Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 145: 372-389, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31862372

RESUMEN

Oligomers derived through irradiation of marine polysaccharides have generated a lot of interest of plant biologists as the application of these molecules has yielded positive results regarding various plant processes. To comprehend the previously established growth-promoting activity of irradiated chitosan (ICH) and to gain insight of the structure-property relationship, gamma rays induced structural changes were analyzed using techniques such as Fourier Transform Infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy, 13C-Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM). Moreover, to study the bioactivity of ICH samples a pot experiment was conducted on citronella grass (Cymbopogon winterianus) to access its response to foliar application of various levels (40, 60, 80 and 100 mg L-1) of ICH in terms of growth, physiological attributes and essential oil (EO) production. The application of ICH at 80 mg L-1(ICH-80) resulted in the maximum values of most of the attributes studied. Due to this treatment, the maximum improvement in the content (29.58%) and yield (90.81%) of EO in Cymbopogon winterianus were achieved. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that ICH-80 also increased the content of citronellal (14.81%) and geraniol (18.15%) of the EO as compared to the control.


Asunto(s)
Quitosano/efectos de la radiación , Clorofila/agonistas , Cymbopogon/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Monoterpenos Acíclicos/aislamiento & purificación , Monoterpenos Acíclicos/metabolismo , Aldehídos/aislamiento & purificación , Aldehídos/metabolismo , Carotenoides/agonistas , Carotenoides/metabolismo , Quitosano/farmacología , Clorofila/biosíntesis , Cymbopogon/crecimiento & desarrollo , Cymbopogon/metabolismo , Rayos gamma , Aceites Volátiles/química , Aceites Volátiles/metabolismo , Fotosíntesis/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo
2.
J Nutr Sci Vitaminol (Tokyo) ; 63(5): 349-354, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225320

RESUMEN

Tocotrienols (T3s) and tocopherols (Tocs) are both members of the vitamin E family. It is known that δ-tocotrienol (δ-T3) has displayed the most potent anti-cancer activity amongst the tocotrienols. On the other hand, γ-tocopherol (γ-Toc) is reported to have a protective effect against prostate cancer. Therefore, we investigated whether the combination of γ-Toc and δ-T3 could strengthen the inhibitory effect of δ-T3 on prostate cancer cell growth. In this study the effect of combined δ-T3 (annatto T3 oil) and γ-Toc (Tmix, γ-Toc-rich oil) therapy was assessed against human androgen-dependent prostate cancer cells (LNCaP). We found that combined treatment of δ-T3 (10 µM) and γ-Toc (5 µM) resulted in reinforced anti-prostate cancer activity. Specifically, cell cycle phase distribution analysis revealed that in addition to G1 arrest caused by the treatment with δ-T3, the combination of δ-T3 with γ-Toc induced G2/M arrest. Enhanced induction of apoptosis by the combined treatment was also observed. These findings indicate that combination of δ-T3 and γ-Toc significantly inhibits prostate cancer cell growth due to the simultaneous cell cycle arrest in the G1 phase and G2/M phase.


Asunto(s)
Anticarcinógenos/metabolismo , Antineoplásicos Fitogénicos/agonistas , Apoptosis , Cromanos/agonistas , Neoplasias de la Próstata/metabolismo , Vitamina E/análogos & derivados , Anticarcinógenos/química , Antineoplásicos Fitogénicos/metabolismo , Bixaceae/metabolismo , Carotenoides/agonistas , Carotenoides/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Cromanos/metabolismo , Fase G1 , Fase G2 , Humanos , Masculino , Concentración Osmolar , Extractos Vegetales/agonistas , Extractos Vegetales/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Vitamina E/agonistas , Vitamina E/metabolismo
3.
Ontogenez ; 44(2): 101-9, 2013.
Artículo en Ruso | MEDLINE | ID: mdl-23785847

RESUMEN

When plants are grown in a greenhouse, an increase in the photoperiod, as well as continuous lighting, is one of the ways to improve plant productivity and energy savings. However, a number of crops under long photoperiods develop signs of light damage to leaves, and productivity is reduced. We studied the effect of the photoperiod (8, 12, 16, 20, and 24 h) and photon flux densities (60, 120, and 160 micromol/m2 with PAR) on cucumber plants Cucumis sativus L. in a prereproductive period. We show that the response of the cucumber plants to a photoperiod duration of more than 20 h, including continuous lighting, depending on the plant age and lighting conditions, may include epinastic reaction of the leaves, activation of a mechanism of nonphotochemical chlorophyll fluorescence quenching, and/or reversible photoinhibition of a reaction center of photosystem II, development of reversible chlorosis, reduction of a light-harvesting complex, and increase in the content of carotenoids. Reaction of immature and virginile plants to long photoperiods was different, which highlights the need for experimental separation of the prereproductive period of development in terms of age states and consideration of this when preparing programs of cultivation.


Asunto(s)
Cucumis sativus/efectos de la radiación , Fotoperiodo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Hojas de la Planta/efectos de la radiación , Carotenoides/agonistas , Carotenoides/biosíntesis , Clorofila/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Fluorescencia , Luz/efectos adversos , Iluminación/efectos adversos , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Factores de Tiempo
4.
J Nutr Biochem ; 23(9): 1155-62, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22137263

RESUMEN

In our previous study, we demonstrated that lycopene can inhibit the proliferation of androgen-dependent prostate LNCaP cancer cells through the activation of the peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor alpha (LXRα)-ATP-binding cassette transporter 1 (ABCA1) pathway. However, it is still unclear whether lycopene possesses similar effects in androgen-independent prostate cancer cells DU145 and PC-3. As lycopene inhibited the proliferation of both cell types to a similar extent, we chose DU145 cells for most of the subsequent studies. We show that lycopene significantly increased protein and mRNA expression of PPARγ, LXRα and ABCA1 and cholesterol efflux (i.e., decreased cellular cholesterol and increased cholesterol in culture medium). Lycopene (10 µM) in the presence of a specific antagonist of PPARγ (GW9662) or of LXRα (GGPP) restored the proliferation of DU145 cells and significantly suppressed lycopene-induced protein and mRNA expression of PPARγ and LXRα and cholesterol efflux. Liver X receptor α knockdown by siRNA against LXRα significantly promoted the proliferation of DU145 cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 µM) restored the proliferation to the control level. Furthermore, lycopene in combination with the LXRα agonist T0901317 exhibited synergistic effects on cell proliferation and protein expression of PPARγ, LXRα and ABCA1. These results demonstrate that lycopene can inhibit DU145 cell proliferation via PPARγ-LXRα-ABCA1 pathway and that lycopene and T0901317 exhibit synergistic effects.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Carotenoides/metabolismo , Hidrocarburos Fluorados/farmacología , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Sulfonamidas/farmacología , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenocarcinoma/dietoterapia , Adenocarcinoma/metabolismo , Antineoplásicos/agonistas , Antineoplásicos Fitogénicos/agonistas , Antineoplásicos Fitogénicos/metabolismo , Carotenoides/agonistas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colesterol/metabolismo , Suplementos Dietéticos , Interacciones Alimento-Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Hidrocarburos Fluorados/agonistas , Receptores X del Hígado , Licopeno , Masculino , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Receptores Nucleares Huérfanos/genética , Concentración Osmolar , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , PPAR gamma/metabolismo , Neoplasias de la Próstata/dietoterapia , Neoplasias de la Próstata/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Sulfonamidas/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA