Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 768
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Inorg Biochem ; 260: 112692, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151234

RESUMEN

The overuse of antimicrobial agents in medical and veterinary applications has led to the development of antimicrobial resistance in some microorganisms and this is now one of the major concerns in modern society. In this context, the use of transition metal complexes with photoactivatable properties, which can act as drug delivery systems triggered by light, could become a potent strategy to overcome the problem of resistance. In this work several Ru complexes with terpyridine ligands and the clotrimazole fragment, which is a potent antimycotic drug, were synthesized. The main goal was to explore the potential photoactivated activity of the complexes as antifungal agents and evaluate the effect of introducing different substituents on the terpyridine ligand. The complexes were capable of delivering the clotrimazole unit upon irradiation with visible light in a short period of time. The influence of the substituents on the photodissociation rate was explained by means of TD-DFT calculations. The complexes were tested against three different yeasts, which were selected based on their prevalence in fungal infections. The complex in which a carboxybenzene unit was attached to the terpyridine ligand showed the best activity against the three species under light, with minimal inhibitory concentration values of 0.88 µM and a phototoxicity index of 50 achieved. The activity of this complex was markedly higher than that of free clotrimazole, especially upon irradiation with visible light (141 times higher). The complexes were more active on yeast species than on cancer cell lines.


Asunto(s)
Antifúngicos , Clotrimazol , Complejos de Coordinación , Pruebas de Sensibilidad Microbiana , Piridinas , Rutenio , Clotrimazol/farmacología , Clotrimazol/química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Rutenio/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/efectos de la radiación , Piridinas/química , Piridinas/farmacología , Humanos , Luz , Candida albicans/efectos de los fármacos
2.
Drug Metab Dispos ; 52(10): 1083-1093, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39142826

RESUMEN

UGT2B4 is a highly expressed drug-metabolizing enzyme in the liver contributing to the glucuronidation of several drugs. To enable quantitatively assessing UGT2B4 contribution toward metabolic clearance, a potent and selective UGT2B4 inhibitor that can be used for reaction phenotyping was sought. Initially, a canagliflozin-2'-O-glucuronyl transferase activity assay was developed in recombinant UGT2B4 and human liver microsomes (HLM) [±2% bovine serum albumin (BSA)]. Canagliflozin-2'-O-glucuronidation (C2OG) substrate concentration at half-maximal velocity value in recombinant UGT2B4 and HLM were similar. C2OG formation intrinsic clearance was five- to seven-fold higher in incubations containing 2% BSA, suggesting UGT2B4 susceptibility to the inhibitory unsaturated long-chain fatty acids released during the incubation. Monitoring for C2OG formation, 180 compounds were evaluated for UGT2B4 inhibition potency in the presence and absence of 2% BSA. Compounds that exhibited an apparent UGT2B4 IC50 of < 1 µM in HLM with 2% BSA were evaluated for inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, UGT2B10, UGT2B15, and UGT2B17 catalytic activities to establish selectivity suitable for supporting UGT reaction phenotyping. In this study, clotrimazole was identified as a potent UGT2B4 inhibitor (HLM apparent IC50 of 11 to 35 nM ± 2% BSA). Moreover, clotrimazole exhibited selectivity for UGT2B4 inhibition (>24-fold) over the other UGT enzymes evaluated. Additionally, during this study it was discovered that the previously described UGT2B7 inhibitors 16α- and 16ß-phenyllongifolol also inhibit UGT2B4. Clotrimazole, a potent and selective UGT2B4 inhibitor, will prove essential during UGT reaction phenotyping. SIGNIFICANCE STATEMENT: To mechanistically evaluate drug interactions, it is essential to understand the contribution of individual enzymes to the metabolic clearance of a drug. The present study describes the development of a UGT2B4 activity assay that enabled the discovery of the highly selective and potent UGT2B4 inhibitor clotrimazole. Clotrimazole can be used in UGT reaction phenotyping studies to estimate fractional contribution of UGT2B4.


Asunto(s)
Canagliflozina , Clotrimazol , Glucurónidos , Glucuronosiltransferasa , Microsomas Hepáticos , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Humanos , Canagliflozina/farmacología , Canagliflozina/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Glucurónidos/metabolismo , Clotrimazol/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Recombinantes/metabolismo
3.
AAPS PharmSciTech ; 25(7): 197, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174702

RESUMEN

Vulvovaginal candidiasis (VVC) alters the innate cervicovaginal immunity, which provides an important barrier against viruses and other infections. The incidence of this disease has not decreased in the last 30 years, so effective treatments are still needed. Nanoparticles (NPs) of cellulose acetate phthalate (CAP) and clotrimazole (CLZ) were prepared by the emulsification-diffusion method. NPs were characterized using dynamic light scattering, atomic force microscopy and differential scanning calorimetry; their release profile was determined by the dialysis bag technique and mucoadhesion was evaluated with the mucin-particle method. The growth inhibition study of Candida albicans was carried out using the plate counting technique. Finally, accelerated physical stability tests of NPs were carried out, both in water and in SVF. The CAP-CLZ NPs had an average diameter of 273.4 nm, a PDI of 0.284, smooth surfaces and spherical shapes. In vitro release of CLZ from the CAP NPs was categorized with the Weibull model as a matrix system in which initial release was rapid and subsequently sustained. The inhibition of C. albicans growth by the CAP-CLZ NPs was greater than that of free CLZ, and the CAP-only NPs had a microbicidal effect on C. albicans. The NPs showed poor mucoadhesiveness, which could lead to studies of their mucopenetration capacities. An accelerated physical stability test revealed the erosion of CAP in aqueous media. A nanoparticulate system was developed and provided sustained release of CLZ, and it combined an antifungal agent with a microbial polymer that exhibited antifungal activity against C. albicans.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis Vulvovaginal , Celulosa , Clotrimazol , Nanopartículas , Clotrimazol/administración & dosificación , Clotrimazol/farmacología , Candidiasis Vulvovaginal/tratamiento farmacológico , Nanopartículas/química , Candida albicans/efectos de los fármacos , Femenino , Celulosa/química , Celulosa/análogos & derivados , Antifúngicos/farmacología , Antifúngicos/administración & dosificación , Polímeros/química , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana/métodos , Liberación de Fármacos
4.
Sci Rep ; 14(1): 15406, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965397

RESUMEN

Patients with multiple myeloma (MM) experience relapse and drug resistance; therefore, novel treatments are essential. Clotrimazole (CTZ) is a wide-spectrum antifungal drug with antitumor activity. However, CTZ's effects on MM are unclear. We investigated CTZ's effect on MM cell proliferation and apoptosis induction mechanisms. CTZ's effects on MM.1S, NCI- H929, KMS-11, and U266 cell growth were investigated using Cell Counting Kit-8 (CCK-8) assay. The apoptotic cell percentage was quantified with annexin V-fluorescein isothiocyanate/7-amino actinomycin D staining. Mitochondrial membrane potential (MMP) and cell cycle progression were evaluated. Reactive oxygen species (ROS) levels were measured via fluorescence microscopy. Expression of apoptosis-related and nuclear factor (NF)-κB signaling proteins was analyzed using western blotting. The CCK-8 assay indicated that CTZ inhibited cell proliferation based on both dose and exposure time. Flow cytometry revealed that CTZ decreased apoptosis and MMP and induced G0/G1 arrest. Immunofluorescence demonstrated that CTZ dose-dependently elevated in both total and mitochondrial ROS production. Western blotting showed that CTZ enhanced Bax and cleaved poly ADP-ribose polymerase and caspase-3 while decreasing Bcl-2, p-p65, and p-IκBα. Therefore, CTZ inhibits MM cell proliferation by promoting ROS-mediated mitochondrial apoptosis, inducing G0/G1 arrest, inhibiting the NF-κB pathway, and has the potential for treating MM.


Asunto(s)
Apoptosis , Proliferación Celular , Clotrimazol , Potencial de la Membrana Mitocondrial , Mitocondrias , Mieloma Múltiple , Especies Reactivas de Oxígeno , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Clotrimazol/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos
5.
Arch Microbiol ; 206(7): 290, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847903

RESUMEN

Clotrimazole is a type of antifungal medication developed from azole compounds. It exhibits several biological actions linked to oxidative stress. This study focuses on the oxidative effects of clotrimazole on the eukaryotic model yeast, Saccharomyces cerevisiae. Our results showed that although initial nitric oxide levels were above control in clotrimazole exposed cells, they showed decreasing tendencies from the beginning of incubation and dropped below control at 125 µM from the 60th min. The highest superoxide anion and hydrogen peroxide levels were 1.95- and 2.85-folds of controls at 125 µM after 15 and 60 min, respectively. Hydroxyl radical levels slightly increased throughout the incubation period in all concentrations and reached 1.3-fold of control, similarly at 110 and 125 µM in the 90th min. The highest level of reactive oxygen species was observed at 110 µM, 2.31-fold of control. Although NADH/NADPH oxidase activities showed similar tendencies for all conditions, the highest activities were found as 3.07- and 2.27-folds of control at 125 and 110 µM in the 15th and 30th min, respectively. The highest superoxide dismutase and catalase activities were 1.59- and 1.21-folds of controls at 110 µM clotrimazole in 30 and 90 min, respectively. While the drug generally induced glutathione-related enzyme activities, the ratios of glutathione to oxidized glutathione were above the control only at low concentrations of the drug. The levels of lipid peroxidation in all treated cells were significantly higher than the controls. The findings crucially demonstrate that this medicine can generate serious oxidative stress in organisms.


Asunto(s)
Antifúngicos , Catalasa , Clotrimazol , Estrés Oxidativo , Saccharomyces cerevisiae , Superóxido Dismutasa , Clotrimazol/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Antifúngicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Óxido Nítrico/metabolismo , Humanos , Superóxidos/metabolismo , Oxidación-Reducción
6.
Mycopathologia ; 189(2): 30, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578519

RESUMEN

OBJECTIVE: To study the distribution of pathogenic Aspergillus strains of otomycosis in central China and the identification of their antifungal sensitivity. METHODS: We collected external ear canal secretions clinically diagnosed as otomycosis from April 2020 to January 2023 from the Department of Otolaryngology-Head and Neck Surgery in central China. The pathogenic Aspergillus strains were identified through morphological examination and sequencing. The antifungal sensitivity was performed using the broth microdilution method described in the Clinical Laboratory Standard Institute document M38-A3. RESULTS: In the 452 clinical strains isolated from the external ear canal, 284 were identified as Aspergillus terreus (62.83%), 92 as Aspergillus flavus (20.35%), 55 as Aspergillus niger (12.17%). In antifungal susceptibility tests the MIC of Aspergillus strains to bifonazole and clotrimazole was high,all the MIC90 is > 16 ug/mL. However, most Aspergillus isolates show moderate greatly against terbinafine, itraconazole and voriconazole. CONCLUSION: A. terreus is the most common pathogenic Aspergillus strain in otomycosis in central China. The selected topical antifungal drugs were bifonazole and clotrimazole; the drug resistance rate was approximately 30%. If the infection is persistent and requires systemic treatment, terbinafine and itraconazole can be used. The resistance of Aspergillus in otomycosis to voriconazole should be screened to avoid the systemic spread of infection in immunocompromised people and poor compliance with treatment. However, the pan-azole-resistant strain of Aspergillus should be monitored, particularly in high-risk patients with otomycosis.


Asunto(s)
Aspergilosis , Otomicosis , Humanos , Antifúngicos/farmacología , Otomicosis/epidemiología , Otomicosis/microbiología , Itraconazol , Voriconazol , Terbinafina , Clotrimazol/farmacología , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergillus , Pruebas de Sensibilidad Microbiana
7.
Acta Trop ; 252: 107139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307362

RESUMEN

Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 µM, 12.75 ± 0.35 µM and 73 ± 1.41 µM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmaniasis Visceral , Animales , Clotrimazol/farmacología , Clotrimazol/metabolismo , Clotrimazol/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Macrófagos , Puntos de Control del Ciclo Celular , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Mamíferos
8.
Biochem Biophys Res Commun ; 696: 149455, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38176247

RESUMEN

Macrophages switch among different activation phenotypes according to distinct environmental stimuli, varying from pro-inflammatory (M1) to alternative (also named resolutive; M2) activation forms. M1-and M2-activated macrophages represent the two extremes of the activation spectrum involving multiple species, which vary in terms of function and the cytokines secreted. The consensus is that molecular characterization of the distinct macrophage population and the signals driving their activation will help in explaining disease etiology and formulating therapies. For instance, myeloid cells residing in the tumor microenvironment are key players in tumor progression and usually display an M2-like phenotype, which help tumor cells to evade local inflammatory processes. Therefore, these specific cells have been proposed as targets for tumor therapies by changing their activation profile. Furthermore, M2 polarized macrophages are phagocytic cells promoting tissue repair and wound healing and are therefore potential targets to treat different diseases. We have already shown that clotrimazole (CTZ) decreases tumor cell viability and thus tumor growth. The mechanism by which CTZ exerts its effects remains to be determined, but this drug is an inhibitor of the PI3K/AKT/mTOR pathway. In this study, we show that CTZ downregulated M2-activation markers in macrophages polarized to the M2 profile. This effect occurred without interfering with the expression of M1-polarized markers or pro-inflammatory cytokines and signaling. Moreover, CTZ suppressed NFkB pathway intermediates and disrupted PI3K/AKT/mTOR signaling. We concluded that CTZ reverses macrophage M2 polarization by disrupting the PI3K/AKT/mTOR pathway, which results in the suppression of NFkB induction of M2 polarization. In addition, we find that CTZ represents a promising therapeutic tool as an antitumor agent.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Clotrimazol/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , FN-kappa B/metabolismo , Activación de Macrófagos
9.
Mol Pharm ; 21(2): 854-863, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38235659

RESUMEN

Organic anion-transporting polypeptides (OATPs) 1B1 and 1B3 are two highly homologous transport proteins. However, OATP1B1- and 1B3-mediated estradiol-17ß-glucuronide (E17ßG) uptake can be differentially affected by clotrimazole. In this study, by functional characterization on chimeric transporters and single mutants, we find that G45 in transmembrane domain 1 (TM1) and V386 in TM8 are critical for the activation of OATP1B3-mediated E17ßG uptake by clotrimazole. However, the effect of clotrimazole on the function of OATP1B3 is substrate-dependent as clotrimazole does not stimulate OATP1B3-mediated uptake of 4',5'-dibromofluorescein (DBF) and rosuvastatin. In addition, clotrimazole is not transported by OATP1B3, but it can efficiently permeate the plasma membrane due to its lipophilic properties. Homology modeling and molecular docking indicate that E17ßG binds in a substrate binding pocket of OATP1B3 through hydrogen bonding and hydrophobic interactions, among which its sterol scaffold forms hydrophobic contacts with V386. In addition, a flexible glycine residue at position 45 is essential for the activation of OATP1B3. Finally, clotrimazole is predicted to bind at an allosteric site, which mainly consists of hydrophobic residues located at the cytoplasmic halves of TMs 4, 5, 10, and 11.


Asunto(s)
Estradiol/análogos & derivados , Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Clotrimazol/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Simulación del Acoplamiento Molecular , Transportadores de Anión Orgánico/metabolismo , Transporte Biológico
10.
Int Immunopharmacol ; 127: 111354, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103406

RESUMEN

Depression is a major emotional disorder that has a detrimental effect on quality of life. The chronic mild stress (CMS)-depression model was adopted in rats to evaluate the neurotherapeutic effect of Clotrimazole (CLO) and investigate the possible mechanisms of its antidepressant action via its impact on the hypothalamic pituitary adrenal (HPA) axis and the stress hormone, cortisol. It was found that azole antifungals affect steroidogenesis and the HPA axis. Behavioral, histopathological, inflammatory, and apoptotic pathways were assessed. Serum cortisol, inflammasome biomarkers, hippocampal NLRP3, caspase-1, and IL-18, and the canonical Wnt/ß-catenin neurogenesis biomarkers, Wnt3a, and non-phosphorylated ß-catenin levels were also determined. Different stressors were applied for 28 days to produce depressive-like symptoms, and CLO was administered at a daily dose of 30 mg/kg body weight. Subsequently, behavioral and biochemical tests were carried out to assess the depressive-like phenotype in rats. Stressed rats showed increased immobility time in the forced swimming test (FST), decreased grooming time in the splash test (ST), increased serum cortisol levels, increased inflammasome biomarkers, and decreased neurogenesis. However, administration of CLO produced significant antidepressant-like effects in rats, which were accompanied by a significant decrease in immobility time in FST, an increase in grooming time in ST, a decrease in serum cortisol level, a decrease in inflammasome biomarkers, and an increase in neurogenesis biomarkers. The antidepressant mechanism of CLO involves the HPA axis and the anti-inflammatory effect, followed by neurogenesis pathway activation. Therefore, CLO may have the potential to be a novel antidepressant candidate.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Clotrimazol/farmacología , Sistema Hipotálamo-Hipofisario , Ratas Sprague-Dawley , Hidrocortisona/farmacología , beta Catenina/metabolismo , Calidad de Vida , Sistema Hipófiso-Suprarrenal , Depresión/metabolismo , Antidepresivos/uso terapéutico , Hipocampo , Biomarcadores , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
11.
Epilepsy Res ; 198: 107246, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925976

RESUMEN

This study aimed to investigate the therapeutic potential of clotrimazole, an inhibitor of the transient receptor potential cation channel, for treating mitochondrial drug-resistant epilepsy and to understand its underlying neurochemical mechanisms. Adult albino mice underwent rotenone-corneal kindling, receiving daily electric shocks (15 mA, 20 V, 6-Hz for 3 s) through a corneal electrode, to induce mitochondrial drug-resistant epilepsy. The onset of drug resistance was confirmed by the significant (p < 0.05) lack of seizure control with standard antiseizure medications including levetiracetam (40 mg/kg), valproate (250 mg/kg), phenytoin (35 mg/kg), lamotrigine (15 mg/kg), and carbamazepine (40 mg/kg). Drug-resistant mice were then classified into one vehicle-treated group and three groups treated with varying doses of clotrimazole (40, 80, and 160 mg/kg orally). Neurochemical analysis of the seizurogenic hippocampus and cerebral cortex was conducted using high-performance liquid chromatography with an electrochemical detector. Administration of clotrimazole alongside standard antiseizure medications led to a significant decrease (p < 0.05) in seizure scores suggesting the restoration of antiseizure effects. Neurochemicals, including tryptophan, serotonin, kynurenine, serine, taurine, gamma-aminobutyric acid, and glutamate, were significantly restored post-clotrimazole treatment. Overall, the present study underscores the adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy, emphasising its role in neurochemical restoration.


Asunto(s)
Epilepsia Refractaria , Excitación Neurológica , Ratones , Animales , Clotrimazol/farmacología , Clotrimazol/uso terapéutico , Rotenona/farmacología , Rotenona/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Convulsiones/tratamiento farmacológico , Epilepsia Refractaria/tratamiento farmacológico
12.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003471

RESUMEN

Many studies highlighted the importance of the IK channel for the proliferation and the migration of different types of cancer cells, showing how IK blockers could slow down cancer growth. Based on these data, we wanted to characterize the effects of IK blockers on melanoma metastatic cells and to understand if such effects were exclusively IK-dependent. For this purpose, we employed two different blockers, namely clotrimazole and senicapoc, and two cell lines: metastatic melanoma WM266-4 and pancreatic cancer Panc-1, which is reported to have little or no IK expression. Clotrimazole and senicapoc induced a decrease in viability and the migration of both WM266-4 and Panc-1 cells irrespective of IK expression levels. Patch-clamp experiments on WM266-4 cells revealed Ca2+-dependent, IK-like, clotrimazole- and senicapoc-sensitive currents, which could not be detected in Panc-1 cells. Neither clotrimazole nor senicapoc altered the intracellular Ca2+ concentration. These results suggest that the effects of IK blockers on cancer cells are not strictly dependent on a robust presence of the channel in the plasma membrane, but they might be due to off-target effects on other cellular targets or to the blockade of IK channels localized in intracellular organelles.


Asunto(s)
Clotrimazol , Melanoma , Humanos , Clotrimazol/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Acetamidas
13.
Molecules ; 28(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37959872

RESUMEN

BACKGROUND: Antimicrobial resistance is one of the most pressing health issues of our time. The increase in the number of antibiotic-resistant bacteria allied to the lack of new antibiotics has contributed to the current crisis. It has been predicted that if this situation is not dealt with, we will be facing 10 million deaths due to multidrug resistant infections per year by 2050, surpassing cancer-related deaths. This alarming scenario has refocused attention into researching alternative drugs to treat multidrug-resistant infections. AIMS: In this study, the antimicrobial activities of four manganese complexes containing 1,2,3,-triazole and clotrimazole ligands have been evaluated. It is known that azole antibiotics coordinated to manganese tricarbonyl complexes display interesting antimicrobial activities against several microbes. In this work, the effect of the introduction of 1,2,3,-triazole-derived ligands in the [Mn(CO)3(clotrimazole)] fragment has been investigated against one Gram-positive bacterium and five Gram-negative bacteria. METHODS: The initial antimicrobial activity of the above-mentioned complexes was assessed by determining the minimum inhibitory and bactericidal concentrations using the broth microdilution method. Growth curves in the presence and absence of the complexes were performed to determine the effects of these complexes on the growth of the selected bacteria. A possible impact on cellular viability was determined by conducting the MTS assay on human monocytes. RESULTS: Three of the Mn complexes investigated (4-6) had good antimicrobial activities against all the bacteria tested, with values ranging from 1.79 to 61.95 µM with minimal toxicity. CONCLUSIONS: Due to the increased problem of antibiotic resistance and a lack of new antibacterial drugs with no toxicity, these results are exciting and show that these types of complexes can be an avenue to pursue in the future.


Asunto(s)
Manganeso , Triazoles , Humanos , Triazoles/farmacología , Manganeso/farmacología , Clotrimazol/farmacología , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias , Pruebas de Sensibilidad Microbiana
14.
Int J Pharm ; 644: 123287, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37536641

RESUMEN

WHO classified Candida albicans as one of the four critical priority fungi for public health worldwide in 2022. Conventional topical formulations commercially available for the treatment of cutaneous candidiasis are associated with low drug bioavailability at the infection site and the lack of a sustained therapeutic effect. The main objectives of this work were to develop new topical administration systems of clotrimazole (CLT) and study the influence of surfactants on the antifungal inhibitory efficacy. Therefore, the minimum concentration of CLT required to inhibit 50 % of growth (MIC50) was determined, obtaining a value of approximately 15 ng/mL. A non-ionic emulsion type 1, Beeler base cream, hydrogel and liposomes containing CLT were designed, prepared, characterized and their antifungal activity against C. albicans was tested. CLT loaded liposomes were small in size (102 nm), homogeneous (polydispersity index = 0.3) and uncharged (+0.07 mV), showing higher antifungal activity against C. albicans than that of the commercially available cream Canesten®. Furthermore, the antifungal activity of CLT was reduced in combination with surfactants such as Tween-80/Span-80 or Brij-S10. Sodium lauryl sulphate showed a fungicidal effect that disappeared when formulated as part of the Beeler base cream.


Asunto(s)
Candidiasis , Clotrimazol , Clotrimazol/farmacología , Antifúngicos , Excipientes/farmacología , Liposomas/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Candida albicans , Tensoactivos/farmacología
15.
Pharm Dev Technol ; 28(7): 611-624, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37357890

RESUMEN

The objective of this study was to develop novel invaethosomes (I-ETS) and invaflexosomes (I-FXS) to enhance the dermal delivery of clotrimazole (CZ). Twenty model CZ-loaded I-ETS and I-FXS formulations were created according to a face-centered central composite experimental design. CZ-loaded vesicle formulations containing a constant concentration of 0.025% w/v CZ and various amounts of ethanol, d-limonene, and polysorbate 20 as penetration enhancers were prepared using the thin film hydration method. The physicochemical characteristics, skin permeability, and antifungal activity were characterized. The skin permeability of the experimental CZ-loaded I-ETS/I-FXS was significantly higher than that of conventional ethosomes, flexosomes, and the commercial product (1% w/w CZ cream). The mechanism of action was confirmed to be skin penetration of low ethanol base vesicles through the disruption of the skin microstructure. The optimal I-ETS in vitro antifungal activity against C. albicans differed significantly from that of ETS and the commercial cream (control). The response surface methodology predicted by Design Expert® was helpful in understanding the complicated relationship between the causal factors and the response variables of the 0.025% w/v CZ-loaded I-ETS/I-FXS formulation. Based on the available information, double vesicles seem to be promising versatile carriers for dermal drug delivery of CZ.


Asunto(s)
Antifúngicos , Clotrimazol , Clotrimazol/farmacología , Clotrimazol/química , Antifúngicos/farmacología , Antifúngicos/química , Piel , Sistemas de Liberación de Medicamentos/métodos , Candida albicans , Etanol/química , Administración Cutánea
16.
Pol J Vet Sci ; 26(2): 257-263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389413

RESUMEN

Yeast infections such as otitis externa and seborrheic dermatitis in dogs and cats are frequently associated with Malassezia pachydermatis secondary infection. It is part of the normal cutaneous microflora of most warm-blooded vertebrates, however, under certain conditions, it can become a causative agent of infection that needs to be treated pharmacologically. Azole derivatives are the drugs of the first choice. An interesting trend in developing resistance is the use of natural substances, which include manuka honey with confirmed antimicrobial properties. The main intention of this research was to evaluate the mutual effect of manuka honey in combination with four conventional azole antifungals - clotrimazole, fluconazole, itraconazole, and miconazole - on 14 Malassezia pachydermatis isolates obtained from dogs and 1 reference strain. A slightly modified M27-A3 method (CLSI 2008) and the checkerboard test (Nikolic et al. 2017) were used for this purpose. Our results show an additive effect of all 4 antifungals with manuka honey concurrent use. Based on the determined values of fractional inhibitory concentration index (FICI - 0.74±0.03 when manuka honey combined with clotrimazole, 0.96±0.08 with fluconazole, 1.0±0 with miconazole and 1.16±0.26 with itraconazole), it was found in all cases that the effect of substances used is more pronounced in mutual combination than when used separately.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Miel , Animales , Gatos , Perros , Antifúngicos/farmacología , Fluconazol , Itraconazol , Miconazol/farmacología , Clotrimazol/farmacología , Azoles
17.
J Mater Chem B ; 11(24): 5552-5564, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-36877094

RESUMEN

Clotrimazole, a hydrophobic drug routinely used in the treatment of vaginal candidiasis, also shows antitumor activity. However, its use in chemotherapy has been unsuccessful to date due to its low solubility in aqueous media. In this work, new unimolecular micelles based on polyether star-hyperbranched carriers of clotrimazole are presented that can enhance solubility, and consequently the bioavailability, of clotrimazole in water. The amphiphilic constructs consisting of a hydrophobic poly(n-alkyl epoxide) core and hydrophilic corona of hyperbranched polyglycidol were synthesized in a three-step anionic ring-opening polymerization of epoxy monomers. The synthesis of such copolymers, however, was only possible by incorporating a linker to facilitate the elongation of the hydrophobic core with glycidol. Unimolecular micelles-clotrimazole formulations displayed significantly increased activity against human cervical cancer HeLa cells compared to the free drug, along with a weak effect on the viability of the normal dermal microvascular endothelium cells HMEC1. This selective activity of clotrimazole on cancer cells with little effect on normal cells was a result of the fact that clotrimazole targets the Warburg effect in cancer cells. Flow cytometric analysis revealed that the encapsulated clotrimazole significantly blocks the progression of the HeLa cycle in the G0/G1 phase and induces apoptosis. In addition, the ability of the synthesized amphiphilic constructs to form a dynamic hydrogel was demonstrated. Such a gel facilitates the delivery of drug-loaded single-molecule micelles to the affected area, where they can form a continuous, self-healing layer.


Asunto(s)
Clotrimazol , Micelas , Humanos , Clotrimazol/farmacología , Células HeLa , Polímeros/química
18.
Mol Cell Endocrinol ; 564: 111883, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736881

RESUMEN

This study investigated the mechanism of action of clotrimazole (CTZ) and its adverse effects in a model of endometriosis. After autologous endometrial implantation, 18 rats were randomized into two treatment groups: 200 mg/kg CTZ or vehicle for 15 consecutive days. The lesion growth, implant size, glandular atrophy, nitric oxide (NO) serum levels, number of macrophage cells and inducible nitric oxide synthase (iNOS) immunoreactivity were significantly reduced in the CTZ group compared with the control. CTZ (p < 0.05) reduced the lipid peroxidation and protein carbonylation levels in the liver but did not alter the superoxide dismutase (SOD), glutathione (GSH) or glutathione S-transferase (GST) levels in the brain; however, the drug significantly reduced SOD activity and enhanced GST activity in the liver. These results suggest that CTZ interferes with reactive nitrogen species production by downregulating iNOS expression and thus enhances the antioxidant system to promote atrophy and regression of endometriotic lesions, without adverse effects on the brain and/or liver.


Asunto(s)
Clotrimazol , Endometriosis , Femenino , Humanos , Ratas , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , Clotrimazol/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido , Óxido Nítrico/metabolismo , Biomarcadores/metabolismo
19.
ACS Chem Biol ; 18(3): 456-464, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36762958

RESUMEN

TRPM3 is an ion channel that is highly expressed in nociceptive neurons and plays a key role in pain perception. In the presence of the endogenous TRPM3 ligand, pregnenolone sulfate (PS), the antifungal compound clotrimazole (Clt) augments Ca2+ signaling and opens a non-canonical pore, permeable to Na+, which aggravates TRPM3-induced pain. To date, little is known about structural features that govern the Clt modulatory effect of TRPM3. Here, we synthesized and evaluated several Clt analogues in order to gain insights into their structure-activity relationship. Our results reveal a tight SAR with the three phenyl rings on the trityl moiety being essential for the activity, as well as the presence of fluorine or chlorine substituents on the trityl group. Imidazole as a heterocycle is also necessary for activity. Interestingly, we identified a pentafluoro-trityl analogue (29a) that is able to act as a TRPM3 agonist in the absence of PS. The compounds we report in this work will be useful tools for the further study of TRPM3 modulation and its effect on pain perception.


Asunto(s)
Clotrimazol , Canales Catiónicos TRPM , Humanos , Clotrimazol/farmacología , Canales Catiónicos TRPM/metabolismo , Dolor , Relación Estructura-Actividad
20.
Acta Biomater ; 155: 618-634, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371005

RESUMEN

The low permeability of antifungal agents to fungal biofilms, which allows the continued survival of the fungus inside, is a key issue that makes fungal infections difficult to cure. Inspired by the unique dynamic molecule motion properties of the polyrotaxane (PR) nanomedicine, herein, a dynamic delivery system Clo@mPRP/NONOate was fabricated by co-loading nitric oxide (NO) and the antifungal drug clotrimazole (Clo) onto the α-cyclodextrin (α-CD) PR modified mesoporous polydopamine (mPDA) nanoparticles, in which pentaethylenehexamine (PEHA) was grafted to α-CDs. The cationic α-CDs endowed this dynamic NO/Clo codelivery system with the ability to effectively attach to fungal biofilms through electrostatic interaction, while the introduction of PRs with flexible molecule motion (slide and rotation of CDs) enhanced the permeability of nanoparticles to biofilms. Meanwhile, NO could effectively inhibit the formation of fungal hyphae, showing an dissipating effect on mature biofilms, and could be further combined with Clo to completely eradicate fungi inside the biofilms. In addition, the dynamic system Clo@mPRP/NONOate could efficiently and synergistically eliminate planktonic Candida albicans (C. albicans) in a safe and no toxic side effect manner, and effectively cured C. albicans-induced vaginal infection in mice. Therefore, this dynamic NO/Clo codelivery system provided an effective solution to the clinical treatment of C. albicans-induced vaginal infection, and the application prospect could even be extended to other microbial infectious diseases. STATEMENT OF SIGNIFICANCE: A dynamic codelivery system based on cationized cyclodextrin polyrotaxane combining nitric oxide and antifungal drugs clotrimazole was prepared to deal with the issue of clinical fungal biofilm infection. This dynamic codelivery system could be attached to the Candida albicans biofilms and penetrate into biofilm via flexible molecular mobility to effectively eradicate the fungi. This dynamic codelivery system could synergistically and efficiently eliminate planktonic-state Candida albicans, but did not show significant cytotoxicity to normal somatic cells.


Asunto(s)
Candidiasis , Ciclodextrinas , Rotaxanos , Femenino , Ratones , Animales , Candida albicans , Antifúngicos/farmacología , Óxido Nítrico/farmacología , Clotrimazol/farmacología , Clotrimazol/uso terapéutico , Preparaciones Farmacéuticas , Rotaxanos/farmacología , Rotaxanos/uso terapéutico , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Ciclodextrinas/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA