Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(37): e2206817119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067313

RESUMEN

The classification of neurons into distinct types reveals hierarchical taxonomic relationships that reflect the extent of similarity between neuronal cell types. At the base of such taxonomies are neuronal cells that are very similar to one another but differ in a small number of reproducible and select features. How are very similar members of a neuron class that share many features instructed to diversify into distinct subclasses? We show here that the six very similar members of the Caenorhabditis elegans IL2 sensory neuron class, which are all specified by a homeobox terminal selector, unc-86/BRN3, differentiate into two subtly distinct subclasses, a dorsoventral subclass and a lateral subclass, by the toggle switch-like action of the sine oculis/SIX homeobox gene unc-39. unc-39 is expressed only in the lateral IL2 neurons, and loss of unc-39 leads to a homeotic transformation of the lateral into the dorsoventral class; conversely, ectopic unc-39 expression converts the dorsoventral subclass into the lateral subclass. Hence, a terminal selector homeobox gene controls both class- as well as subclass-specific features, while a subordinate homeobox gene determines the ability of the class-specific homeobox gene to activate subtype-specific target genes. We find a similar regulatory mechanism operating in a distinct class of six motor neurons. Our findings underscore the importance of homeobox genes in neuronal identity control and invite speculations about homeotic identity transformations as potential drivers of evolutionary novelty during cell-type evolution in the brain.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Genes Homeobox , Proteínas de Homeodominio , Células Receptoras Sensoriales , Factores de Transcripción , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Neuronas Motoras/clasificación , Neuronas Motoras/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
2.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023828

RESUMEN

Animals have evolved sophisticated visual circuits to solve a vital inference problem: detecting whether or not a visual signal corresponds to an object on a collision course. Such events are detected by specific circuits sensitive to visual looming, or objects increasing in size. Various computational models have been developed for these circuits, but how the collision-detection inference problem itself shapes the computational structures of these circuits remains unknown. Here, inspired by the distinctive structures of LPLC2 neurons in the visual system of Drosophila, we build anatomically-constrained shallow neural network models and train them to identify visual signals that correspond to impending collisions. Surprisingly, the optimization arrives at two distinct, opposing solutions, only one of which matches the actual dendritic weighting of LPLC2 neurons. Both solutions can solve the inference problem with high accuracy when the population size is large enough. The LPLC2-like solutions reproduces experimentally observed LPLC2 neuron responses for many stimuli, and reproduces canonical tuning of loom sensitive neurons, even though the models are never trained on neural data. Thus, LPLC2 neuron properties and tuning are predicted by optimizing an anatomically-constrained neural network to detect impending collisions. More generally, these results illustrate how optimizing inference tasks that are important for an animal's perceptual goals can reveal and explain computational properties of specific sensory neurons.


Asunto(s)
Simulación por Computador , Drosophila/fisiología , Red Nerviosa , Células Receptoras Sensoriales/fisiología , Animales , Drosophila/citología , Percepción de Movimiento/fisiología , Estimulación Luminosa , Células Receptoras Sensoriales/clasificación
3.
Nat Commun ; 12(1): 1026, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589589

RESUMEN

Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.


Asunto(s)
Retroalimentación Sensorial/fisiología , Ganglios Espinales/metabolismo , Neuronas Motoras/metabolismo , Propiocepción/fisiología , Células Receptoras Sensoriales/metabolismo , Animales , Calbindina 1/genética , Calbindina 1/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Ganglios Espinales/citología , Expresión Génica , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/clasificación , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Condicionamiento Físico Animal , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología , Análisis de la Célula Individual , Médula Espinal/citología , Médula Espinal/metabolismo
4.
J Cell Mol Med ; 24(18): 11012-11017, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32744427

RESUMEN

Traumatic nerve injuries have become a common clinical problem, and axon regeneration is a critical process in the successful functional recovery of the injured nervous system. In this study, we found that peripheral axotomy reduces PTEN expression in adult sensory neurons; however, it did not alter the expression level of PTEN in IB4-positive sensory neurons. Additionally, our results indicate that the artificial inhibition of PTEN markedly promotes adult sensory axon regeneration, including IB4-positive neuronal axon growth. Thus, our results provide strong evidence that PTEN is a prominent repressor of adult sensory axon regeneration, especially in IB4-positive neurons.


Asunto(s)
Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proyección Neuronal/fisiología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fenantrenos/farmacología , Lectinas de Plantas/análisis , Neuropatía Ciática/fisiopatología , Células Receptoras Sensoriales/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Ganglios Espinales/citología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Regeneración Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proyección Neuronal/efectos de los fármacos , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/efectos de los fármacos
5.
Int J Mol Sci ; 21(7)2020 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-32260335

RESUMEN

Insulin, besides its pivotal role in energy metabolism, may also modulate neuronal processes through acting on insulin receptors (InsRs) expressed by neurons of both the central and the peripheral nervous system. Recently, the distribution and functional significance of InsRs localized on a subset of multifunctional primary sensory neurons (PSNs) have been revealed. Systematic investigations into the cellular electrophysiology, neurochemistry and morphological traits of InsR-expressing PSNs indicated complex functional interactions among specific ion channels, proteins and neuropeptides localized in these neurons. Quantitative immunohistochemical studies have revealed disparate localization of the InsRs in somatic and visceral PSNs with a dominance of InsR-positive neurons innervating visceral organs. These findings suggested that visceral spinal PSNs involved in nociceptive and inflammatory processes are more prone to the modulatory effects of insulin than somatic PSNs. Co-localization of the InsR and transient receptor potential vanilloid 1 (TRPV1) receptor with vasoactive neuropeptides calcitonin gene-related peptide and substance P bears of crucial importance in the pathogenesis of inflammatory pathologies affecting visceral organs, such as the pancreas and the urinary bladder. Recent studies have also revealed significant novel aspects of the neurotrophic propensities of insulin with respect to axonal growth, development and regeneration.


Asunto(s)
Insulina/metabolismo , Receptor de Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axones/metabolismo , Humanos , Inflamación/metabolismo , Dolor/metabolismo , Células Receptoras Sensoriales/clasificación , Canales Catiónicos TRPV/metabolismo
6.
J Neurogenet ; 34(3-4): 351-362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32316810

RESUMEN

Caenorhabditis elegans has a simple nervous system of 302 neurons. It however senses environmental cues incredibly precisely and produces various behaviors by processing information in the neural circuit. In addition to classical genetic analysis, fluorescent proteins and calcium indicators enable in vivo monitoring of protein dynamics and neural activity on either fixed or free-moving worms. These analyses have provided the detailed molecular mechanisms of neuronal and systemic signaling that regulate worm responses. Here, we focus on responses of C. elegans against temperature and review key findings that regulate thermotaxis and cold tolerance. Thermotaxis of C. elegans has been studied extensively for almost 50 years, and cold tolerance is a relatively recent concept in C. elegans. Although both thermotaxis and cold tolerance require temperature sensation, the responsible neurons and molecular pathways are different, and C. elegans uses the proper mechanisms depending on its situation. We summarize the molecular mechanisms of the major thermosensory circuit as well as the modulatory strategy through neural and tissue communication that enables fine tuning of thermotaxis and cold tolerance.


Asunto(s)
Reacción de Prevención/fisiología , Caenorhabditis elegans/fisiología , Frío/efectos adversos , Taxia/fisiología , Sensación Térmica/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Señalización del Calcio/fisiología , Dendritas/ultraestructura , Interneuronas/fisiología , Mamíferos/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Oxígeno/farmacología , Órganos de los Sentidos/inervación , Órganos de los Sentidos/fisiología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Especificidad de la Especie , Termorreceptores/fisiología
7.
Proc Natl Acad Sci U S A ; 117(10): 5494-5501, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32079727

RESUMEN

Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca] i Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca] i corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the Kv1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional Kv1.1/Kv1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.


Asunto(s)
Ganglios Espinales/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Animales , Calcio/metabolismo , Conotoxinas/farmacología , Citosol/metabolismo , Ganglios Espinales/efectos de los fármacos , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Análisis de la Célula Individual , Transcriptoma
8.
J Neurosci ; 40(1): 44-53, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896562

RESUMEN

Recent advances in microscopy, genetics, physiology, and data processing have expanded the scope and accelerated the pace of discovery in visual neuroscience. However, the pace of discovery and the ever increasing number of published articles can present a serious issue for both trainees and senior scientists alike: with each passing year the fog of progress thickens, making it easy to lose sight of important earlier advances. As part of this special issue of the Journal of Neuroscience commemorating the 50th anniversary of SfN, here, we provide a variation on Stephen Kuffler's Oldies but Goodies classic reading list, with the hope that by looking back at highlights in the field of visual neuroscience we can better define remaining gaps in our knowledge and thus guide future work. We also hope that this article can serve as a resource that will aid those new to the field to find their bearings.


Asunto(s)
Neurociencias/historia , Percepción Visual/fisiología , Potenciales de Acción , Animales , Mapeo Encefálico , Corteza Cerebral/fisiología , Conectoma , Percepción de Forma/fisiología , Cuerpos Geniculados/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Modelos Neurológicos , Percepción de Movimiento/fisiología , Retina/citología , Retina/fisiología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Percepción Espacial/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología
9.
Methods Mol Biol ; 2047: 411-419, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31552668

RESUMEN

Sensory systems convey environmental information to the brain. A comprehensive description of neuronal anatomy and connectivity is essential to understand how sensory information is acquired, transmitted, and processed. Here we describe a high-resolution live imaging technique to quantify the architecture of sensory neurons in larval zebrafish. This approach is ideal to assess neuronal-circuit plasticity and regeneration.


Asunto(s)
Microscopía Confocal/métodos , Células Receptoras Sensoriales/clasificación , Pez Cebra/embriología , Animales , Encéfalo/fisiología , Larva , Plasticidad Neuronal , Células Receptoras Sensoriales/fisiología , Programas Informáticos
10.
ACS Chem Neurosci ; 10(12): 4834-4846, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31697467

RESUMEN

Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.


Asunto(s)
Analgésicos/farmacología , Flavanonas/farmacología , Ganglios Espinales/citología , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Nocicepción/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Sodio/metabolismo , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Flavanonas/química , Flavanonas/metabolismo , Flavanonas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Conformación Proteica , Mapeo de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Organismos Libres de Patógenos Específicos , Relación Estructura-Actividad
11.
Neuron ; 103(4): 598-616.e7, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31248728

RESUMEN

Dorsal root ganglion (DRG) sensory neuron subtypes defined by their in vivo properties display distinct intrinsic electrical properties. We used bulk RNA sequencing of genetically labeled neurons and electrophysiological analyses to define ion channel contributions to the intrinsic electrical properties of DRG neuron subtypes. The transcriptome profiles of eight DRG neuron subtypes revealed differentially expressed and functionally relevant genes, including voltage-gated ion channels. Guided by these data, electrophysiological analyses using pharmacological and genetic manipulations as well as computational modeling of DRG neuron subtypes were undertaken to assess the functions of select voltage-gated potassium channels (Kv1, Kv2, Kv3, and Kv4) in shaping action potential (AP) waveforms and firing patterns. Our findings show that the transcriptome profiles have predictive value for defining ion channel contributions to sensory neuron subtype-specific intrinsic physiological properties. The distinct ensembles of voltage-gated ion channels predicted to underlie the unique intrinsic physiological properties of eight DRG neuron subtypes are presented.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Canales Iónicos/fisiología , Células Receptoras Sensoriales/fisiología , Potenciales de Acción , Vías Aferentes/fisiología , Animales , Simulación por Computador , Ganglios Espinales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Canales Iónicos/biosíntesis , Canales Iónicos/genética , Mecanorreceptores/fisiología , Ratones , Ratones Transgénicos , Modelos Neurológicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/fisiología , ARN/genética , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/clasificación , Transcriptoma
12.
Gut ; 68(4): 633-644, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483303

RESUMEN

OBJECTIVE: Integration of nutritional, microbial and inflammatory events along the gut-brain axis can alter bowel physiology and organism behaviour. Colonic sensory neurons activate reflex pathways and give rise to conscious sensation, but the diversity and division of function within these neurons is poorly understood. The identification of signalling pathways contributing to visceral sensation is constrained by a paucity of molecular markers. Here we address this by comprehensive transcriptomic profiling and unsupervised clustering of individual mouse colonic sensory neurons. DESIGN: Unbiased single-cell RNA-sequencing was performed on retrogradely traced mouse colonic sensory neurons isolated from both thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglia associated with lumbar splanchnic and pelvic spinal pathways, respectively. Identified neuronal subtypes were validated by single-cell qRT-PCR, immunohistochemistry (IHC) and Ca2+-imaging. RESULTS: Transcriptomic profiling and unsupervised clustering of 314 colonic sensory neurons revealed seven neuronal subtypes. Of these, five neuronal subtypes accounted for 99% of TL neurons, with LS neurons almost exclusively populating the remaining two subtypes. We identify and classify neurons based on novel subtype-specific marker genes using single-cell qRT-PCR and IHC to validate subtypes derived from RNA-sequencing. Lastly, functional Ca2+-imaging was conducted on colonic sensory neurons to demonstrate subtype-selective differential agonist activation. CONCLUSIONS: We identify seven subtypes of colonic sensory neurons using unbiased single-cell RNA-sequencing and confirm translation of patterning to protein expression, describing sensory diversity encompassing all modalities of colonic neuronal sensitivity. These results provide a pathway to molecular interrogation of colonic sensory innervation in health and disease, together with identifying novel targets for drug development.


Asunto(s)
Colon/inervación , Células Receptoras Sensoriales/clasificación , Análisis de Secuencia de ARN , Transcriptoma , Animales , Inmunohistoquímica , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Anat Rec (Hoboken) ; 301(10): 1618-1627, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29740961

RESUMEN

Peripheral nerve injury results in profound alterations of the affected neurons resulting from the interplay between intrinsic and extrinsic molecular events. Restarting the neuronal regenerative program is an important prerequisite for functional recovery of the injured peripheral nerve. The primary sensory neurons with their cell bodies in the dorsal root ganglia provide a useful in vivo and in vitro model for studying the mechanisms that regulate intrinsic neuronal regeneration capacity following axotomy. These studies frequently need to indicate the regenerative status of the corresponding neurons. We summarize the critical issues regarding immunohistochemical detection of several regeneration-associated proteins as markers for the initiation of the regeneration program in rat primary sensory neurons and indicators of axon regeneration in the peripheral nerves. This overview also includes our own results of GAP43 and SCG10 expression in different DRG neurons following double immunostaining with molecular markers of neuronal subpopulations (NF200, CGRP, and IB4) as well as transcription factors (ATF3 and activated STAT3) following unilateral sciatic nerve injury. Anat Rec, 301:1618-1627, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Axones/metabolismo , Biomarcadores/metabolismo , Regeneración Nerviosa , Células Receptoras Sensoriales/fisiología , Animales , Proteínas Portadoras/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Proteína GAP-43/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microtúbulos , Células Receptoras Sensoriales/clasificación , Estrés Fisiológico
14.
Nat Neurosci ; 21(6): 869-880, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29686262

RESUMEN

The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.


Asunto(s)
Atlas como Asunto , Neuronas/fisiología , Sensación/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Transcriptoma/genética , Animales , Frío , Femenino , Glutamatos/fisiología , Calor , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Neuronas/clasificación , Células del Asta Posterior/fisiología , ARN/genética , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Asta Dorsal de la Médula Espinal/anatomía & histología
15.
Neuroscience ; 368: 109-114, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28673712

RESUMEN

Rodents use an array of long tactile facial hairs, the vibrissae, to locate and discriminate objects. Each vibrissa is densely innervated by multiple different types of trigeminal (TG) sensory neurons. Based on the sensory ending morphology, there are at least six types of vibrissa innervating neurons; whereas based on electrophysiological recordings, vibrissa neurons are generally classified as rapidly adapting (RA) and slowly adapting (SA), and show different responses to whisking movement and/or touch. There is a clear missing link between the morphologically defined neuronal types and their exact physiological properties and functions. We briefly summarize recent advances and consider single-cell transcriptome profiling, together with optogenetics-assisted in vivo electrophysiology, as a way to fill this major gap in our knowledge of the vibrissa sensory system.


Asunto(s)
Adaptación Fisiológica/fisiología , Fenómenos Electrofisiológicos/fisiología , Perfilación de la Expresión Génica/métodos , Optogenética/métodos , Células Receptoras Sensoriales/fisiología , Percepción del Tacto/fisiología , Vibrisas/fisiología , Animales , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología
16.
Neuroscience ; 367: 147-158, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29097269

RESUMEN

Afferent chorda tympani (CT) fibers innervating anterior tongue fungiform papillae have neuron cell bodies in the geniculate ganglion (GG). To characterize electrophysiological and receptive field properties, we recorded extracellular responses from single GG neurons to lingual application with chemical, thermal and mechanical stimuli. Receptive field size was mapped by electrical stimulation of individual fungiform papillae. Responses of GG neurons to room temperature chemical stimuli representing five taste qualities, and distilled water at 4 °C and mechanical stimulation were used. Based on responses to these stimuli, GG neurons were divided into CHEMICAL, CHEMICAL/THERMAL, THERMAL and TACTILE groups. Neurons in the CHEMICAL group responded to taste stimuli but not to either cold water or stroking stimuli. CHEMICAL/THERMAL neurons responded to both taste stimuli and cold water. THERMAL neurons responded only to cold water and TACTILE neurons responded only to light stroking stimuli. The receptive field sizes for CHEMICAL, and CHEMICAL/THERMAL neurons averaged five papillae exceeding the field size of THERMAL and TACTILE neurons which averaged about two papillae. Detailed analysis of the receptive field of CHEMICAL/THERMAL neurons revealed that within one field only a subset of the fungiform papillae making up the receptive field responded to the cold stimuli, whereas the other papillae responded only to chemical stimuli. These finding demonstrate that fungiform papilla are complex sensory organs with a multisensory function suggesting a unique role in detecting and sampling food components prior to ingestion.


Asunto(s)
Potenciales de Acción/fisiología , Ganglio Geniculado/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Lengua/inervación , Animales , Biofisica , Femenino , Fibras Nerviosas/fisiología , Técnicas de Placa-Clamp , Estimulación Física/efectos adversos , Ratas , Ratas Sprague-Dawley , Estimulación Química , Temperatura , Tacto/fisiología
17.
Elife ; 62017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160768

RESUMEN

Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWCON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWCON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWCON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWCON, generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions.


Asunto(s)
Caenorhabditis elegans/fisiología , Sistema Nervioso Central/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Animales , Exocitosis
18.
Annu Rev Genet ; 51: 103-121, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29178819

RESUMEN

Chronic, persistent itch is a devastating symptom that causes much suffering. In recent years, there has been great progress made in understanding the molecules, cells, and circuits underlying itch sensation. Once thought to be carried by pain-sensing neurons, itch is now believed to be capable of being transmitted by dedicated sensory labeled lines. Members of the Mas-related G protein-coupled receptor (Mrgpr) family demarcate an itch-specific labeled line in the peripheral nervous system. In the spinal cord, the expression of other proteins identifies additional populations of itch-dedicated sensory neurons. However, as evidence for labeled-line coding has mounted, studies promoting alternative itch-coding strategies have emerged, complicating our understanding of the neural basis of itch. In this review, we cover the molecules, cells, and circuits related to understanding the neural basis of itch, with a focus on the role of Mrgprs in mediating itch sensation.


Asunto(s)
Sistema Nervioso Periférico/metabolismo , Prurito/genética , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Nocicepción/fisiología , Sistema Nervioso Periférico/fisiopatología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prurito/metabolismo , Prurito/fisiopatología , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
19.
J Neurogenet ; 31(3): 61-69, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28797199

RESUMEN

In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.


Asunto(s)
Encéfalo/citología , Larva/anatomía & histología , Red Nerviosa/fisiología , Vías Olfatorias/fisiología , Células Receptoras Sensoriales/clasificación , Vías Visuales/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Mapeo Encefálico , Células Receptoras Sensoriales/fisiología , Pez Cebra
20.
J Comp Neurol ; 525(9): 2202-2215, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28266018

RESUMEN

Local protein synthesis in mature axons may play a role in synaptic plasticity, axonal arborization, or functional diversity of the circuit. To gain insight into this question, we investigated the axonal localization of translational regulators and associated mRNAs in five parallel olfactory circuits, four in the main olfactory bulb and one in the accessory olfactory bulb. Axons in all four main olfactory bulb circuits exhibited axonal localization of Fragile X granules (FXGs), structures that comprise ribosomes, mRNA, and RNA binding proteins including Fragile X mental retardation protein (FMRP) and the related protein FXR2P. In contrast, FXGs were not seen in axons innervating the accessory olfactory bulb. Similarly, axons innervating the main olfactory bulb, but not the accessory olfactory bulb, contained the FXG-associated mRNA Omp (olfactory marker protein). This differential localization was not explained by circuit-dependent differences in expression of FXG components or Omp, suggesting that other factors must regulate their axonal transport. The specificity of this transport was highlighted by the absence from olfactory axons of the calmodulin transcript Calm1, which is highly expressed in peripheral olfactory neurons at levels equivalent to Omp. Regulation of axonal translation by FMRP may shape the structure and function of the axonal arbor in mature sensory neurons in the main olfactory system but not in the accessory olfactory system.


Asunto(s)
Bulbo Olfatorio/citología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/metabolismo , Animales , Axones/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Anhidrasa Carbónica II/genética , Anhidrasa Carbónica II/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA