Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Adv Protein Chem Struct Biol ; 141: 203-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960474

RESUMEN

The arylsulfatase A (ARSA) gene is observed to be deficient in patients with metachromatic leukodystrophy (MLD), a type of lysosomal storage disease. MLD is a severe neurodegenerative disorder characterized by an autosomal recessive inheritance pattern. This study aimed to map the most deleterious mutations at the metal binding sites of ARSA and the amino acids in proximity to the mutated positions. We utilized an array of computational tools, including PredictSNP, MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, SNAP, and ConSurf, to identify the most detrimental mutations potentially implicated in MLD collected from UniProt, ClinVar, and HGMD. Two mutations, D29N and D30H, as being extremely deleterious based on assessments of pathogenicity, conservation, biophysical characteristics, and stability analysis. The D29 and D30 are located at the metal-interacting regions of ARSA and found to undergo post-translational modification, specifically phosphorylation. Henceforth, the in-depth effect of metal binding upon mutation was examined using molecular dynamics simulations (MDS) before and after phosphorylation. The MDS results exhibited high deviation for the D29N and D30H mutations in comparison to the native, and the same was confirmed by significant residue fluctuation and reduced compactness. These structural alterations suggest that such mutations may influence protein functionality, offering potential avenues for personalized therapeutic and providing a basis for potential mutation-specific treatments for severe MLD patients.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Mutación , Humanos , Sitios de Unión , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Cerebrósido Sulfatasa/química , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Metales/metabolismo , Metales/química , Simulación de Dinámica Molecular
2.
Metab Brain Dis ; 39(5): 753-762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38775997

RESUMEN

Metachromatic leukodystrophy (MLD) is a rare hereditary neurodegenerative disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA). This study described the clinical and molecular characteristics of 24 Chinese children with MLD and investigated functional characterization of five novel ARSA variants. A retrospective analysis was performed in 24 patients diagnosed with MLD at Guangzhou Women and Children's Medical Center in South China. Five novel mutations were further characterized by transient expression studies. We recruited 17 late-infantile, 3 early-juvenile, 4 late-juvenile MLD patients. In late-infantile patients, motor developmental delay and gait disturbance were the most frequent symptoms at onset. In juvenile patients, cognitive regression and gait disturbance were the most frequent chief complaints. Overall, 25 different ARSA mutations were identified with 5 novel mutations.The most frequent alleles were p.W320* and p.G449Rfs. The mutation p.W320*, p.Q155=, p.P91L, p.G156D, p.H208Mfs*46 and p.G449Rfs may link to late-infantile type. The novel missense mutations were predicted damaging in silico. The bioinformatic structural analysis of the novel missense mutations showed that these amino acid replacements would cause severe impairment of protein structure and function. In vitro functional analysis of the six mutants, showing a low ARSA enzyme activity, clearly demonstrated their pathogenic nature. The mutation p.D413N linked to R alleles. In western blotting analysis of the ARSA protein, the examined mutations retained reduced amounts of ARSA protein compared to the wild type. This study expands the spectrum of genotype of MLD. It helps to the future studies of genotype-phenotype correlations to estimate prognosis and develop new therapeutic approach.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/genética , Cerebrósido Sulfatasa/genética , Femenino , Masculino , Preescolar , Niño , China/epidemiología , Lactante , Estudios Retrospectivos , Mutación/genética , Adolescente , Mutación Missense
4.
Cytotherapy ; 26(7): 739-748, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613540

RESUMEN

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.


Asunto(s)
Leucodistrofia Metacromática , Humanos , Recién Nacido , Cerebrósido Sulfatasa/genética , Consenso , Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Estados Unidos
5.
Mol Genet Metab ; 142(1): 108436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552449

RESUMEN

Newborn screening (NBS) for metachromatic leukodystrophy (MLD) is based on first-tier measurement of sulfatides in dried blood spots (DBS) followed by second-tier measurement of arylsulfatase A in the same DBS. This approach is very precise with 0-1 false positives per ∼30,000 newborns tested. Recent data reported here shows that the sulfatide molecular species with an α-hydroxyl, 16­carbon, mono-unsaturated fatty acyl group (16:1-OH-sulfatide) is superior to the original biomarker 16:0-sulfatide in reducing the number of first-tier false positives. This result is consistent across 4 MLD NBS centers. By measuring 16:1-OH-sulfatide alone or together with 16:0-sulfatide, the estimated false positive rate is 0.048% and is reduced essentially to zero with second-tier arylsulfatase A activity assay. The false negative rate is predicted to be extremely low based on the demonstration that 40 out of 40 newborn DBS from clinically-confirmed MLD patients are detected with these methods. The work shows that NBS for MLD is extremely precise and ready for deployment. Furthermore, it can be multiplexed with several other inborn errors of metabolism already tested in NBS centers worldwide.


Asunto(s)
Cerebrósido Sulfatasa , Pruebas con Sangre Seca , Leucodistrofia Metacromática , Tamizaje Neonatal , Sulfoglicoesfingolípidos , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/sangre , Recién Nacido , Sulfoglicoesfingolípidos/sangre , Tamizaje Neonatal/métodos , Cerebrósido Sulfatasa/sangre , Cerebrósido Sulfatasa/genética , Pruebas con Sangre Seca/métodos , Reacciones Falso Positivas , Biomarcadores/sangre
6.
Mol Genet Metab ; 142(1): 108349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458124

RESUMEN

Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non­neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Tamizaje Neonatal , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Recién Nacido , Proyectos Piloto , Cerebrósido Sulfatasa/genética , Femenino , Masculino , Sulfoglicoesfingolípidos , Lactante , Terapia Genética
7.
Blood Adv ; 8(6): 1504-1508, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38330194

RESUMEN

ABSTRACT: Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by pathogenic variants of the ARSA gene, leading to a deficiency of the arylsulfatase A enzyme (ARSA) and consecutive accumulation of galactosylceramide-3-0-sulfate in the nervous system. The condition leads to severe neurological deficits and subsequently results in profound intellectual and motoric disability. Especially, the adult form of MLD, which occurs in individuals aged >16 years, poses significant challenges for treating physicians because of the rarity of cases, limited therapeutic options, and different allogeneic hematopoietic cell transplantation (allo-HCT) protocols worldwide. Here, we report the results of allo-HCT treatment in 4 patients with a confirmed adult MLD diagnosis. Bone marrow or mobilized peripheral progenitor cells were infused after a reduced intensity conditioning regime consisting of fludarabine and treosulfan. In 3 patients, allo-HCT was followed by an infusion of mesenchymal cells to further consolidate ARSA production. We observed a good tolerability and an increase in ARSA levels up to normal range values in all patients. A full donor chimerism was detected in 3 patients within the first 12 months. In a 1-year follow-up, patients with complete donor chimerism showed a neurological stable condition. Only 1 patient with an increasing autologous chimerism showed neurological deterioration and a decline in ARSA levels in the first year. In summary, allo-HCT offers a therapeutic option for reconstituting ARSA enzyme levels in adult patients with MLD, with tolerable side effects.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucodistrofia Metacromática , Adulto , Humanos , Leucodistrofia Metacromática/terapia , Cerebrósido Sulfatasa/genética
8.
Orphanet J Rare Dis ; 19(1): 80, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383398

RESUMEN

BACKGROUND: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency in arylsulfatase A (ASA) activity arising primarily from ASA gene (ARSA) variants. Late-infantile, juvenile and adult clinical subtypes are defined by symptom onset at ≤ 2.5, > 2.5 to < 16 and ≥ 16 years, respectively. Epidemiological data were sought to address knowledge gaps and to inform decisions regarding the clinical development of an investigational drug. METHODS: To synthesize all available estimates of MLD incidence and birth prevalence worldwide and in selected countries, Ovid MEDLINE and Embase were searched systematically (March 11, 2022) using a population, intervention, comparator, outcome, time and setting framework, complemented by pragmatic searching to reduce publication bias. Where possible, results were stratified by clinical subtype. Data were extracted from non-interventional studies (clinical trials, non-clinical studies and case reports were excluded; reviews were used for snowballing only). RESULTS: Of the 31 studies included, 14 reported birth prevalence (13 countries in Asia-Pacific, Europe, the Middle East, North America and South America), one reported prevalence and none reported incidence. Birth prevalence per 100,000 live births ranged from 0.16 (Japan) to 1.85 (Portugal). In the three European studies with estimates stratified by clinical subtypes, birth prevalence was highest for late-infantile cases (0.31-1.12 per 100,000 live births). The distribution of clinical subtypes reported in cases diagnosed over various time periods in 17 studies varied substantially, but late-infantile and juvenile MLD accounted for at least two-thirds of cases in most studies. CONCLUSIONS: This review provides a foundation for further analysis of the regional epidemiology of MLD. Data gaps indicate the need for better global coverage, increased use of epidemiological measures (e.g. prevalence estimates) and more stratification of outcomes by clinical and genetic disease subtype.


Asunto(s)
Leucodistrofia Metacromática , Enfermedades por Almacenamiento Lisosomal , Adulto , Humanos , Cerebrósido Sulfatasa/genética , Europa (Continente) , Leucodistrofia Metacromática/genética , Prevalencia
9.
J Inherit Metab Dis ; 47(4): 778-791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38321717

RESUMEN

This study aimed to evaluate the effect of intrathecal (IT) recombinant human arylsulfatase A (rhASA) on magnetic resonance imaging (MRI)-assessed brain tissue changes in children with metachromatic leukodystrophy (MLD). In total, 510 MRI scans were collected from 12 intravenous (IV) rhASA-treated children with MLD, 24 IT rhASA-treated children with MLD, 32 children with untreated MLD, and 156 normally developing children. Linear mixed models were fitted to analyze the time courses of gray matter (GM) volume and fractional anisotropy (FA) in the posterior limb of the internal capsule. Time courses for demyelination load and FA in the centrum semiovale were visualized using locally estimated scatterplot smoothing regression curves. All assessed imaging parameters demonstrated structural evidence of neurological deterioration in children with MLD. GM volume was significantly lower at follow-up (median duration, 104 weeks) in IV rhASA-treated versus IT rhASA-treated children. GM volume decline over time was steeper in children receiving low-dose (10 or 30 mg) versus high-dose (100 mg) IT rhASA. Similar effects were observed for demyelination. FA in the posterior limb of the internal capsule showed a higher trend over time in IT rhASA-treated versus children with untreated MLD, but FA parameters were not different between children receiving the low doses versus those receiving the high dose. GM volume in IT rhASA-treated children showed a strong positive correlation with 88-item Gross Motor Function Measure score over time. In some children with MLD, IT administration of high-dose rhASA may delay neurological deterioration (assessed using MRI), offering potential therapeutic benefit.


Asunto(s)
Encéfalo , Cerebrósido Sulfatasa , Inyecciones Espinales , Leucodistrofia Metacromática , Imagen por Resonancia Magnética , Humanos , Leucodistrofia Metacromática/tratamiento farmacológico , Leucodistrofia Metacromática/diagnóstico por imagen , Cerebrósido Sulfatasa/administración & dosificación , Cerebrósido Sulfatasa/genética , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Preescolar , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adolescente , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/efectos de los fármacos
10.
Mol Biol Rep ; 51(1): 30, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153581

RESUMEN

BACKGROUND: Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder caused by a deficiency of Arylsulfatase A (ARSA) enzyme activity. Its clinical manifestations include progressive motor and cognitive decline. ARSA gene mutations are frequent in MLD. METHODS AND RESULTS: In the present study, whole exome sequencing (WES) was employed to decipher the genetic cause of motor and cognitive decline in proband's of two consanguineous families from J&K (India). Clinical investigations using radiological and biochemical analysis revealed MLD-like features. WES confirmed a pathogenic variant in the ARSA gene. Molecular simulation dynamics was applied for structural characterization of the variant. CONCLUSION: We report the identification of a pathogenic missense variant (c.1174 C > T; p.Arg390Trp) in the ARSA gene in two cases of late infantile MLD from consanguineous families in Jammu and Kashmir, India. Our study utilized genetic analysis and molecular dynamics simulations to identify and investigate the structural consequences of this mutation. The molecular dynamics simulations revealed significant alterations in the structural dynamics, residue interactions, and stability of the ARSA protein harbouring the p.Arg390Trp mutation. These findings provide valuable insights into the molecular mechanisms underlying the pathogenicity of this variant in MLD.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Humanos , Cerebrósido Sulfatasa/genética , Consanguinidad , Esterasas , India , Leucodistrofia Metacromática/diagnóstico por imagen , Leucodistrofia Metacromática/genética , Simulación de Dinámica Molecular
11.
Braz. j. med. biol. res ; 32(8): 941-5, Aug. 1999.
Artículo en Inglés | LILACS | ID: lil-238961

RESUMEN

Molecular alterations associated with arylsulfatase A pseudodeficiency (ASA-PD) were characterized by PCR and restriction endonuclease analysis in a sample of healthy individuals from Brazil. ASA activity was also assayed in all subjects. Two individuals homozygous for the N350S and 1524+95A->G mutations were detected, corresponding to a frequency of 1.17 percent (4 of 324 alleles). The individual frequency of the N350S mutation was 20.7 percent (71 of 342 alleles) and 7.9 percent (27 of 342 alleles) for the 1524+95A->G mutation. The frequency of the ASA-PD allele in our population was estimated to be 7.9 percent. This is the first report of ASA-PD allele frequency in a South American population. In addition, the methods used are effective and suitable for application in countries with limited resources. All patients with low ASA activity should be screened for ASA-PD as part of the diagnostic procotol for metachromatic leukodystrophy


Asunto(s)
Humanos , Femenino , Alelos , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Leucodistrofia Metacromática/enzimología , Leucodistrofia Metacromática/genética , Análisis de Varianza , Brasil , ADN/análisis , Población Blanca , Genotipo , Leucodistrofia Metacromática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA