Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38956780

RESUMEN

This study explores the impact of juglone on cucumber (Cucumis sativus cv. Beith Alpha), scrutinizing its effects on seed germination, growth, and the polyphenol oxidase (PPO) enzyme's activity and gene expression. Employing concentrations ranging from 0.01 to 0.5 mM, we found juglone's effects to be concentration-dependent. At lower concentrations (0.01 and 0.1 mM), juglone promoted root and shoot growth along with germination, whereas higher concentrations (0.25 and 0.5 mM) exerted inhibitory effects, delineating a threshold for its allelopathic influence. Notably, PPO activity surged, especially at 0.5 mM in roots, hinting at oxidative stress involvement. Real-time PCR unveiled that juglone modulates PPO gene expression in cotyledons, peaking at 0.1 mM and diminishing at elevated levels. Correlation analyses elucidated a positive link between juglone-induced root growth and cotyledon PPO gene expression but a negative correlation with heightened root enzyme activity. Additionally, germination percentage inversely correlated with root PPO activity, while PPO activities positively associated with dopa and catechol substrates in both roots and cotyledons. Molecular docking studies revealed juglone's selective interactions with PPO's B chain, suggesting regulatory impacts. Protein interaction assessments highlighted juglone's influence on amino acid metabolism, and molecular dynamics indicated juglone's stronger, more stable binding to PPO, inferring potential alterations in enzyme function and stability. Conclusively, our findings elucidate juglone's dose-dependent physiological and biochemical shifts in cucumber plants, offering insights into its role in plant growth, stress response, and metabolic modulation.


Asunto(s)
Catecol Oxidasa , Cucumis sativus , Germinación , Simulación del Acoplamiento Molecular , Naftoquinonas , Raíces de Plantas , Catecol Oxidasa/metabolismo , Catecol Oxidasa/genética , Cucumis sativus/genética , Cucumis sativus/enzimología , Cucumis sativus/efectos de los fármacos , Naftoquinonas/farmacología , Naftoquinonas/metabolismo , Germinación/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/enzimología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cotiledón/genética , Cotiledón/efectos de los fármacos , Cotiledón/enzimología
2.
Sci Rep ; 14(1): 11148, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750143

RESUMEN

The one-leaf plant Monophyllaea glabra exhibits a unique developmental manner in which only one cotyledon continues growing without producing new vegetative organs. This morphology is formed by specific meristems, the groove meristem (GM) and the basal meristem (BM), which are thought to be modified shoot apical meristem (SAM) and leaf meristem. In this study, we analysed the expression of the organ boundary gene CUP-SHAPED COTYLEDON (CUC) and the SAM maintenance gene SHOOT MERISTEMLESS (STM) orthologs by whole-mount in situ hybridisation. We found that CUCs did not show clear border patterns around GM and BM during the vegetative phase. Furthermore, double-colour detection analysis at the cellular level revealed that CUC and STM expression overlapped in the GM region during the vegetative phase. We also found that this overlap is dissolved in the reproductive phase when normal shoot organogenesis is observed. Since co-expression of these genes occurs during SAM initiation under embryogenesis in Arabidopsis, our results demonstrate that GM is a prolonged stage of pre-mature SAM. Therefore, we propose that neotenic meristems could be a novel plant trait acquired by one-leaf plants.


Asunto(s)
Cotiledón , Regulación de la Expresión Génica de las Plantas , Meristema , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo
3.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704787

RESUMEN

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Biogénesis de Organelos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Cotiledón/genética , Cotiledón/metabolismo , Cotiledón/crecimiento & desarrollo , Sistemas CRISPR-Cas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Proteómica
4.
Plant Physiol Biochem ; 210: 108591, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583314

RESUMEN

Fresh lotus seeds are gaining favor with consumers for their crunchy texture and natural sweetness. However, the intricacies of sugar accumulation in lotus seeds remain elusive, which greatly hinders the quality improvement of fresh lotus seeds. This study endeavors to elucidate this mechanism by identifying and characterizing the sucrose synthase (SUS) gene family in lotus. Comprising five distinct members, namely NnSUS1 to NnSUS5, each gene within this family features a C-terminal glycosyl transferase1 (GT1) domain. Among them, NnSUS1 is the predominately expressed gene, showing high transcript abundance in the floral organs and cotyledons. NnSUS1 was continuously up-regulated from 6 to 18 days after pollination (DAP) in lotus cotyledons. Furthermore, NnSUS1 demonstrates co-expression relationships with numerous genes involved in starch and sucrose metabolism. To investigate the function of NnSUS1, a transient overexpression system was established in lotus cotyledons, which confirmed the gene's contribution to sugar accumulation. Specifically, transient overexpression of NnSUS1 in seed cotyledons leads to a significant increase in the levels of total soluble sugar, including sucrose and fructose. These findings provide valuable theoretical insights for improving sugar content in lotus seeds through molecular breeding methods.


Asunto(s)
Cotiledón , Glucosiltransferasas , Lotus , Proteínas de Plantas , Cotiledón/genética , Cotiledón/metabolismo , Cotiledón/enzimología , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Lotus/genética , Lotus/enzimología , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/enzimología , Sacarosa/metabolismo , Azúcares/metabolismo
5.
Plant Mol Biol ; 114(3): 49, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642182

RESUMEN

Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.


Asunto(s)
Brassica napus , Plantones , Plantones/genética , Semillas/genética , Cotiledón/genética , Lípidos , Aminoácidos/metabolismo , Brassica napus/metabolismo
6.
Genes (Basel) ; 15(4)2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38674348

RESUMEN

The length of coleoptile is crucial for determining the sowing depth of oats in low-precipitation regions, which is significant for oat breeding programs. In this study, a diverse panel of 243 oat accessions was used to explore coleoptile length in two independent experiments. The panel exhibited significant variation in coleoptile length, ranging from 4.66 to 8.76 cm. Accessions from Africa, America, and the Mediterranean region displayed longer coleoptile lengths than those from Asia and Europe. Genome-wide association studies (GWASs) using 26,196 SNPs identified 34 SNPs, representing 32 quantitative trait loci (QTLs) significantly associated with coleoptile length. Among these QTLs, six were consistently detected in both experiments, explaining 6.43% to 10.07% of the phenotypic variation. The favorable alleles at these stable loci additively increased coleoptile length, offering insights for pyramid breeding. Gene Ontology (GO) analysis of the 350 candidate genes underlying the six stable QTLs revealed significant enrichment in cell development-related processes. Several phytochrome-related genes, including auxin transporter-like protein 1 and cytochrome P450 proteins, were found within these QTLs. Further validation of these loci will enhance our understanding of coleoptile length regulation. This study provides new insights into the genetic architecture of coleoptile length in oats.


Asunto(s)
Avena , Cotiledón , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Avena/genética , Avena/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Fenotipo , Genoma de Planta , Fitomejoramiento
7.
Plant Cell Rep ; 43(5): 131, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656568

RESUMEN

KEY MESSAGE: The sugar supply in the medium affects the apical hook development of Arabidopsis etiolated seedlings. In addition, we provided the mechanism insights of this process. Dicotyledonous plants form an apical hook structure to shield their young cotyledons from mechanical damage as they emerge from the rough soil. Our findings indicate that sugar molecules, such as sucrose and glucose, are crucial for apical hook development. The presence of sucrose and glucose allows the apical hooks to be maintained for a longer period compared to those grown in sugar-free conditions, and this effect is dose-dependent. Key roles in apical hook development are played by several sugar metabolism pathways, including oxidative phosphorylation and glycolysis. RNA-seq data revealed an up-regulation of genes involved in starch and sucrose metabolism in plants grown in sugar-free conditions, while genes associated with phenylpropanoid metabolism were down-regulated. This study underscores the significant role of sugar metabolism in the apical hook development of etiolated Arabidopsis seedlings.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantones , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Azúcares/metabolismo , Sacarosa/metabolismo , Glucosa/metabolismo , Etiolado , Metabolismo de los Hidratos de Carbono , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotiledón/metabolismo , Cotiledón/crecimiento & desarrollo , Cotiledón/genética
8.
Plant Cell Rep ; 43(2): 56, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319432

RESUMEN

KEY MESSAGE: This is the first report showing anthocyanin accumulation in the soybean cotyledon via genetic transformation of a single gene. Soybean [Glycine max (L.) Merrill] contains valuable components, including anthocyanins. To enhance anthocyanin production in Korean soybean Kwangankong, we utilized the R2R3-type MYB gene (IbMYB1a), known for inducing anthocyanin pigmentation in Arabidopsis. This gene was incorporated into constructs using two promoters: the CaMV 35S promoter (P35S) and the ß-conglycinin promoter (Pß-con). Kwangankong was transformed using Agrobacterium, and the presence of IbMYB1a and Bar transgenes in T0 plants was confirmed through polymerase chain reaction (PCR), followed by gene expression validation. Visual inspection revealed that one P35S:IbMYB1a and three Pß-con:IbMYB1a lines displayed seed color change. Pß-con:IbMYB1a T1 seeds accumulated anthocyanins in cotyledon outer layers, whereas P35S:IbMYB1a and non-transgenic black soybean (Cheongja 5 and Seum) accumulated anthocyanins in the seed coat. During the germination and growth phase, T1 seedlings from Pß-con:IbMYB1a lines exhibited anthocyanin pigmentation in cotyledons for up to 1 month without growth aberrations. High-performance liquid chromatography confirmed cyanidin-3-O-glucoside as the major anthocyanin in the Pß-con:IbMYB1a line (#3). We analyzed the expression patterns of anthocyanin biosynthesis genes, chalcone synthase 7,8, chalcone isomerase 1A, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, dihydroflavanol reductase 1, dihydroflavanol reductase 2, anthocyanidin synthase 2, anthocyanidin synthase 3, and UDP glucose flavonoid 3-O-glucosyltransferase in transgenic and control Kwangankong and black soybean (Cheongja 5 and Seum) seeds using quantitative real-time PCR. We conclude that the induction of gene expression in transgenic plants in comparison with Kwangankong was attributable to IbMYB1a transformation. Notably, flavanone 3-hydroxylase, flavanone 3'-hydroxylase, and dihydroflavanol reductase 1 were abundantly expressed in black soybean seed coat, distinguishing them from transgenic cotyledons.


Asunto(s)
Arabidopsis , Flavanonas , Glycine max/genética , Antocianinas , Cotiledón/genética , Pigmentación/genética , Oxigenasas de Función Mixta
9.
Plant Physiol ; 195(2): 1382-1400, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38345866

RESUMEN

Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Cotiledón , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/genética , Estomas de Plantas/efectos de los fármacos , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Cotiledón/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutación/genética , Regiones Promotoras Genéticas/genética , Etiolado , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética
11.
Theor Appl Genet ; 137(3): 53, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381194

RESUMEN

KEY MESSAGE: This study reported the identification and validation of novel QTL conferring coleoptile length in barley and predicted candidate genes underlying the largest effect QTL based on orthologous analysis and comparison of the whole genome assemblies for both parental genotypes of the mapping population. Coleoptile length (CL) is one of the most important agronomic traits in cereal crops due to its direct influence on the optimal depth for seed sowing which facilitates better seedling establishment. Varieties with longer coleoptiles are preferred in drought-prone areas where less moisture maintains at the top layer of the soil. Compared to wheat, genetic study on coleoptile length is limited in barley. Here, we reported a study on detecting the genomic regions associated with CL in barley by assessing a population consisting of 201 recombinant inbred lines. Four putative QTL conferring CL were consistently identified on chromosomes 1H, 5H, 6H, and 7H in each of the trials conducted. Of these QTL, the two located on chromosomes 5H and 6H (designated as Qcl.caf-5H and Qcl.caf-6H) are likely novel and Qcl.caf-5H showed the most significant effect explaining up to 30.9% of phenotypic variance with a LOD value of 15.1. To further validate the effect of this putative QTL, five pairs of near isogenic lines (NILs) were then developed and assessed. Analysis of the NILs showed an average difference of 21.0% in CL between the two isolines. Notably, none of the other assessed morphological characteristics showed consistent differences between the two isolines for each pair of the NILs. Candidate genes underlying the Qcl.caf-5H locus were also predicted by employing orthologous analysis and comparing the genome assemblies for both parental genotypes of the mapping population in the present study. Taken together, these findings expand our understanding on genetic basis of CL and will be indicative for further gene cloning and functional analysis underly this locus in barley.


Asunto(s)
Hordeum , Hordeum/genética , Cotiledón/genética , Semillas , Productos Agrícolas , Plantones
12.
Sci Signal ; 17(817): eadf7318, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166030

RESUMEN

The opening of the embryonic leaves (cotyledons) as seedlings emerge from the dark soil into the light is crucial to ensure the survival of the plant. Seedlings that sprout in the dark elongate rapidly to reach light but keep their cotyledons closed. During de-etiolation, the transition from dark to light growth, elongation slows and the cotyledons open. Here, we report that the transcription factor ACTIVATING FACTOR1 (ATAF1) participates in de-etiolation and facilitates light-induced cotyledon opening. The transition from dark to light rapidly induced ATAF1 expression and ATAF1 accumulation in cotyledons. Seedlings lacking or overexpressing ATAF1 exhibited reduced or enhanced cotyledon opening, respectively, and transcriptomic analysis indicated that ATAF1 repressed the expression of genes associated with growth and cotyledon closure. The activation of the photoreceptor phytochrome A (phyA) by far-red light induced its association with the ATAF1 promoter and stimulation of ATAF1 expression. The transcription factor ELONGATED HYPOCOTYL5 (HY5), which is also activated in response far-red light, cooperated with phyA to induce ATAF1 expression. ATAF1 and HY5 interacted with one another and cooperatively repressed the expression of growth-promoting and cotyledon closure genes. Together, our study reveals a mechanism through which far-red light promotes cotyledon opening.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantones/genética , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Represoras/metabolismo
13.
Plant Commun ; 5(3): 100771, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994014

RESUMEN

Successful emergence from the soil is a prerequisite for survival of germinating seeds in their natural environment. In rice, coleoptile elongation facilitates seedling emergence and establishment, and ethylene plays an important role in this process. However, the underlying regulatory mechanism remains largely unclear. Here, we report that ethylene promotes cell elongation and inhibits cell expansion in rice coleoptiles, resulting in longer and thinner coleoptiles that facilitate seedlings emergence from the soil. Transcriptome analysis showed that genes related to reactive oxygen species (ROS) generation are upregulated and genes involved in ROS scavenging are downregulated in the coleoptiles of ethylene-signaling mutants. Further investigations showed that soil coverage promotes accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) and OsEIL2 in the upper region of the coleoptile, and both OsEIL1 and OsEIL2 can bind directly to the promoters of the GDP-mannose pyrophosphorylase (VTC1) gene OsVTC1-3 and the peroxidase (PRX) genes OsPRX37, OsPRX81, OsPRX82, and OsPRX88 to activate their expression. This leads to increased ascorbic acid content, greater peroxidase activity, and decreased ROS accumulation in the upper region of the coleoptile. Disruption of ROS accumulation promotes coleoptile growth and seedling emergence from soil. These findings deepen our understanding of the roles of ethylene and ROS in controlling coleoptile growth, and this information can be used by breeders to produce rice varieties suitable for direct seeding.


Asunto(s)
Oryza , Plantones , Plantones/genética , Plantones/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oryza/genética , Suelo , Etilenos/metabolismo , Peroxidasas/metabolismo
14.
Mol Biol Rep ; 50(11): 9353-9366, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37819494

RESUMEN

BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming. METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants. CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.


Asunto(s)
Sistemas CRISPR-Cas , Oryza , Sistemas CRISPR-Cas/genética , Oryza/genética , Oryza/metabolismo , Cotiledón/genética , Técnicas de Cultivo de Tejidos/métodos , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens/genética
15.
Plant Cell Physiol ; 64(11): 1356-1371, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37718531

RESUMEN

The interdigitated pavement cell shape is suggested to be mechanically rational at both the cellular and tissue levels, but the biological significance of the cell shape is not fully understood. In this study, we explored the potential importance of the jigsaw puzzle-like cell shape for cotyledon morphogenesis in Arabidopsis. We used a transgenic line overexpressing a Rho-like GTPase-interacting protein, ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 1 (RIC1), which causes simple elongation of pavement cells. Computer-assisted microscopic analyses, including virtual reality observation, revealed that RIC1 overexpression resulted in abnormal cotyledon shapes with marginal protrusions, suggesting that the abnormal organ shape might be explained by changes in the pavement cell shape. Microscopic, biochemical and mechanical observations indicated that the pavement cell deformation might be due to reduction in the cell wall cellulose content with alteration of cortical microtubule organization. To examine our hypothesis that simple elongation of pavement cells leads to an abnormal shape with marginal protrusion of the cotyledon, we developed a mathematical model that examines the impact of planar cell growth geometry on the morphogenesis of the organ that is an assemblage of the cells. Computer simulations supported experimental observations that elongated pavement cells resulted in an irregular cotyledon shape, suggesting that marginal protrusions were due to local growth variation possibly caused by stochastic bias in the direction of cell elongation cannot be explained only by polarity-based cell elongation, but that an organ-level regulatory mechanism is required.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma de la Célula , Cotiledón/genética , Cotiledón/metabolismo , Microtúbulos/metabolismo , Hojas de la Planta/metabolismo
16.
Plant Physiol Biochem ; 194: 550-569, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525937

RESUMEN

Investigations of the compatibility between cacao genotypes of the population of the Parinari series (Pa), resulting from the reciprocal crossing of Pa 30 × Pa 169 and Pa 121 × Pa 169, allowed the verification of the occurrence of the recessive lethal single character called Luteus-Pa. These genotypes have this gene in heterozygosity, which when intercross or self-fertilize, segregate in a 3:1 ratio. Normal (NS) and mutant (MS) seedlings grow normally and, after a period of approximately 30 days of age, MS leaves begin to show a metallic yellow color, followed by necrotic spots, and death of the entire seedling, approximately 40 days after the emergency. The work evaluate the molecular, biochemical and micromorphological responses in NS and MS, with and without cotyledons, resulting from the crossing of the Pa 30 × Pa 169 cacao genotypes, aiming to elucidate the possible lethal mechanisms of the homozygous recessive Luteus-Pa. The presence of the lethal gene Luteus-Pa in the seedlings of the cacao genotypes of the population of the Parinari (Pa), with and without cotyledons, resulting from the crossing of Pa 30 × Pa 169, in addition to regulating the synthesis of proteins related to the photosynthetic and stress defense processes, promoted an increase in the synthesis of proteins involved in the glycolic pathway, induced oxidative stress, altered the mobilization of cotyledonary reserves, the integrity of cell membranes, leaf micromorphology and induced the death of seedlings, soon after depletion of protein and carbohydrate reserves, especially in the absence of cotyledons.


Asunto(s)
Cacao , Cacao/genética , Cacao/metabolismo , Plantones/genética , Plantones/metabolismo , Genes Letales , Cotiledón/genética , Genotipo
17.
PeerJ ; 10: e14602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570011

RESUMEN

Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.


Asunto(s)
Arabidopsis , Ajo , Humanos , Factores de Transcripción/genética , Transcriptoma , Arabidopsis/genética , Ajo/genética , Activación Transcripcional , Meristema/genética , Filogenia , Cotiledón/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética
18.
Plant Cell ; 34(12): 4667-4668, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36074066
19.
BMC Plant Biol ; 22(1): 265, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643426

RESUMEN

BACKGROUND: Camellia oleifera (C.oleifera) is one of the most important wood oil species in the world. C.oleifera was propagated by nurse seedling grafting. Since the morphology of rootstocks has a significant impact on grafting efficiency and seedling quality, it is necessary to understand the molecular mechanism of morphogenesis for cultivating high-quality and controllable rootstocks. However, the genomic resource for this species is relatively limited, which hinders us from fully understanding the molecular mechanisms of seed germination in C.oleifera. RESULTS: In this paper, using transcriptome sequencing, we measured the gene expression in the C.oleifera cotyledon in different stages of development and the global gene expression profiles. Approximately 45.4 gigabases (GB) of paired-end clean reads were assembled into 113,582 unigenes with an average length of 396 bp. Six public protein databases annotate 61.5% (68,217) of unigenes. We identified 11,391 differentially expressed genes (DEGs) throughout different stages of germination. Enrichment analysis revealed that DEGs were mainly involved in hormone signal transduction and starch sucrose metabolism pathways. The gravitropism regulator UNE10, the meristem regulators STM, KNAT1, PLT2, and root-specific transcription factor WOX11 all have higher gene expression levels in the CAM2 stage (seed soaking), which indicates that the cotyledon-regulated program for germination had initiated when the seeds were imbibition. Our data showed differentially reprogrammed to multiple hormone-related genes in cotyledons during C.oleifera seed germination. CONCLUSION: Cotyledons play vital roles, both as the main nutrient provider and as one primary instructor for seed germination and seedling growth. Together, our study will significantly enrich the genomic resources of Camellia and help us understand the molecular mechanisms of the development in the seed germination and seedling growth of C.oleifera. It is helpful to culture standard and superior quality rootstock for C.oleifera breeding.


Asunto(s)
Camellia , Camellia/genética , Camellia/metabolismo , Cotiledón/genética , Perfilación de la Expresión Génica , Germinación/genética , Hormonas/metabolismo , Fitomejoramiento , Semillas/genética , Transcriptoma
20.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35723181

RESUMEN

Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA