Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Intervalo de año de publicación
1.
Pediatr Neonatol ; 59(2): 112-119, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28967497

RESUMEN

Pulmonary artery hypertension (PAH) is very rare in childhood, and it can be divided into heritable, idiopathic drug- and toxin-induced and other disease (connective tissue disease, human immunodeficiency virus infection, portal hypertension, congenital heart disease, or schistosomiasis)-associated types. PAH could not be interpreted solely by pathophysiological theories. The impact of the transforming growth factor-ß superfamily-related genes on the development of PAH in children remains to be clarified. Pertinent literature on the transforming growth factor-ß superfamily-related genes in relation to PAH in children published after the year 2000 was reviewed and analyzed. Bone morphogenetic protein receptor type II gene mutation promotes cell division or prevents cell death, resulting in an overgrowth of cells in small arteries throughout the lungs. About 20% of individuals with a bone morphogenetic protein receptor type II gene mutation develop symptomatic PAH. In heritable PAH, bone morphogenetic protein receptor type II mutations may be absent; while mutations of other genes, such as type I receptor activin receptor-like kinase 1 and the type III receptor endoglin (both associated with hereditary hemorrhagic telangiectasia), caveolin-1 and KCNK3, the gene encoding potassium channel subfamily K, member 3, can be detected, instead. Gene mutations, environmental changes and acquired adjustment, etc. may explain the development of PAH. The researches on PAH rat model and familial PAH members may facilitate the elucidations of the mechanisms and further provide theories for prophylaxis and treatment of PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Pulmonar/genética , Mutación , Factor de Crecimiento Transformador beta/genética , Animales , Caveolina 1/análisis , Caveolina 1/genética , Niño , Endoglina/genética , Humanos , Hipertensión Pulmonar/etiología , Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/genética
2.
Braz J Med Biol Res ; 50(11): e6237, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28902925

RESUMEN

Intrauterine growth retardation (IUGR) is associated with the development of adult-onset diseases, including pulmonary hypertension. However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular dysfunction later in life is not fully understood. Here, we investigated the role of tyrosine phosphorylation of voltage-gated potassium channel 1.5 (Kv1.5) in this prenatal event that results in exaggerated adult vascular dysfunction. A rat model of chronic hypoxia (2 weeks of hypoxia at 12 weeks old) following IUGR was used to investigate the physiological and structural effect of intrauterine malnutrition on the pulmonary artery by evaluating pulmonary artery systolic pressure and vascular diameter in male rats. Kv1.5 expression and tyrosine phosphorylation in pulmonary artery smooth muscle cells (PASMCs) were determined. We found that IUGR increased mean pulmonary artery pressure and resulted in thicker pulmonary artery smooth muscle layer in 14-week-old rats after 2 weeks of hypoxia, while no difference was observed in normoxia groups. In the PASMCs of IUGR-hypoxia rats, Kv1.5 mRNA and protein expression decreased while that of tyrosine-phosphorylated Kv1.5 significantly increased. These results demonstrate that IUGR leads to exaggerated chronic hypoxia pulmonary arterial hypertension (CH-PAH) in association with decreased Kv1.5 expression in PASMCs. This phenomenon may be mediated by increased tyrosine phosphorylation of Kv1.5 in PASMCs and it provides new insight into the prevention and treatment of IUGR-related CH-PAH.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Hipoxia Fetal/complicaciones , Hipoxia Fetal/fisiopatología , Hipertensión Pulmonar/etiología , Canal de Potasio Kv1.5/análisis , Músculo Liso Vascular/química , Organofosfatos/metabolismo , Polímeros/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/etiología , Técnica del Anticuerpo Fluorescente , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Immunoblotting , Inmunohistoquímica , Masculino , Desnutrición/complicaciones , Músculo Liso Vascular/patología , Fosforilación , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , ARN Mensajero/análisis , Distribución Aleatoria , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Regulación hacia Arriba
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;50(11): e6237, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-888952

RESUMEN

Intrauterine growth retardation (IUGR) is associated with the development of adult-onset diseases, including pulmonary hypertension. However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular dysfunction later in life is not fully understood. Here, we investigated the role of tyrosine phosphorylation of voltage-gated potassium channel 1.5 (Kv1.5) in this prenatal event that results in exaggerated adult vascular dysfunction. A rat model of chronic hypoxia (2 weeks of hypoxia at 12 weeks old) following IUGR was used to investigate the physiological and structural effect of intrauterine malnutrition on the pulmonary artery by evaluating pulmonary artery systolic pressure and vascular diameter in male rats. Kv1.5 expression and tyrosine phosphorylation in pulmonary artery smooth muscle cells (PASMCs) were determined. We found that IUGR increased mean pulmonary artery pressure and resulted in thicker pulmonary artery smooth muscle layer in 14-week-old rats after 2 weeks of hypoxia, while no difference was observed in normoxia groups. In the PASMCs of IUGR-hypoxia rats, Kv1.5 mRNA and protein expression decreased while that of tyrosine-phosphorylated Kv1.5 significantly increased. These results demonstrate that IUGR leads to exaggerated chronic hypoxia pulmonary arterial hypertension (CH-PAH) in association with decreased Kv1.5 expression in PASMCs. This phenomenon may be mediated by increased tyrosine phosphorylation of Kv1.5 in PASMCs and it provides new insight into the prevention and treatment of IUGR-related CH-PAH.


Asunto(s)
Animales , Masculino , Femenino , Embarazo , Organofosfatos/metabolismo , Polímeros/metabolismo , Canal de Potasio Kv1.5/análisis , Hipoxia Fetal/complicaciones , Hipoxia Fetal/fisiopatología , Retardo del Crecimiento Fetal/metabolismo , Hipertensión Pulmonar/etiología , Músculo Liso Vascular/química , Fosforilación , Efectos Tardíos de la Exposición Prenatal/metabolismo , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/patología , Factores de Tiempo , ARN Mensajero/análisis , Inmunohistoquímica , Immunoblotting , Distribución Aleatoria , Regulación hacia Arriba , Técnica del Anticuerpo Fluorescente , Ratas Sprague-Dawley , Desnutrición/complicaciones , Modelos Animales de Enfermedad , Retardo del Crecimiento Fetal/etiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Músculo Liso Vascular/patología
4.
EMBO Mol Med ; 7(6): 848-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25870235

RESUMEN

Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood-onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patient's vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies.


Asunto(s)
Alopecia/genética , Alopecia/patología , Infarto Cerebral/genética , Infarto Cerebral/patología , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Receptores Notch/deficiencia , Enfermedades de la Columna Vertebral/genética , Enfermedades de la Columna Vertebral/patología , Adulto , Cadherinas/análisis , Regulación hacia Abajo , Heterocigoto , Histocitoquímica , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.5/análisis , Microscopía Electrónica de Transmisión , Músculo Esquelético/patología , Receptor Notch3 , Piel/patología , Adulto Joven
5.
Cancer Invest ; 30(3): 203-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22360360

RESUMEN

Because Kv1.3 and Kv1.5 K(+) channels are remodeled during tumorigenesis and participate in skeletal muscle proliferation, we analyzed their expression in human skeletal muscle sarcomas. Aggressive alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS) were studied. Kv1.5 expression was moderate in adult muscle and low in ERMS, whereas it was notable in ARMS and embryonic samples. Kv1.3 expression showed no major differences between RMS and healthy samples. We found a correlation of Kv1.3 and Kv1.5 expression with the tumor malignancy.


Asunto(s)
Canal de Potasio Kv1.3/análisis , Canal de Potasio Kv1.5/análisis , Músculo Esquelético/patología , Rabdomiosarcoma/metabolismo , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Fase G1 , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.3/fisiología , Canal de Potasio Kv1.5/fisiología , Masculino , Persona de Mediana Edad , Rabdomiosarcoma/patología
6.
Curr Med Chem ; 19(5): 661-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22204339

RESUMEN

Potassium channels (KCh) are a diverse group of membrane proteins that participate in the control of the membrane potential. More than eighty different KCh genes have been identified, which are expressed in virtually all living cells. In addition to nerve and cardiac action potentials, these proteins are involved in a number of physiological processes, including cell volume regulation, apoptosis, immunomodulation and differentiation. Furthermore, many KCh have been reported to play a role in proliferation and cell cycle progression in mammalian cells, and an important number of studies report the involvement of KCh in cancer progression. The voltage dependent potassium (Kv) channels, in turn, form the largest family of human KCh, which comprises about 40 genes. Because Kv1.3 and Kv1.5 channels modulate proliferation of different mammalian cells, these proteins have been analyzed in a number of tumors and cancer cells. In most cancers, the expression patterns of Kv1.3 and Kv1.5 are remodeled, and in some cases, a correlation has been established between protein abundance and grade of tumor malignancy. The list of cancers evaluated is constantly growing, indicating that these proteins may be future targets for treatment. The aim of this review is to provide an updated overview of Kv1.3 and Kv1.5 channels during cancer development. Unlike Kv1.5, Kv1.3 is characterized by a very selective and potent pharmacology, which could lead to specific pharmacological targeting. Because potassium channels may play a pivotal role in tumor cell proliferation, these proteins should be taken into account when designing new cancer treatment strategies.


Asunto(s)
Canal de Potasio Kv1.3/análisis , Canal de Potasio Kv1.5/análisis , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Biomarcadores de Tumor , Proliferación Celular , Humanos , Terapia Molecular Dirigida , Neoplasias/patología , Neoplasias/prevención & control
7.
Cell Physiol Biochem ; 26(2): 219-26, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20798505

RESUMEN

Voltage-dependent K(+) channels (Kv) control repolarization and membrane potential in electrically excitable cells. In addition, Kv channels are involved in the maintenance of vascular smooth muscle tone, insulin release, epithelial K(+) transport, cell proliferation and leukocyte activation. Kv1.3 and Kv1.5 are widely distributed throughout the body and are involved in a variety of physiological processes taking place in the immune system, brain and muscle. Since the developmental pattern of Kv channels has an essential role in the maturing human, we aimed to study Kv1.3 and Kv1.5 channels in 8-10 week human fetal tissues. We chose that gestational age because all organs are in place and the nervous system, although not fully developed. However, the human embryo is undergoing major changes, which will lead to a defined adult pattern. Our results indicated that numerous tissues expressed Kv1.3 and Kv1.5. While Kv1.3 overlapped with the central and peripheral nervous systems, Kv1.5 was mostly localized in the central nervous system. In addition, both channels were abundantly expressed in the hematopoietic fetal liver. Finally, Kv1.5 heavily stained skeletal muscle and heart, whereas Kv1.3 was slightly present. This is the first study to analyze Kv1.3 and Kv1.5 in human during the beginning of fetal development.


Asunto(s)
Feto/metabolismo , Canal de Potasio Kv1.3/análisis , Canal de Potasio Kv1.5/análisis , Embrión de Mamíferos/metabolismo , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.5/metabolismo
8.
Sheng Wu Gong Cheng Xue Bao ; 24(3): 521-4, 2008 Mar.
Artículo en Chino | MEDLINE | ID: mdl-18589834

RESUMEN

To detect the phosphorylation of potassium channel protein (Kv1.2 and Kv1.5) in rat cardiac muscle cells accurately, we applied the combined method of immunoprecipitation and Western blot in this study. Compared with using Western blot alone, the combination of immunoprecipitation and Western blot displayed high sensitivity to detect the activation of potassium channel proteins. Because of its simplicity, quickness and reproducibility, we find that this method was promising for detecting the phosphorylation of Kv1.2 and Kv1.5 proteins or other potassium channel proteins in rat cardiac muscle cells.


Asunto(s)
Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.5/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Western Blotting/métodos , Membrana Celular/metabolismo , Femenino , Inmunoprecipitación/métodos , Canal de Potasio Kv.1.2/análisis , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/genética , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley
9.
Mol Reprod Dev ; 75(4): 659-68, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18157847

RESUMEN

KCNE1, KCNA5 and KCNK5 have been identified, by using specific blockers, as K(+)-channels involved in sperm volume regulation under physiological conditions. All three channels were localised on the cytoplasmic droplets and tail of human ejaculated spermatozoa by fluorescence microscopy. Using flow cytometric quantification, KCNE1 was found to be present in 80% or more spermatozoa and KCNK5 in only about 20%, with KCNA5 expressed by 20-90% of cells. Whereas the extents of such protein expression did not differ statistically between semen donors and subfertile patients, the former group exhibited higher capacities for sperm volume regulation which were correlated with other sperm qualities including normal morphology and motile sperm number in the ejaculate. Channel identification was further confirmed at the protein level using Western blotting. RT-PCR analysis of testicular and sperm RNA of proven quality indicated the presence of Kcne1, Kcna5 and Kcnk5 transcripts. Subsequent sequencing of PCR products demonstrated that the nucleotide sequences of the entire encoding regions of Kcne1 and Kcnk5 were identical to those published in the database, whereas that of Kcna5 mRNA showed a single nucleotide synonymous deviation that agrees with the published genomic sequence. Quantitative real-time PCR analysis of sperm RNA revealed the amounts of Kcne1 > Kcna5 > Kcnk5, in the same order as for protein expression. Thus, KCNE1 is probably the major K(+)-channel involved in regulatory volume decrease in human spermatozoa, and channel activity is regulated beyond the extent of protein expression.


Asunto(s)
Canal de Potasio Kv1.5/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/genética , Espermatozoides/fisiología , Secuencia de Bases , Tamaño de la Célula , Citometría de Flujo , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/fisiología , Masculino , Datos de Secuencia Molecular , Canales de Potasio de Dominio Poro en Tándem/análisis , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/fisiología , ARN Mensajero/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Motilidad Espermática/fisiología , Espermatozoides/química , Espermatozoides/citología , Testículo/química , Testículo/fisiología
10.
Am J Physiol Heart Circ Physiol ; 292(2): H1001-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17040965

RESUMEN

Little is known about the molecular characteristics of the voltage-activated K(+) (K(v)) channels that underlie the A-type K(+) current in vascular smooth muscle cells of the systemic circulation. We investigated the molecular identity of the A-type K(+) current in retinal arteriolar myocytes using patch-clamp techniques, RT-PCR, immunohistochemistry, and neutralizing antibody studies. The A-type K(+) current was resistant to the actions of specific inhibitors for K(v)3 and K(v)4 channels but was blocked by the K(v)1 antagonist correolide. No effects were observed with pharmacological agents against K(v)1.1/2/3/6 and 7 channels, but the current was partially blocked by riluzole, a K(v)1.4 and K(v)1.5 inhibitor. The current was not altered by the removal of extracellular K(+) but was abolished by flecainide, indicative of K(v)1.5 rather than K(v)1.4 channels. Transcripts encoding K(v)1.5 and not K(v)1.4 were identified in freshly isolated retinal arterioles. Immunofluorescence labeling confirmed a lack of K(v)1.4 expression and revealed K(v)1.5 to be localized to the plasma membrane of the arteriolar smooth muscle cells. Anti-K(v)1.5 antibody applied intracellularly inhibited the A-type K(+) current, whereas anti-K(v)1.4 antibody had no effect. Co-expression of K(v)1.5 with K(v)beta1 or K(v)beta3 accessory subunits is known to transform K(v)1.5 currents from delayed rectifers into A-type currents. K(v)beta1 mRNA expression was detected in retinal arterioles, but K(v)beta3 was not observed. K(v)beta1 immunofluorescence was detected on the plasma membrane of retinal arteriolar myocytes. The findings of this study suggest that K(v)1.5, most likely co-assembled with K(v)beta1 subunits, comprises a major component underlying the A-type K(+) current in retinal arteriolar smooth muscle cells.


Asunto(s)
Canal de Potasio Kv1.5/metabolismo , Músculo Liso Vascular/metabolismo , Vasos Retinianos/metabolismo , Animales , Arteriolas/metabolismo , Inmunohistoquímica , Cinética , Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Músculo Liso Vascular/química , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Subunidades de Proteína/metabolismo , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Vasos Retinianos/química , Vasos Retinianos/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
FEBS Lett ; 580(26): 6039-46, 2006 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17054951

RESUMEN

Voltage-gated potassium (Kv) channel subtypes localize to the plasma membrane of a number of cell types, and the sarcolemma in myocytes. Because many signaling molecules concentrate in subdomains of the plasma membrane, the localization of Kv channels to these sites may have important implications for channel function and regulation. In this study, the association of the voltage-gated potassium channel Kv1.5 with a specific subtype of lipid rafts, caveolae, in rat and canine cardiac myocytes has been investigated. Interactions between caveolin-3 and beta-dystroglycan or eNOS, as well as between Kv1.5 and alpha-actinin were readily detected in co-immunoprecipitation experiments, whereas no association between Kv1.5 and caveolin-3 was evident. Wide-field microscopy and deconvolution techniques revealed that the percent co-localization of Kv1.5 with caveolin-3 was extremely low in atrial myocytes from rat and canine hearts (8+/-1% and 12.2+/-2%, respectively), and limited in ventricular myocytes (11+/-4% and 20+/-3% in rat and canine, respectively). Immunoelectron microscopic imaging of rat atrial and ventricular tissues showed that Kv1.5 and caveolin-3 labeling generally did not overlap. In HEK293 cells stably expressing the channel, Kv1.5 did not target to the low buoyant density raft fraction along with flotillin but instead fractionated along with the non-raft associated transferrin receptor. Taken together, these results suggest that Kv1.5 is not present in caveolae of rat and canine heart.


Asunto(s)
Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/metabolismo , Miocitos Cardíacos/química , Sarcolema/química , Animales , Caveolas/química , Caveolina 3/análisis , Caveolina 3/metabolismo , Perros , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Microdominios de Membrana/química , Miocitos Cardíacos/diagnóstico por imagen , Unión Proteica , Ratas , Ultrasonografía
12.
J Physiol ; 568(Pt 1): 31-46, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16020465

RESUMEN

P/C-type inactivation of Kv channels is thought to involve conformational changes in the outer pore of the channel, culminating in a partial constriction of the selectivity filter. Recent studies have identified a number of phenotypic differences in the inactivation properties of different Kv channels, including different sensitivities to elevation of extracellular K+ concentration, and different state dependencies of inactivation. We have demonstrated that an alternatively spliced short form of Kv1.5, resulting in disruption of the T1 domain, exhibits a shift in the state dependence of inactivation in this channel, and in the current study we have examined this further to contrast the properties of inactivation from open versus closed states. In a TEA+-sensitive mutant of Kv1.5 (Kv1.5 R487T), 10 mM extracellular TEA+ inhibits inactivation in both full-length and T1-deleted channels, but does not inhibit closed-state inactivation in T1-deleted channel forms. Similarly, substitution of K+ and Na+ with Cs+ ions in the recording medium inhibits inactivation of both full-length and T1-deleted channel forms, but fails to inhibit closed-state inactivation of T1-deleted channels. Collectively, these data distinguish between open-state and closed-state inactivation, and suggest the presence of multiple possible mechanisms of inactivation coexisting in Kv1 channels.


Asunto(s)
Canal de Potasio Kv1.5/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Línea Celular , Cesio/metabolismo , Perros , Humanos , Activación del Canal Iónico/efectos de los fármacos , Riñón , Canal de Potasio Kv1.5/análisis , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Miocardio , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Rubidio/metabolismo , Eliminación de Secuencia , Tetraetilamonio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA