Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.906
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(42): e2405257121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39374382

RESUMEN

Incomplete understanding of metastatic disease mechanisms continues to hinder effective treatment of cancer. Despite remarkable advancements toward the identification of druggable targets, treatment options for patients in remission following primary tumor resection remain limited. Bioengineered human tissue models of metastatic sites capable of recreating the physiologically relevant milieu of metastatic colonization may strengthen our grasp of cancer progression and contribute to the development of effective therapeutic strategies. We report the use of an engineered tissue model of human bone marrow (eBM) to identify microenvironmental cues regulating cancer cell proliferation and to investigate how triple-negative breast cancer (TNBC) cell lines influence hematopoiesis. Notably, individual stromal components of the bone marrow niche (osteoblasts, endothelial cells, and mesenchymal stem/stromal cells) were each critical for regulating tumor cell quiescence and proliferation in the three-dimensional eBM niche. We found that hematopoietic stem and progenitor cells (HSPCs) impacted TNBC cell growth and responded to cancer cell presence with a shift of HSPCs (CD34+CD38-) to downstream myeloid lineages (CD11b+CD14+). To account for tumor heterogeneity and show proof-of-concept ability for patient-specific studies, we demonstrate that patient-derived tumor organoids survive and proliferate in the eBM, resulting in distinct shifts in myelopoiesis that are similar to those observed for aggressively metastatic cell lines. We envision that this human tissue model will facilitate studies of niche-specific metastatic progression and individualized responses to treatment.


Asunto(s)
Células Madre Hematopoyéticas , Nicho de Células Madre , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Proliferación Celular , Médula Ósea/patología , Médula Ósea/metabolismo , Metástasis de la Neoplasia , Ingeniería de Tejidos/métodos , Neoplasias de la Mama/patología , Hematopoyesis
2.
Front Immunol ; 15: 1446687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386216

RESUMEN

Introduction: Acute lymphoblastic leukemia is characterized by a disturbed maturation of hematopoietic stem cells (HSCs) resulting in development of a malignant clone. Despite relatively positive outcome, there are still instances of disease relapse occurring due to ineffective disease eradication or primary leukemic clone alterations. Unclear significance of stem cells in the course of ALL led us to investigate and establish crucial changes in two stem cell populations - very small embryonic-like stem cells (VSELs) and HSCs during the induction phase of treatment. Methods: In a retrospective study selected stem cells in peripheral blood and bone marrow of 60 pediatric ALL subjects and 48 healthy controls were subjected to flow cytometric analysis at 4 different time points. Results: Both VSELs and HSCs were elevated at the moment of ALL diagnosis compared to healthy controls, but profoundly decline until day 15. Further observations revealed an increase in HSCs with a concomitant depletion of VSELs until week 12. ALL patients with high HSCs showed positive correlation with bone marrow blasts at diagnosis. Patients with lower VSELs or HSCs at diagnosis had slightly improved response to applied therapy. We observed higher initial bone marrow lymphoblast values in patients with lower VSELs or higher HSCs in the high-risk group. The significance of VSELs in predicting treatment outcome can be illustrated by lower day 15 MRD level of patients with lower VSELs at diagnosis. Discussion: We found HSCs and VSELs to be valid participants in pediatric ALL with possible contribution in the neoplastic process and prediction of initial treatment outcome.


Asunto(s)
Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Niño , Masculino , Femenino , Preescolar , Estudios Retrospectivos , Células Madre Hematopoyéticas/patología , Adolescente , Lactante , Citometría de Flujo , Neoplasia Residual
3.
Nature ; 634(8032): 104-112, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39322663

RESUMEN

Down syndrome predisposes individuals to haematological abnormalities, such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood1-3. Here, to understand dysregulated haematopoiesis in Down syndrome, we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore, we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are 'primed' to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts, we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore, as mutations in Down syndrome display a signature of oxidative stress4,5, we validated both increased mitochondrial mass and oxidative stress in Down syndrome, and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together, our single-cell, multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions.


Asunto(s)
Síndrome de Down , Sangre Fetal , Feto , Hematopoyesis , Células Madre Hematopoyéticas , Multiómica , Análisis de la Célula Individual , Humanos , Recuento de Células Sanguíneas , Médula Ósea/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/metabolismo , Cromatina/genética , Síndrome de Down/sangre , Síndrome de Down/embriología , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Sangre Fetal/citología , Sangre Fetal/metabolismo , Feto/metabolismo , Feto/citología , Perfilación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Hígado/metabolismo , Hígado/embriología , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Estrés Oxidativo/genética , Reproducibilidad de los Resultados , Transcriptoma/genética , Trisomía/genética
4.
Nat Med ; 30(10): 2857-2866, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39215150

RESUMEN

Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.


Asunto(s)
Aterosclerosis , Hematopoyesis Clonal , Mutación , Humanos , Aterosclerosis/genética , Aterosclerosis/patología , Hematopoyesis Clonal/genética , Persona de Mediana Edad , Masculino , Femenino , Células Madre Hematopoyéticas/patología , Adulto , Estudios Longitudinales
5.
Nat Cell Biol ; 26(10): 1745-1758, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39169219

RESUMEN

Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions.


Asunto(s)
Leucemia Mieloide Aguda , ARN Mensajero , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Hematopoyesis/genética , Línea Celular Tumoral , Ratones , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Ratones Endogámicos C57BL
6.
Clin Adv Hematol Oncol ; 22(7): 320-327, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39110659

RESUMEN

As individuals age, their hematopoietic stem cells can sporadically acquire genetic mutations, known as clonal hematopoiesis. Although most of these genomic aberrations are of little consequence, particular changes in certain contexts can lead to the development of hematologic malignancies, such as myelodysplastic syndromes and acute myeloid leukemia. Owing to its pervasive extrahematologic interactions, clonal hematopoiesis is a recognized risk factor for and is causally implicated in the development of several chronic diseases of aging and/or inflammation, such as atherosclerotic cardiovascular disease. Here, we provide a review of the diagnosis and clinical implications of clonal hematopoiesis, as well as evolving management strategies in the absence of formal consensus guidelines.


Asunto(s)
Hematopoyesis Clonal , Humanos , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/etiología , Mutación , Manejo de la Enfermedad , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología
7.
Eur J Haematol ; 113(4): 530-542, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38967591

RESUMEN

Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (SBDS and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited. Herein, we investigated the onset of SDS embryonic hematopoietic impairments. We generated SDS and control human-derived induced pluripotent stem cells (iPSCs). SDS iPSCs recapitulated the SDS hematological phenotype. Detailed stepwise evaluation of definitive hematopoiesis revealed defects that started at the early emerging hematopoietic progenitor (EHP) stage after mesoderm and hemogenic endothelium were normally induced. Hematopoietic potential of EHPs was markedly reduced, and the introduction of SBDS in SDS iPSCs improved colony formation. Transcriptome analysis revealed reduced expression of ribosome and oxidative phosphorylation-related genes in undifferentiated and differentiated iPSCs. However, certain pathways (e.g., DNA replication) and genes (e.g., CHCHD2) were exclusively or more severely dysregulated in EHPs compared with earlier and later stages. To our knowledge, this study offers for the first time an insight into the embryonic onset of human hematopoietic defects in an inherited bone marrow failure syndrome and reveals cellular and molecular aberrations at critical stages of hematopoietic development toward EHPs.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas , Células Madre Pluripotentes Inducidas , Síndrome de Shwachman-Diamond , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Perfilación de la Expresión Génica , Fenotipo , Mutación , Lipomatosis/genética , Lipomatosis/patología , Lipomatosis/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Biomarcadores , Transcriptoma , Proteínas
8.
Leukemia ; 38(9): 1958-1970, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025986

RESUMEN

NUDT15 encodes nucleotide triphosphate diphosphatase that is responsible for metabolizing purine analog drugs, and its genetic mutation results in severe side effects from thiopurine therapy. However, the functions of Nudt15 in leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) remain unknown. Here we reveal the Nudt15-regulating self-renewal of both mouse LSCs and HSCs. Our data show that Nudt15 negatively regulates murine leukemogenesis and its deficiency prolongs the survival of murine AML recipients by impairing LSC self-renewal, while Nudt15 ablation markedly enhances mouse HSC regenerative potential and self-renewal. Mechanistically, Nudt15 modulates inflammatory signaling in mouse LSCs and HSCs, leading to divergent self-renewal outcomes. Nudt15 depletion inhibits mouse LSC self-renewal by downregulating Ifi30, resulting in elevating intracellular ROS level. Gata2, a key regulator, is required for Nudt15-mediating inflammatory signaling in mouse HSCs. Collectively, our results present new crucial roles of Nudt15 in maintaining the functions of mouse LSC and HSC through inflammatory signaling and have a new insight into clinical implications.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Pirofosfatasas , Transducción de Señal , Animales , Humanos , Ratones , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Inflamación/metabolismo , Inflamación/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/etiología , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Exp Hematol ; 136: 104583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059457

RESUMEN

Embryonic and fetal hematopoietic stem and progenitor cells differ in some key properties from cells that are part of the adult hematopoietic system. These include higher proliferation and self-renewal capacity, different globin gene usage, and differing lineage biases. Although these evolved to cover specific requirements of embryonic development, they can have serious consequences for the pathogenesis of hematologic malignancies that initiate prebirth in fetal blood cells and may result in a particularly aggressive disease that does not respond well to treatments that have been designed for adult leukemias. This indicates that these infant/pediatric leukemias should be considered developmental diseases, where a thorough understanding of their unique biology is essential for designing more effective therapies. In this review, we will highlight some of these unique fetal properties and detail the underlying molecular drivers of these phenotypes. We specifically focus on those that are pertinent to disease pathogenesis and that may therefore reveal disease vulnerabilities. We have also included an extensive description of the origins, phenotypes, and key molecular drivers of the main infant and pediatric leukemias that have a known prenatal origin. Importantly, successes in recent years in generating faithful models of these malignancies in which cellular origins, key drivers, and potential vulnerabilities can be investigated have resulted in uncovering potential, new therapeutic avenues.


Asunto(s)
Células Madre Hematopoyéticas , Humanos , Niño , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/terapia , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/etiología , Animales , Lactante , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Leucemia/patología , Leucemia/genética , Leucemia/etiología , Leucemia/terapia
10.
J Biol Chem ; 300(8): 107548, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992437

RESUMEN

Fanconi anemia (FA) is an inherited disorder of DNA repair due to mutation in one of 20+ interrelated genes that repair intrastrand DNA crosslinks and rescue collapsed or stalled replication forks. The most common hematologic abnormality in FA is anemia, but progression to bone marrow failure (BMF), clonal hematopoiesis, or acute myeloid leukemia may also occur. In prior studies, we found that Fanconi DNA repair is required for successful emergency granulopoiesis; the process for rapid neutrophil production during the innate immune response. Specifically, Fancc-/- mice did not develop neutrophilia in response to emergency granulopoiesis stimuli, but instead exhibited apoptosis of bone marrow hematopoietic stem cells and differentiating neutrophils. Repeated emergency granulopoiesis challenges induced BMF in most Fancc-/- mice, with acute myeloid leukemia in survivors. In contrast, we found equivalent neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice and WT mice, without BMF. Since termination of emergency granulopoiesis is triggered by accumulation of bone marrow neutrophils, we hypothesize neutrophilia protects Fancc-/-Tp53+/- bone marrow from the stress of a sustained inflammation that is experienced by Fancc-/- mice. In the current work, we found that blocking neutrophil accumulation during emergency granulopoiesis led to BMF in Fancc-/-Tp53+/- mice, consistent with this hypothesis. Blocking neutrophilia during emergency granulopoiesis in Fancc-/-Tp53+/- mice (but not WT) impaired cell cycle checkpoint activity, also found in Fancc-/- mice. Mechanisms for loss of cell cycle checkpoints during infectious disease challenges may define molecular markers of FA progression, or suggest therapeutic targets for bone marrow protection in this disorder.


Asunto(s)
Proteína del Grupo de Complementación C de la Anemia de Fanconi , Anemia de Fanconi , Células Madre Hematopoyéticas , Ratones Noqueados , Neutrófilos , Animales , Anemia de Fanconi/patología , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Ratones , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Hematopoyesis , Ratones Endogámicos C57BL , Médula Ósea/metabolismo , Médula Ósea/patología
11.
Br J Haematol ; 205(3): 798-811, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39044285

RESUMEN

Cells of the innate and adaptive immune systems are the progeny of haematopoietic stem and progenitor cells (HSPCs). During steady-state myelopoiesis, HSPC undergo differentiation and proliferation but are called to respond directly and acutely to various signals that lead to emergency myelopoiesis, including bone marrow ablation, infections, and sterile inflammation. There is extensive evidence that many solid tumours have the potential to secrete classical myelopoiesis-promoting growth factors and other products able to mimic emergency haematopoiesis, and to aberrantly re-direct myeloid cell development into immunosuppressive cells with tumour promoting properties. Here, we summarize the current literature regarding the effects of solid cancers on HSPCs function and discuss how these effects might shape antitumour responses via a mechanism initiated at a site distal from the tumour microenvironment.


Asunto(s)
Mielopoyesis , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/patología , Células Madre Hematopoyéticas/patología , Microambiente Tumoral/inmunología , Animales
12.
Stem Cell Rev Rep ; 20(7): 1889-1901, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38884929

RESUMEN

Additional sex combs-like 1 (ASXL1) is an epigenetic modulator frequently mutated in myeloid malignancies, generally associated with poor prognosis. Current models for ASXL1-mutated diseases are mainly based on the complete deletion of Asxl1 or overexpression of C-terminal truncations in mice models. However, these models cannot fully recapitulate the pathogenesis of myeloid malignancies. Patient-derived induced pluripotent stem cells (iPSCs) provide valuable disease models that allow us to understand disease-related molecular pathways and develop novel targeted therapies. Here, we generated iPSCs from a patient with myeloproliferative neoplasm carrying a heterozygous ASXL1 mutation. The iPSCs we generated exhibited the morphology of pluripotent cells, highly expressed pluripotent markers, excellent differentiation potency in vivo, and normal karyotype. Subsequently, iPSCs with or without ASXL1 mutation were induced to differentiate into hematopoietic stem/progenitor cells, and we found that ASXL1 mutation led to myeloid-biased output and impaired erythroid differentiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that terms related to embryonic development, myeloid differentiation, and immune- and neural-related processes were most enriched in the differentially expressed genes. Western blot demonstrated that the global level of H2AK119ub was significantly decreased when mutant ASXL1 was present. Chromatin Immunoprecipitation Sequencing showed that most genes associated with stem cell maintenance were upregulated, whereas occupancies of H2AK119ub around these genes were significantly decreased. Thus, the iPSC model carrying ASXL1 mutation could serve as a potential tool to study the pathogenesis of myeloid malignancies and to screen targeted therapy for patients.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Mutación , Proteínas Represoras , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/citología , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Mutación/genética , Diferenciación Celular/genética , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Ratones , Histonas/metabolismo , Histonas/genética
13.
Blood ; 144(9): 931-939, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38905596

RESUMEN

ABSTRACT: Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.


Asunto(s)
Medicina de Precisión , Síndrome de Shwachman-Diamond , Humanos , Síndrome de Shwachman-Diamond/genética , Medicina de Precisión/métodos , Mutación , Enfermedades de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología
14.
Clin Cancer Res ; 30(16): 3622-3639, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848040

RESUMEN

PURPOSE: Somatic missense mutations in the phosphodegron domain of the MYC gene (MYC Box I or MBI) are detected in the dominant clones of a subset of patients with acute myeloid leukemia (AML), but the mechanisms by which they contribute to AML are unknown. EXPERIMENTAL DESIGN: To investigate the effects of MBI MYC mutations on hematopoietic cells, we employed a multi-omic approach to systematically compare the cellular and molecular consequences of expressing oncogenic doses of wild type, threonine-58 and proline-59 mutant MYC proteins in hematopoietic cells, and we developed a knockin mouse harboring the germline MBI mutation p.T58N in the Myc gene. RESULTS: Both wild-type and MBI mutant MYC proteins promote self-renewal programs and expand highly selected subpopulations of progenitor cells in the bone marrow. Compared with their wild-type counterparts, mutant cells display decreased cell death and accelerated leukemogenesis in vivo, changes that are recapitulated in the transcriptomes of human AML-bearing MYC mutations. The mutant phenotypes feature decreased stability and translation of mRNAs encoding proapoptotic and immune-regulatory genes, increased translation of RNA binding proteins and nuclear export machinery, and distinct nucleocytoplasmic RNA profiles. MBI MYC mutant proteins also show a higher propensity to aggregate in perinuclear regions and cytoplasm. Like the overexpression model, heterozygous p.T58N knockin mice displayed similar changes in subcellular MYC localization, progenitor expansion, transcriptional signatures, and develop hematopoietic tumors. CONCLUSIONS: This study uncovers that MBI MYC mutations alter RNA nucleocytoplasmic transport mechanisms to contribute to the development of hematopoietic malignancies.


Asunto(s)
Leucemia Mieloide Aguda , Mutación Missense , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Humanos , Transporte Activo de Núcleo Celular/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Técnicas de Sustitución del Gen , Modelos Animales de Enfermedad , Carcinogénesis/genética
15.
Leukemia ; 38(8): 1787-1798, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937548

RESUMEN

Germline heterozygous mutations in DDX41 predispose individuals to hematologic malignancies in adulthood. Most of these DDX41 mutations result in a truncated protein, leading to loss of protein function. To investigate the impact of these mutations on hematopoiesis, we generated mice with hematopoietic-specific knockout of one Ddx41 allele. Under normal steady-state conditions, there was minimal effect on lifelong hematopoiesis, resulting in a mild yet persistent reduction in red blood cell counts. However, stress induced by transplantation of the Ddx41+/- BM resulted in hematopoietic stem/progenitor cell (HSPC) defects and onset of hematopoietic failure upon aging. Transcriptomic analysis of HSPC subsets from the transplanted BM revealed activation of cellular stress responses, including upregulation of p53 target genes in erythroid progenitors. To understand how the loss of p53 affects the phenotype of Ddx41+/- HSPCs, we generated mice with combined Ddx41 and Trp53 heterozygous deletions. The reduction in p53 expression rescued the fitness defects in HSPC caused by Ddx41 heterozygosity. However, the combined Ddx41 and Trp53 mutant mice were prone to developing hematologic malignancies that resemble human myelodysplastic syndrome and acute myeloid leukemia. In conclusion, DDX41 heterozygosity causes dysregulation of the response to hematopoietic stress, which increases the risk of transformation with a p53 mutation.


Asunto(s)
ARN Helicasas DEAD-box , Haploinsuficiencia , Neoplasias Hematológicas , Hematopoyesis , Mutación , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/etiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/genética
17.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928171

RESUMEN

Acute myeloid leukemia (AML) is a heterogenous blood cancer with a dismal prognosis. It emanates from leukemic stem cells (LSCs) arising from the genetic transformation of hematopoietic stem cells (HSCs). LSCs hold prognostic value, but their molecular and immunophenotypic heterogeneity poses challenges: there is no single marker for identifying all LSCs across AML samples. We hypothesized that imaging flow cytometry (IFC) paired with artificial intelligence-driven image analysis could visually distinguish LSCs from HSCs based solely on morphology. Initially, a seven-color IFC panel was employed to immunophenotypically identify LSCs and HSCs in bone marrow samples from five AML patients and ten healthy donors, respectively. Next, we developed convolutional neural network (CNN) models for HSC-LSC discrimination using brightfield (BF), side scatter (SSC), and DNA images. Classification using only BF images achieved 86.96% accuracy, indicating significant morphological differences. Accuracy increased to 93.42% when combining BF with DNA images, highlighting differences in nuclear morphology, although DNA images alone were inadequate for accurate HSC-LSC discrimination. Model development using SSC images revealed minor granularity differences. Performance metrics varied substantially between AML patients, indicating considerable morphologic variations among LSCs. Overall, we demonstrate proof-of-concept results for accurate CNN-based HSC-LSC differentiation, instigating the development of a novel technique within AML monitoring.


Asunto(s)
Citometría de Flujo , Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Redes Neurales de la Computación , Humanos , Leucemia Mieloide Aguda/patología , Citometría de Flujo/métodos , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Inmunofenotipificación/métodos , Femenino , Masculino , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad
18.
Cell Rep Med ; 5(5): 101558, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38733986

RESUMEN

The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Mutación , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Hematopoyesis Clonal/genética , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Ratones Endogámicos C57BL , Haploinsuficiencia/genética , Modelos Animales de Enfermedad , Hematopoyesis/genética
19.
Crit Rev Oncol Hematol ; 199: 104382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723838

RESUMEN

Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.


Asunto(s)
Síndrome de Down , Reacción Leucemoide , Hígado , Humanos , Síndrome de Down/complicaciones , Síndrome de Down/patología , Hígado/patología , Reacción Leucemoide/genética , Reacción Leucemoide/patología , Reacción Leucemoide/diagnóstico , Reacción Leucemoide/complicaciones , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Feto , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Mielopoyesis
20.
Exp Clin Transplant ; 22(3): 229-238, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38695592

RESUMEN

OBJECTIVES: The eradication of leukemia cells while sparing hematopoietic stem cells in the graft before autologous hematopoietic stem cell transplant is critical to prevention of leukemia relapse. Proliferating cells have been shown to be more prone to apoptosis than differentiated cells in response to ultraviolet radiation; however, whether leukemia cells are more sensitive to ultraviolet LED radiation than hematopoietic stem cells remains unclear. MATERIALS AND METHODS: We compared the in vitro responses between murine leukemia L1210 cells and murine hematopoietic stem cells to 280-nm ultraviolet LED radiation. We also investigated the effects of ultraviolet LED radiation on the tumorigenic and metastatic capacity of L1210 cells and hematopoietic stem cell hematopoiesis in a mouse model of hematopoietic stem cell transplant. RESULTS: L1210 cells were more sensitive to ultraviolet LED radiation than hematopoietic stem cells in vitro, as evidenced by significantly reduced colony formation rates and cell proliferation rates, along with remarkably increased apoptosis rates in L1210 cells. Compared with corresponding unirradiated cells, ultraviolet LED-irradiated L1210 cells failed to generate palpable tumors in mice, whereas ultraviolet LED-irradiated bone marrow cells restored hematopoiesis in vivo. Furthermore, transplant with an irradiated mixture of L1210 cells and bone marrow cells showed later onset of leukemia, milder leukemic infiltration, and prolonged survival in mice, compared with unirradiated cell transplant. CONCLUSIONS: Our results suggest that ultraviolet LED radiation can suppress the proliferative and tumorigenic abilities of leukemia cells without reducing the hematopoietic reconstitution capacity of hematopoietic stem cells, serving as a promising approach to kill leukemia cells in autograft before autologous hematopoietic stem cell transplant.


Asunto(s)
Apoptosis , Proliferación Celular , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/efectos de la radiación , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Apoptosis/efectos de la radiación , Hematopoyesis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Línea Celular Tumoral , Rayos Ultravioleta/efectos adversos , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Terapia Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA