Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cells ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120279

RESUMEN

RESEARCH QUESTION: Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN: Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS: Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS: This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).


Asunto(s)
Diferenciación Celular , Células Tecales , Femenino , Células Tecales/metabolismo , Células Tecales/citología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Cultivadas , Biomarcadores/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
2.
Adipocyte ; 13(1): 2376571, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38989805

RESUMEN

Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.


Asunto(s)
Adipocitos , Ciclo Celular , Desdiferenciación Celular , Proliferación Celular , Animales , Adipocitos/citología , Adipocitos/metabolismo , Ratones , Células Cultivadas , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Diferenciación Celular , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo
3.
Clin Exp Pharmacol Physiol ; 51(8): e13908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39075744

RESUMEN

M. Luo , Z. Liu , H. Hao , T. Lu , M. Chen , M. Lei , C.M. Verfaillie , and Z. Liu , "High Glucose Facilitates Cell Cycle Arrest of Rat Bone Marrow Multipotent Adult Progenitor Cells through Transforming Growth Factor-ß1 and Extracellular Signal-Regulated Kinase 1/2 Signalling without Changing Oct4 Expression," Clinical and Experimental Pharmacology and Physiology 39, no. 10 (2012): 843-851. https://doi.org/10.1111/j.1440-1681.2012.05747.x This Expression of Concern is for the above article, published online on 14 July 2012, in Wiley Online Library (wileyonlinelibrary.com), and has been issued by agreement between the journal Editor-in-Chief, Yang Yang, and the Publisher, John Wiley & Sons Australia, Ltd. The Expression of Concern has been agreed due to concerns raised by a third party after publication regarding the similarity of certain blots in Figures 2 and 3 and the underlying data that they represent. The authors did not respond to multiple requests for the original data. The journal is issuing this Expression of Concern because the concerns regarding the integrity of the data and the results presented cannot be resolved.


Asunto(s)
Puntos de Control del Ciclo Celular , Glucosa , Sistema de Señalización de MAP Quinasas , Factor 3 de Transcripción de Unión a Octámeros , Factor de Crecimiento Transformador beta1 , Animales , Ratas , Glucosa/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/citología
4.
Sci Adv ; 10(23): eadn8963, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838144

RESUMEN

Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.


Asunto(s)
Diferenciación Celular , Histona Desacetilasas , Ratones Noqueados , Proteínas de Complejo Poro Nuclear , Animales , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Ratones , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/citología , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/citología , Células Mieloides/metabolismo , Células Mieloides/citología , Sumoilación , Mielopoyesis/genética
5.
Stem Cell Res Ther ; 15(1): 139, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735988

RESUMEN

The concept of "stemness" incorporates the molecular mechanisms that regulate the unlimited self-regenerative potential typical of undifferentiated primitive cells. These cells possess the unique ability to navigate the cell cycle, transitioning in and out of the quiescent G0 phase, and hold the capacity to generate diverse cell phenotypes. Stem cells, as undifferentiated precursors endow with extraordinary regenerative capabilities, exhibit a heterogeneous and tissue-specific distribution throughout the human body. The identification and characterization of distinct stem cell populations across various tissues have revolutionized our understanding of tissue homeostasis and regeneration. From the hematopoietic to the nervous and musculoskeletal systems, the presence of tissue-specific stem cells underlines the complex adaptability of multicellular organisms. Recent investigations have revealed a diverse cohort of non-hematopoietic stem cells (non-HSC), primarily within bone marrow and other stromal tissue, alongside established hematopoietic stem cells (HSC). Among these non-HSC, a rare subset exhibits pluripotent characteristics. In vitro and in vivo studies have demonstrated the remarkable differentiation potential of these putative stem cells, known by various names including multipotent adult progenitor cells (MAPC), marrow-isolated adult multilineage inducible cells (MIAMI), small blood stem cells (SBSC), very small embryonic-like stem cells (VSELs), and multilineage differentiating stress enduring cells (MUSE). The diverse nomenclatures assigned to these primitive stem cell populations may arise from different origins or varied experimental methodologies. This review aims to present a comprehensive comparison of various subpopulations of multipotent/pluripotent stem cells derived from stromal tissues. By analysing isolation techniques and surface marker expression associated with these populations, we aim to delineate the similarities and distinctions among stromal tissue-derived stem cells. Understanding the nuances of these tissue-specific stem cells is critical for unlocking their therapeutic potential and advancing regenerative medicine. The future of stem cells research should prioritize the standardization of methodologies and collaborative investigations in shared laboratory environments. This approach could mitigate variability in research outcomes and foster scientific partnerships to fully exploit the therapeutic potential of pluripotent stem cells.


Asunto(s)
Células Madre Multipotentes , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Diferenciación Celular , Células del Estroma/citología , Células del Estroma/metabolismo , Animales
6.
Cell Transplant ; 33: 9636897241244943, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695366

RESUMEN

Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.


Asunto(s)
Diferenciación Celular , Proteínas Hedgehog , Células Madre Mesenquimatosas , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas Hedgehog/metabolismo , Humanos , Diferenciación Celular/fisiología , Animales , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo
7.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816617

RESUMEN

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Asunto(s)
Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Megacariocitos , Plaquetas/inmunología , Plaquetas/metabolismo , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Diferenciación Celular/inmunología , Megacariocitos/citología , Linaje de la Célula , Ratones Endogámicos C57BL , Hematopoyesis , Trombopoyesis , Ratones Noqueados , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/inmunología
8.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760574

RESUMEN

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Asunto(s)
Linaje de la Célula , Células Epiteliales , Glándulas Mamarias Animales , Células Madre Mesenquimatosas , Animales , Ratones , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/metabolismo , Femenino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Diferenciación Celular , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Morfogénesis , Análisis de la Célula Individual , Mesodermo/citología , Mesodermo/metabolismo , Mesodermo/embriología
9.
Stem Cells ; 42(8): 763-776, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38733123

RESUMEN

Endometrium fibrosis is the leading cause of uterine infertility. Macrophages participated in the occurrence and development of endometrial fibrosis. We previously reported that human umbilical cord multipotent stromal cells (hUC-MSCs) exerted their therapeutic effect in a macrophage-dependent manner in endometrial fibrosis. However precise mechanisms by which hUC-MSCs may influence macrophages in endometrial fibrosis remain largely unexplored. Here, we demonstrated that abnormal iron and lipid metabolism occurred in patients with intrauterine adhesions (IUA) and murine models. Ferroptosis has been proven to contribute to the progression of fibrotic diseases. Our results revealed that pharmacological activation of ferroptosis by Erastin aggravated endometrial fibrosis, while inhibition of ferroptosis by Ferrostatin-1 ameliorated endometrial fibrosis in vivo. Moreover, ferroptosis of macrophages was significantly upregulated in endometria of IUA murine models. Of note, transcriptome profiles revealed that CD36 gene expression was significantly increased in patients with IUA and immunofluorescence analysis showed CD36 protein was mainly located in macrophages. Silencing CD36 in macrophages could reverse cell ferroptosis. Dual luciferase reporter assay revealed that CD36 was the direct target of activation transcription factor 3 (ATF3). Furthermore, through establishing coculture system and IUA murine models, we found that hUC-MSCs had a protective role against macrophage ferroptosis and alleviated endometrial fibrosis related to decreased CD36 and ATF3. The effect of hUC-MSCs on macrophage ferroptosis was attributed to the upregulation of amphiregulin (AREG). Our data highlighted that macrophage ferroptosis occurred in endometrial fibrosis via the ATF3-CD36 pathway and hUC-MSCs protected against macrophage ferroptosis to alleviate endometrial fibrosis via secreting AREG. These findings provided a potential target for therapeutic implications of endometrial fibrosis.


Asunto(s)
Anfirregulina , Antígenos CD36 , Endometrio , Ferroptosis , Fibrosis , Macrófagos , Cordón Umbilical , Femenino , Humanos , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Animales , Macrófagos/metabolismo , Ratones , Anfirregulina/metabolismo , Anfirregulina/genética , Endometrio/metabolismo , Endometrio/patología , Antígenos CD36/metabolismo , Antígenos CD36/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Células Madre Multipotentes/metabolismo
10.
Mol Biol Rep ; 51(1): 596, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683461

RESUMEN

BACKGROUND: Arnica montana and Bellis perennis are two medicinal plants that are thought to accelerate bone repair in homoeopathic literature. Mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate and regenerate bone or osteogenesis. Hence, we aimed to determine the role of Arnica montana and Bellis perennis on the osteogenic differentiation of the C3H10T1/2 stem cell line. METHODS AND RESULTS: The cell proliferation of Arnica montana and Bellis perennis was evaluated by MTT assay. Osteogenic differentiation of C3H10T1/2 was induced by the addition of ß-glycerophosphate, ascorbic acid and dexamethasone in the differentiation medium over 3 weeks. Cells were treated with Arnica montana and Bellis perennis individually as well as in combination. The osteogenic differentiation potential of Arnica montana and Bellis perennis to differentiate C3H10T1/2 into osteoblasts was measured by alkaline phosphatase activity, alizarin red staining and the expression of Osteocalcin using immunostaining and qRT-PCR. Arnica montana and Bellis perennis could enhance C3H10T1/2 cell proliferation at 1600 µg. Further, the compound showed the ability to augment osteogenesis as confirmed by increased expression of alkaline phosphatase and enhanced calcium accumulation as seen by the Alizarin Red staining and quantification. Enhanced osteogenesis was further supported by the increased expression of osteocalcin in the treated cells with individual and combined doses of Arnica montana and Bellis perennis. Therefore, the findings provide additional support for the positive impact of Arnica montana and Bellis perennis on bone formation. CONCLUSIONS: Our findings suggest that homoeopathic compounds Arnica montana and Bellis perennis can augment osteogenesis individually as well as in combination.


Asunto(s)
Arnica , Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas , Osteogénesis , Extractos Vegetales , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Extractos Vegetales/farmacología , Línea Celular , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Fosfatasa Alcalina/metabolismo , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Osteocalcina/metabolismo , Osteocalcina/genética
11.
Nat Immunol ; 25(5): 902-915, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589618

RESUMEN

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito , Hipersensibilidad , Factor de Unión 1 al Potenciador Linfoide , Células Madre Multipotentes , Factor 1 de Transcripción de Linfocitos T , Células Th2 , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Células Th2/inmunología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Hipersensibilidad/inmunología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Diferenciación Celular , Citocinas/metabolismo , Linfopoyetina del Estroma Tímico , Animales , Células Cultivadas , Ratones
12.
PLoS One ; 19(4): e0298465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640116

RESUMEN

Lymphangiogenesis is induced by local pro-lymphatic growth factors and bone marrow (BM)-derived myeloid-lymphatic endothelial cell progenitors (M-LECP). We previously showed that M-LECP play a significant role in lymphangiogenesis and lymph node metastasis in clinical breast cancer (BC) and experimental BC models. We also showed that differentiation of mouse and human M-LECP can be induced through sequential activation of colony stimulating factor-1 (CSF-1) and Toll-like receptor-4 (TLR4) pathways. This treatment activates the autocrine interleukin-10 (IL-10) pathway that, in turn, induces myeloid immunosuppressive M2 phenotype along with lymphatic-specific proteins. Because IL-10 is implicated in differentiation of numerous lineages, we sought to determine whether this pathway specifically promotes the lymphatic phenotype or multipotent progenitors that can give rise to M-LECP among other lineages. Analyses of BM cells activated either by CSF-1/TLR4 ligands in vitro or orthotopic breast tumors in vivo showed expansion of stem/progenitor population and coincident upregulation of markers for at least four lineages including M2-macrophage, lymphatic endothelial, erythroid, and T-cells. Induction of cell plasticity and multipotency was IL-10 dependent as indicated by significant reduction of stem cell markers and those for multiple lineages in differentiated cells treated with anti-IL-10 receptor (IL-10R) antibody or derived from IL-10R knockout mice. However, multipotent CD11b+/Lyve-1+/Ter-119+/CD3e+ progenitors detected in BM appeared to split into a predominant myeloid-lymphatic fraction and minor subsets expressing erythroid and T-cell markers upon establishing tumor residence. Each sub-population was detected at a distinct intratumoral site. This study provides direct evidence for differences in maturation status between the BM progenitors and those reaching tumor destination. The study results suggest preferential tumor bias towards expansion of myeloid-lymphatic cells while underscoring the role of IL-10 in early BM production of multipotent progenitors that give rise to both hematopoietic and endothelial lineages.


Asunto(s)
Interleucina-10 , Neoplasias , Células Madre Neoplásicas , Microambiente Tumoral , Animales , Humanos , Ratones , Células de la Médula Ósea/patología , Diferenciación Celular , Células Cultivadas , Interleucina-10/metabolismo , Factor Estimulante de Colonias de Macrófagos , Neoplasias/patología , Fenotipo , Receptor Toll-Like 4 , Células Madre Multipotentes/metabolismo , Linfangiogénesis , Células Mieloides/metabolismo , Células Mieloides/patología , Células Madre Neoplásicas/metabolismo
13.
Nature ; 627(8005): 839-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509363

RESUMEN

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Estrés Fisiológico , Animales , Femenino , Masculino , Ratones , Envejecimiento/fisiología , Infecciones Bacterianas/patología , Infecciones Bacterianas/fisiopatología , Vasos Sanguíneos/citología , Linaje de la Célula , Eritropoyesis , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemorragia/patología , Hemorragia/fisiopatología , Linfopoyesis , Megacariocitos/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Mielopoyesis , Cráneo/irrigación sanguínea , Cráneo/patología , Cráneo/fisiopatología , Esternón/irrigación sanguínea , Esternón/citología , Esternón/metabolismo , Estrés Fisiológico/fisiología , Tibia/irrigación sanguínea , Tibia/citología , Tibia/metabolismo
14.
Cell Stem Cell ; 31(3): 378-397.e12, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38402617

RESUMEN

Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.


Asunto(s)
Hematopoyesis , Hierro , Hematopoyesis/genética , Hierro/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular
15.
Biocell ; 33(1): 33-38, Apr. 2009. ilus
Artículo en Inglés | LILACS | ID: lil-595027

RESUMEN

The kidney has an inherent ability for recovery and regeneration following acute damage. However, there has been much contention as to the source of regenerating renal cells. The aim of this study was to isolate and characterize these cells. Normal rat kidneys were minced and cells were isolated with collagenase I and were cultured in an expansion medium. Adherent cells were isolated and expanded for more than 120 days in vitro. These cells had the potential of trans-lineage differentiation into neural cells, adipocytes and osteocytes. These cells also expressed Nucleostemin, Cyclin D1, Notch1 and Survivin which are commonly expressed in stem cells. The results of the current work show that the adult kidney contains a population of multipotent stem cells.


Asunto(s)
Animales , Femenino , Ratas , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Ciclina D1/metabolismo , /metabolismo , Proteínas Portadoras/metabolismo , Receptor Notch1/metabolismo , Riñón/citología , Riñón/fisiología , Diferenciación Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Ratas Wistar , Regeneración , Separación Celular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA