conclusion, no association was observed between VDD and immunogenic response to influenza vaccination.


Asunto(s)
Alphainfluenzavirus/inmunología , Betainfluenzavirus/inmunología , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Vacunación , Deficiencia de Vitamina D/inmunología , Adulto , Anciano , Biomarcadores/sangre , Distribución de Chi-Cuadrado , Niño , Preescolar , Femenino , Humanos , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/diagnóstico , Gripe Humana/inmunología , Gripe Humana/virología , Alphainfluenzavirus/patogenicidad , Betainfluenzavirus/patogenicidad , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , Resultado del Tratamiento , Vacunación/efectos adversos , Vitamina D/análogos & derivados , Vitamina D/sangre , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/diagnóstico
8.
Ann Rheum Dis ; 77(6): 898-904, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29572291

RESUMEN

OBJECTIVE: To determine whether a 2-week methotrexate (MTX) discontinuation after vaccination improves the efficacy of seasonal influenza vaccination in patients with rheumatoid arthritis (RA). METHODS: In this prospective randomised parallel-group multicentre study, patients with RA on stable dose of MTX were randomly assigned at a ratio of 1:1 to continue MTX or to hold MTX for 2 weeks after 2016-2017 quadrivalent seasonal influenza vaccine containing H1N1, H3N2, B-Yamagata and B-Victoria. The primary outcome was frequency of satisfactory vaccine response, defined as greater than or equal to fourfold increase of haemagglutination inhibition (HI) antibody titre at 4 weeks after vaccination against ≥2 of four vaccine strains. Secondary endpoints included seroprotection (ie, HI titre ≥1:40) rate, fold change in antibody titres. RESULTS: The modified intention-to-treat population included 156 patients in the MTX-continue group and 160 patients in the MTX-hold group. More patients in MTX-hold group achieved satisfactory vaccine response than the MTX-continue group (75.5% vs 54.5%, p<0.001). Seroprotection rate was higher in the MTX-hold group than the MTX-continue group for all four antigens (H1N1: difference 10.7%, 95% CI 2.0% to 19.3%; H3N2: difference 15.9%, 95% CI 5.9% to 26.0%; B-Yamagata: difference13.7%, 95% CI 5.2% to 22.4%; B-Victoria: difference 14.7%, 95% CI 4.5% to 25.0%). The MTX-hold group showed higher fold increase in their antibody titres against all four influenza antigens (all p<0.05). Change in disease activity was similar between groups. CONCLUSIONS: A temporary MTX discontinuation for 2 weeks after vaccination improves the immunogenicity of seasonal influenza vaccination in patients with RA without increasing RA disease activity. TRIAL REGISTRATION: NCT02897011.


Asunto(s)
Antirreumáticos/administración & dosificación , Artritis Reumatoide/tratamiento farmacológico , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Metotrexato/administración & dosificación , Adulto , Anciano , Anticuerpos Antivirales/biosíntesis , Antirreumáticos/uso terapéutico , Artritis Reumatoide/inmunología , Deprescripciones , Esquema de Medicación , Femenino , Humanos , Inmunogenicidad Vacunal , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/efectos adversos , Gripe Humana/inmunología , Betainfluenzavirus/inmunología , Masculino , Metotrexato/uso terapéutico , Persona de Mediana Edad , Estudios Prospectivos , Estaciones del Año , Método Simple Ciego , Vacunación/efectos adversos , Vacunación/métodos , Adulto Joven
9.
Viruses ; 9(10)2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934167

RESUMEN

The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013-2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.


Asunto(s)
Betainfluenzavirus/inmunología , Virus Defectuosos/aislamiento & purificación , Inmunogenicidad Vacunal , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , ARN Viral/aislamiento & purificación , Animales , Embrión de Pollo , Genoma Viral , Humanos , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Betainfluenzavirus/genética , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
10.
Vaccine ; 34(45): 5436-5441, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27593158

RESUMEN

Influenza is a viral infection that affects much of the global population each year. Vaccination remains the most effective tool for preventing the disease. Live attenuated influenza vaccine (LAIV) has been used since the 1950s to protect humans against seasonal influenza. LAIVs developed by the Institute of Experimental Medicine (IEM), Saint Petersburg, Russia, have been successfully used in Russia since 1987. In 2006, the World Health Organization (WHO) announced a Global action plan for influenza vaccines (GAP). WHO, recognizing potential advantages of LAIV over the inactivated influenza vaccine in a pandemic situation, included LAIV in the GAP. BioDiem Ltd., a vaccine development company based in Melbourne, Australia which held the rights for the Russian LAIV, licensed this technology to WHO in 2009. WHO was permitted to grant sub-licenses to vaccine manufacturers in newly industrialized and developing countries to use the Russian LAIV for the development, manufacture, use and sale of pandemic and seasonal LAIVs. To date, WHO has granted sub-licenses to vaccine manufacturers in China (Changchun BCHT Biotechnology Co., Ltd.), India (Serum Institute of India Pvt. Ltd.) and Thailand (Government Pharmaceutical Organization). In parallel, in 2009, IEM signed an agreement with WHO, under which IEM committed to supply pandemic and seasonal candidate vaccine viruses to the sub-licensees. This paper describes the progress made by collaborators from China, India, Russia and Thailand in developing preventive measures, including LAIV against pandemic influenza.


Asunto(s)
Betainfluenzavirus/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/normas , Gripe Humana/prevención & control , Pandemias/prevención & control , Transferencia de Tecnología , Vacunación , Australia , China , Ensayos Clínicos como Asunto , Humanos , India , Cooperación Internacional , Federación de Rusia , Estaciones del Año , Tailandia , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/normas , Vacunas de Productos Inactivados/efectos adversos , Organización Mundial de la Salud
11.
Appl Biochem Biotechnol ; 179(7): 1275-89, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27040529

RESUMEN

The outbreak of the H5N1 highly pathogenic avian influenza which exhibits high variation had brought a serious threat to the safety of humanity. To overcome this high variation, hemagglutinin-based recombinant subunit vaccine with rational design has been considered as a substitute for traditional virion-based vaccine development. Here, we expressed HA1 part of the hemagglutinin protein using the Pichia pastoris expression system and attained a high yield of about 120 mg/L through the use of fed-batch scalable fermentation. HA1 protein in the culture supernatant was purified using two-step ion-exchange chromatography. The resultant HA1 protein was homogeneous in solution in a glycosylated form, as confirmed by endoglycosidase H treatment. Sedimentation velocity tests, silver staining of protein gels, and immunoblotting were used for verification. The native HA1 reacted well with conformational, cross-genotype, neutralizing monoclonal antibodies, whereas a loss of binding activity was noted with the denatured HA1 form. Moreover, the murine anti-HA1 serum exhibited a virus-capture capability in the hemagglutination inhibition assay, which suggests that HA1 harbors native-like epitopes. In conclusion, soluble HA1 was efficiently expressed and purified in this study. The functional glycosylated protein will be an alternative for the development of recombinant protein-based influenza vaccine.


Asunto(s)
Betainfluenzavirus/genética , Epítopos/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Gripe Humana/inmunología , Animales , Anticuerpos Antivirales/genética , Epítopos/genética , Epítopos/inmunología , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/biosíntesis , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/genética , Gripe Humana/prevención & control , Betainfluenzavirus/inmunología , Betainfluenzavirus/patogenicidad , Ratones , Pichia/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/genética
12.
Proc Natl Acad Sci U S A ; 113(12): E1701-9, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951657

RESUMEN

Human seasonal influenza viruses evolve rapidly, enabling the virus population to evade immunity and reinfect previously infected individuals. Antigenic properties are largely determined by the surface glycoprotein hemagglutinin (HA), and amino acid substitutions at exposed epitope sites in HA mediate loss of recognition by antibodies. Here, we show that antigenic differences measured through serological assay data are well described by a sum of antigenic changes along the path connecting viruses in a phylogenetic tree. This mapping onto the tree allows prediction of antigenicity from HA sequence data alone. The mapping can further be used to make predictions about the makeup of the future A(H3N2) seasonal influenza virus population, and we compare predictions between models with serological and sequence data. To make timely model output readily available, we developed a web browser-based application that visualizes antigenic data on a continuously updated phylogeny.


Asunto(s)
Variación Antigénica/genética , Antígenos Virales/inmunología , Betainfluenzavirus/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Secuencia de Aminoácidos , Antígenos Virales/genética , Gráficos por Computador , Simulación por Computador , Evolución Molecular , Predicción , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Betainfluenzavirus/genética , Modelos Inmunológicos , Datos de Secuencia Molecular , Fenotipo , Filogenia , Estaciones del Año , Programas Informáticos
13.
Pharm Res ; 33(5): 1144-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26818839

RESUMEN

PURPOSE: The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. METHODS: Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. RESULTS: The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. CONCLUSION: Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.


Asunto(s)
Betainfluenzavirus/inmunología , Desecación/métodos , Liofilización/métodos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/química , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Atenuadas/química , Animales , Línea Celular , Perros , Estabilidad de Medicamentos , Excipientes/química , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/farmacología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Betainfluenzavirus/química , Infecciones por Orthomyxoviridae/inmunología , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/farmacología
14.
Biotechnol J ; 10(5): 690-701, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728134

RESUMEN

Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses.


Asunto(s)
Betainfluenzavirus/clasificación , Virus de la Influenza A/clasificación , Vacunas contra la Influenza/biosíntesis , Animales , Humanos , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Betainfluenzavirus/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Pandemias , Zoonosis/prevención & control
15.
Scand J Gastroenterol ; 50(2): 174-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25384624

RESUMEN

OBJECTIVE: Influenza vaccination is recommended for inflammatory bowel disease (IBD) patients on immunosuppressive therapy. The objective was to evaluate the antibody and cell-mediated immune response to the split and whole virion influenza vaccine in patients with IBD treated with anti-TNF-α and immunosuppressive therapy. PATIENTS AND METHODS: One hundred and fifty-six immunocompromised IBD patients were vaccinated. Fifty-three patients (control group) refused vaccination. Split virion vaccine and whole virion vaccine were used. Serum samples were obtained for pre- and postimmunization antibody titers to influenza vaccine (A/California/7/2009 [H1N1], A/Victoria/361/2011 [H3N2], B/Wisconsin/1/2010-like B/Hubei-Wujiagang/158/2009). Cell-mediated response was evaluated using an interferon (INF)-γ, interleukine (IL)-2 and tumor necrosis factor (TNF)-α ELISA. RESULTS: Postimmunization titers of both influenza subtypes increased significantly after the administration of split virion vaccines compared to the controls and to those who received whole virion vaccine. The antibody titers of Influenza B also increased significantly in patients immunized with split vaccine and treated with anti-TNF-α therapy. After influenza vaccination, the level of serum IL-2 significantly decreased. No serious side effects developed occurred after influenza vaccination, and the influenza-like symptoms did not differ significantly between vaccinated versus control patients. The relapse of the disease was observed in only 10% of the patients and was more common in vaccinated than in control subjects. CONCLUSION: Split virion vaccines seem to be more effective than whole virion vaccines. Measuring the antibody responses is worthwhile in patients treated with immunosuppressants to determine the efficacy of influenza vaccination.


Asunto(s)
Anticuerpos Antivirales/sangre , Terapia Biológica/métodos , Inmunosupresores/uso terapéutico , Enfermedades Inflamatorias del Intestino/terapia , Vacunas contra la Influenza/uso terapéutico , Adulto , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Gripe Humana/prevención & control , Alphainfluenzavirus/inmunología , Betainfluenzavirus/inmunología , Interferón gamma/sangre , Interleucina-2/sangre , Masculino , Estudios Prospectivos , Factor de Necrosis Tumoral alfa/sangre , Vacunación , Virión/inmunología
16.
J Clin Pharmacol ; 54(7): 719-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24691877

RESUMEN

Seasonal influenza is a serious respiratory illness that causes annual worldwide epidemics resulting in significant morbidity and mortality. Influenza pandemics occur about every 40 yrs, and may carry a greater burden of illness and death than seasonal influenza. Both seasonal influenza and pandemic influenza have profound economic consequences. The combination of current vaccine efficacy and viral antigenic drifts and shifts necessitates annual vaccination. New manufacturing technologies in influenza vaccine development employ cell culture and recombinant techniques. Both allow more rapid vaccine creation and production. In the past 5 years, brisk, highly creative activity in influenza vaccine research and development has begun. New vaccine technologies and vaccination strategies are addressing the need for viable alternatives to egg production methods and improved efficacy. At present, stubborn problems of sub-optimal efficacy and the need for annual immunization persist. There is an obvious need for more efficacious vaccines and improved vaccination strategies to make immunization easier for providers and patients. Mitigating this serious annual health threat remains an important public health priority.


Asunto(s)
Betainfluenzavirus/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Vacunación Masiva , Tecnología Farmacéutica , Animales , Variación Antigénica , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/metabolismo , Prioridades en Salud , Humanos , Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/biosíntesis , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/virología , Betainfluenzavirus/metabolismo , Pandemias/prevención & control , Estaciones del Año , Tecnología Farmacéutica/tendencias , Vacunas Sintéticas/química , Vacunas Sintéticas/metabolismo , Vacunas Sintéticas/uso terapéutico
18.
Vaccine ; 30(45): 6461-71, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22917957

RESUMEN

In February and September each year the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winters in the Northern and Southern Hemispheres respectively. These recommendations are based on data collected by National Influenza Centres (NIC) through the Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations for the 2012 Southern Hemisphere influenza vaccine composition.


Asunto(s)
Betainfluenzavirus , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/farmacología , Gripe Humana/prevención & control , Variación Antigénica , Reacciones Cruzadas , Farmacorresistencia Viral , Salud Global , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/epidemiología , Betainfluenzavirus/genética , Betainfluenzavirus/inmunología , Filogenia , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA