Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.387
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biotechnol J ; 19(7): e2400092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987222

RESUMEN

Continuous manufacturing enables high volumetric productivities of biologics such as monoclonal antibodies. However, it is challenging to maintain both high viable cell densities and productivities at the same time for long culture durations. One of the key controls in a perfusion process is the perfusion rate which determines the nutrient availability and potentially controls the cell metabolism. Cell Specific Perfusion Rate (CSPR) is a feed rate proportional to the viable cell density while Biomass Specific Perfusion Rate (BSPR) is a feed rate proportional to the biomass (cell volume multiply by cell density). In this study, perfusion cultures were run at three BSPRs in the production phase. Low BSPR favored a growth arresting state that led to gradual increase in cell volume, which in turn led to an increase in net perfusion rate proportional to the increase in cell volume. Consequently, at low BSPR, while the cell viability and cell density decreased, high specific productivity of 55 pg per cell per day was achieved. In contrast, the specific productivity was lower in bioreactors operating at a high BSPR. The ability to modulate the cell metabolism by using BSPR was confirmed when the specific productivity increased after lowering the BSPR in one of the bioreactors that was initially operating at a high BSPR. This study demonstrated that BSPR significantly influenced cell growth, metabolism, and productivity in cultures with variable cell volumes.


Asunto(s)
Anticuerpos Monoclonales , Biomasa , Reactores Biológicos , Biosimilares Farmacéuticos , Técnicas de Cultivo de Célula , Cricetulus , Células CHO , Animales , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos , Recuento de Células , Proliferación Celular/efectos de los fármacos , Perfusión/métodos
2.
Elife ; 132024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949655

RESUMEN

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Asunto(s)
Quimiocina CCL5 , Quimiotaxis , Cricetulus , Heparitina Sulfato , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Animales , Heparitina Sulfato/metabolismo , Humanos , Células CHO , Ratones , Heparina/metabolismo , Heparina/farmacología , Separación de Fases
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000389

RESUMEN

This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) ß-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG ß-subunit CTP region (amino acids 115-149) was inserted between the ß-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000-5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34-40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39-46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG ß-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.


Asunto(s)
Cricetulus , Hormona Folículo Estimulante , Proteínas Recombinantes , Animales , Células CHO , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Glicosilación , Anguilas/genética , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/genética
4.
MAbs ; 16(1): 2375798, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984665

RESUMEN

Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Hidrolasas , Células CHO , Animales , Anticuerpos Monoclonales/química , Hidrolasas/metabolismo , Polisorbatos/química , Productos Biológicos/metabolismo , Humanos
5.
Sci Rep ; 14(1): 15992, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987432

RESUMEN

Aquaporins (AQPs) are a family of water permeable channels expressed on the plasma membrane with AQP5 being the major channel expressed in several human tissues including salivary and lacrimal glands. Anti-AQP5 autoantibodies have been observed in patients with Sjögren's syndrome who are characterised by dryness of both salivary and lacrimal glands, and they have been implicated in the underlying mechanisms of glandular dysfunction. AQP5 is formed by six transmembrane helices linked with three extracellular and two intracellular loops. Develop antibodies against membrane protein extracellular loops can be a challenge due to the difficulty in maintaining these proteins as recombinant in their native form. Therefore, in this work we aimed to generate an efficient stable-transfected cell line overexpressing human AQP5 (CHO-K1/AQP5) to perform primarily cell-based phage display biopanning experiments to develop new potential recombinant antibodies targeting AQP5. We also showed that the new CHO-K1/AQP5 cell line can be used to study molecular mechanisms of AQP5 sub-cellular trafficking making these cells a useful tool for functional studies.


Asunto(s)
Acuaporina 5 , Cricetulus , Acuaporina 5/metabolismo , Acuaporina 5/genética , Células CHO , Humanos , Animales , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Anticuerpos/metabolismo , Biblioteca de Péptidos
6.
Bioconjug Chem ; 35(7): 971-980, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958375

RESUMEN

Conventional serum markers often fail to accurately detect cholestasis accompanying many liver diseases. Although elevation in serum bile acid (BA) levels sensitively reflects impaired hepatobiliary function, other factors altering BA pool size and enterohepatic circulation can affect these levels. To develop fluorescent probes for extracorporeal noninvasive hepatobiliary function assessment by real-time monitoring methods, 1,3-dipolar cycloaddition reactions were used to conjugate near-infrared (NIR) fluorochromes with azide-functionalized BA derivatives (BAD). The resulting compounds (NIRBADs) were chromatographically (FC and PTLC) purified (>95%) and characterized by fluorimetry, 1H NMR, and HRMS using ESI ionization coupled to quadrupole TOF mass analysis. Transport studies using CHO cells stably expressing the BA carrier NTCP were performed by flow cytometry. Extracorporeal fluorescence was detected in anesthetized rats by high-resolution imaging analysis. Three NIRBADs were synthesized by conjugating alkynocyanine 718 with cholic acid (CA) at the COOH group via an ester (NIRBAD-1) or amide (NIRBAD-3) spacer, or at the 3α-position by a triazole link (NIRBAD-2). NIRBADs were efficiently taken up by cells expressing NTCP, which was inhibited by taurocholic acid (TCA). Following i.v. administration of NIRBAD-3 to rats, liver uptake and consequent release of NIR fluorescence could be extracorporeally monitored. This transient organ-specific handling contrasted with the absence of release to the intestine of alkynocyanine 718 and the lack of hepatotropism observed with other probes, such as indocyanine green. NIRBAD-3 administration did not alter serum biomarkers of hepatic and renal toxicity. NIRBADs can serve as probes to evaluate hepatobiliary function by noninvasive extracorporeal methods.


Asunto(s)
Ácidos y Sales Biliares , Colorantes Fluorescentes , Hígado , Animales , Ácidos y Sales Biliares/química , Colorantes Fluorescentes/química , Ratas , Hígado/metabolismo , Hígado/diagnóstico por imagen , Células CHO , Cricetulus , Pruebas de Función Hepática/métodos , Masculino , Espectroscopía Infrarroja Corta/métodos , Ratas Sprague-Dawley , Fluorescencia
7.
Sci Rep ; 14(1): 14587, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918509

RESUMEN

Engineered mammalian cells are key for biotechnology by enabling broad applications ranging from in vitro model systems to therapeutic biofactories. Engineered cell lines exist as a population containing sub-lineages of cell clones that exhibit substantial genetic and phenotypic heterogeneity. There is still a limited understanding of the source of this inter-clonal heterogeneity as well as its implications for biotechnological applications. Here, we developed a genomic barcoding strategy for a targeted integration (TI)-based CHO antibody producer cell line development process. This technology provided novel insights about clone diversity during stable cell line selection on pool level, enabled an imaging-independent monoclonality assessment after single cell cloning, and eventually improved hit-picking of antibody producer clones by monitoring of cellular lineages during the cell line development (CLD) process. Specifically, we observed that CHO producer pools generated by TI of two plasmids at a single genomic site displayed a low diversity (< 0.1% RMCE efficiency), which further depends on the expressed molecules, and underwent rapid population skewing towards dominant clones during routine cultivation. Clonal cell lines from one individual TI event demonstrated a significantly lower variance regarding production-relevant and phenotypic parameters as compared to cell lines from distinct TI events. This implies that the observed cellular diversity lies within pre-existing cell-intrinsic factors and that the majority of clonal variation did not develop during the CLD process, especially during single cell cloning. Using cellular barcodes as a proxy for cellular diversity, we improved our CLD screening workflow and enriched diversity of production-relevant parameters substantially. This work, by enabling clonal diversity monitoring and control, paves the way for an economically valuable and data-driven CLD process.


Asunto(s)
Células Clonales , Cricetulus , Código de Barras del ADN Taxonómico , Células CHO , Animales , Código de Barras del ADN Taxonómico/métodos , Genómica/métodos , Anticuerpos Monoclonales/genética
8.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928161

RESUMEN

Magnoliae Flos (MF) is a medicinal herb widely employed in traditional medicine for relieving sinusitis, allergic rhinitis, headaches, and toothaches. Here, we investigated the potential preventive effects of MF extract (MFE) against 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity in ovarian cells and a mouse model of premature ovarian insufficiency (POI). The cytoprotective effects of MFE were assessed using CHO-K1 or COV434 cells. In vivo, B6C3F1 female mice were intraperitoneally injected with VCD for two weeks to induce POI, while MFE was orally administered for four weeks, beginning one week before VCD administration. VCD led to a significant decline in the viabilities of CHO-K1 and COV434 cells and triggered excessive reactive oxygen species (ROS) production and apoptosis specifically in CHO-K1 cells. However, pretreatment with MFE effectively prevented VCD-induced cell death and ROS generation, while also activating the Akt signaling pathway. In vivo, MFE increased relative ovary weights, follicle numbers, and serum estradiol and anti-Müllerian hormone levels versus controls under conditions of ovary failure. Collectively, our results demonstrate that MFE has a preventive effect on VCD-induced ovotoxicity through Akt activation. These results suggest that MFE may have the potential to prevent and manage conditions such as POI and diminished ovarian reserve.


Asunto(s)
Cricetulus , Ovario , Extractos Vegetales , Insuficiencia Ovárica Primaria , Especies Reactivas de Oxígeno , Animales , Femenino , Ratones , Células CHO , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/prevención & control , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Compuestos de Vinilo/farmacología , Ciclohexenos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
9.
J Chromatogr A ; 1729: 465057, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38857565

RESUMEN

The histamine H1 receptor (H1R) plays a pivotal role in allergy initiation and undergoes the necessity of devising a high-throughput screening approach centered on H1R to screen novel ligands effectively. This study suggests a method employing styrene maleic acid (SMA) extraction and His-tag covalent bonding to immobilize H1R membrane proteins, minimizing the interference of nonspecific proteins interference while preserving native protein structure and maximizing target exposure. This approach was utilized to develop a novel material for high-throughput ligand screening and implemented in cell membrane chromatography (CMC). An H1R-His-SMALPs/CMC model was established and its chromatographic performance (selectivity, specificity and lifespan) validated, demonstrating a significant enhancement in lifespan compared to previous CMC models. Subsequently, this model facilitated high-throughput screening of H1R ligands in the compound library and preliminary activity verification of potential H1R antagonists. Identification of a novel H1R antagonist laid the foundation for further development in this area.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Maleatos , Receptores Histamínicos H1 , Ligandos , Maleatos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Histamínicos H1/química , Receptores Histamínicos H1/metabolismo , Humanos , Histidina/química , Animales , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Células CHO , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Antagonistas de los Receptores Histamínicos H1/química , Poliestirenos/química , Cricetulus , Oligopéptidos/química
10.
Anticancer Res ; 44(7): 2973-2979, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925851

RESUMEN

BACKGROUND/AIM: Pre-clinical studies have shown that irradiation with electrons at an ultra-high dose-rate (FLASH) spares normal tissue while maintaining tumor control. However, most in vitro experiments with protons have been conducted using a non-clinical irradiation system in normoxia alone. This study evaluated the biological response of non-tumor and tumor cells at different oxygen concentrations irradiated with ultra-high dose-rate protons using a clinical system and compared it with the conventional dose rate (CONV). MATERIALS AND METHODS: Non-tumor cells (V79) and tumor cells (U-251 and A549) were irradiated with 230 MeV protons at a dose rate of >50 Gy/s or 0.1 Gy/s under normoxic or hypoxic (<2%) conditions. The surviving fraction was analyzed using a clonogenic cell survival assay. RESULTS: No significant difference in the survival of non-tumor or tumor cells irradiated with FLASH was observed under normoxia or hypoxia compared to the CONV. CONCLUSION: Proton irradiation at a dose rate above 40 Gy/s, the FLASH dose rate, did not induce a sparing effect on either non-tumor or tumor cells under the conditions examined. Further studies are required on the influence of various factors on cell survival after FLASH irradiation.


Asunto(s)
Supervivencia Celular , Terapia de Protones , Protones , Humanos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Hipoxia de la Célula/efectos de la radiación , Animales , Línea Celular Tumoral , Cricetulus , Células A549 , Oxígeno/metabolismo
11.
Methods Mol Biol ; 2810: 85-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926274

RESUMEN

Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells are the two most important mammalian hosts for the production of recombinant proteins. In this chapter, the suspension cultivation and transfection of these cells in small-scale, single-use orbitally shaken bioreactors, TubeSpin™ bioreactor 50 [orbitally shaken reactor 50 (OSR50)], and TubeSpin™ bioreactor 600 [orbitally shaken reactor 600 (OSR600)] are described. These are conical centrifuge tubes with nominal volumes of 50 mL and 600 mL, respectively, that have been redesigned with a ventilated cap for the cultivation of animal cells in suspension at working volumes up to 20 mL and 400 mL, respectively.


Asunto(s)
Reactores Biológicos , Cricetulus , Transfección , Humanos , Animales , Transfección/métodos , Células CHO , Células HEK293 , Técnicas de Cultivo de Célula/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Methods Mol Biol ; 2810: 1-10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926269

RESUMEN

We describe a method for polyethyleneimine (PEI)-mediated transient transfection of suspension-adapted Chinese hamster ovary (CHO-DG44) cells for protein expression applicable at scales from 2 mL to 2 L. The method involves transfection at a high cell density (5 × 106 cells/mL) by direct addition of plasmid DNA (pDNA) and PEI to the culture and subsequent incubation at 31 °C with agitation by orbital shaking. This method requires 0.3 mg/L of coding pDNA, 2.7 mg/L of nonspecific (filler) DNA, and 15 mg/L of PEI. The production phase is performed at 31 °C in the presence of 0.25% N,N-dimethylacetamide (DMA). If desired, the method can be modified to avoid use of DMA by increasing the amount of coding DNA. We also provide information on culture vessel options, recommended working volumes, and recommended shaking speeds for transfections at scales from 2 mL to 2 L.


Asunto(s)
Cricetulus , Plásmidos , Polietileneimina , Transfección , Animales , Células CHO , Polietileneimina/química , Transfección/métodos , Plásmidos/genética , Expresión Génica , Cricetinae , ADN/genética
13.
Anal Methods ; 16(24): 3917-3926, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38832468

RESUMEN

The titer of recombinant proteins is one of the key parameters in biopharmaceutical manufacturing processes. The fluorescence polarization (FP)-based assay, a homogeneous, high-throughput and real-time analytical method, had emerged as a powerful tool for biochemical analysis and environmental monitoring. In this study, an FP-based bioassay was utilized to quantify antibody fragment crystallizable (Fc)-containing proteins, such as recombinant monoclonal antibodies (mAbs) and mAb derivatives, in the cell culture supernatant, and the impacts of tracer molecular weight and FITC-coupling conditions on fluorescence polarization were methodically examined. Distinct from the fluorescence polarization potency calculated by classical formula, we for the first time proposed a new concept and calculation of fluorescence polarization intensity, based on which an analytical method with broader detection range and analysis window was established for quantifying Fc-containing proteins. This provided new ideas for the practical application of fluorescence polarization theory. The established method could detect 96 samples within 30 minutes, with dynamic titer range of 2.5-400 mg L-1, and a linear fitting R2 between the measured and actual concentration reaching 0.99. The method had great application prospects in determining the titer of recombinant proteins with Fc fragments, especially when applied to large-scale screening of high-yield and stable expression CHO cell lines commonly used in biopharmaceutical industry.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Fragmentos Fc de Inmunoglobulinas , Proteínas Recombinantes , Proteínas Recombinantes/química , Proteínas Recombinantes/análisis , Células CHO , Polarización de Fluorescencia/métodos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Ensayos Analíticos de Alto Rendimiento/métodos , Fragmentos Fc de Inmunoglobulinas/química , Bioensayo/métodos , Animales
14.
PLoS One ; 19(6): e0293688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843139

RESUMEN

It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: a. human pituitary FSH18/21 (hypo-glycosylated); b. human pituitary FSH24 (fully glycosylated); c. Equine FSH (eqFSH) (hypo-glycosylated); and d. Chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 x 125 bp paired-end format, 10-15 x 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent distinctly different regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.


Asunto(s)
Hormona Folículo Estimulante , Células de la Granulosa , Transcriptoma , Animales , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Ratas , Glicosilación , Transcriptoma/efectos de los fármacos , Humanos , Células Cultivadas , RNA-Seq/métodos , Células CHO , Cricetulus
15.
Sci Rep ; 14(1): 13625, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871787

RESUMEN

Currently, the increasing pollution of the environment by heavy metals is observed, caused both by natural factors and those related to human activity. They pose a significant threat to human health and life. It is therefore important to find an effective way of protecting organisms from their adverse effects. One potential product showing a protective effect is green tea. It has been shown that EGCG, which is found in large amounts in green tea, has strong antioxidant properties and can therefore protect cells from the adverse effects of heavy metals. Therefore, the aim of the study was to investigate the effect of EGCG on cells exposed to Cd. In the study, CHO-K1 cells (Chinese hamster ovary cell line) were treated for 24 h with Cd (5 and 10 µM) and EGCG (0.5 and 1 µM) together or separately. Cell viability, ATP content, total ROS activity, mitochondrial membrane potential and apoptosis potential were determined. The results showed that, in tested concentrations, EGCG enhanced the negative effect of Cd. Further analyses are needed to determine the exact mechanism of action of EGCG due to the small number of publications on the subject and the differences in the results obtained in the research.


Asunto(s)
Apoptosis , Cadmio , Catequina , Supervivencia Celular , Cricetulus , Potencial de la Membrana Mitocondrial , Estrés Oxidativo , Especies Reactivas de Oxígeno , Catequina/análogos & derivados , Catequina/farmacología , Animales , Células CHO , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Cadmio/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Cricetinae , Adenosina Trifosfato/metabolismo
16.
Appl Microbiol Biotechnol ; 108(1): 387, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896136

RESUMEN

The development of a standardized, generic method for concentrating suspensions in continuous flow is challenging. In this study, we developed and tested a device capable of concentrating suspensions with an already high cell concentration to meet diverse industrial requirements. To address typical multitasking needs, we concentrated suspensions with high solid content under a variety of conditions. Cells from Saccharomyces cerevisiae, Escherichia coli, and Chinese hamster ovary cells were effectively focused in the center of the main channel of a microfluidic device using acoustophoresis. The main channel bifurcates into three outlets, allowing cells to exit through the central outlet, while the liquid evenly exits through all outlets. Consequently, the treatment separates cells from two-thirds of the surrounding liquid. We investigated the complex interactions between parameters. Increasing the channel depth results in a decrease in process efficiency, attributed to a decline in acoustic energy density. The study also revealed that different cell strains exhibit distinct acoustic contrast factors, originating from differences in dimensions, compressibility, and density values. Finally, a combination of high solid content and flow rate leads to an increase in diffusion through a phenomenon known as shear-induced diffusion. KEY POINTS: • Acoustic focusing in a microchannel was used to concentrate cell suspensions • The parameters influencing focusing at high concentrations were studied • Three different cell strains were successfully concentrated.


Asunto(s)
Acústica , Cricetulus , Escherichia coli , Saccharomyces cerevisiae , Suspensiones , Células CHO , Animales , Dispositivos Laboratorio en un Chip
17.
Appl Microbiol Biotechnol ; 108(1): 381, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896138

RESUMEN

Chinese hamster ovary (CHO) cells are popular in the pharmaceutical industry for their ability to produce high concentrations of antibodies and their resemblance to human cells in terms of protein glycosylation patterns. Current data indicate the relevance of CHO cells in the biopharmaceutical industry, with a high number of product commendations and a significant market share for monoclonal antibodies. To enhance the production capabilities of CHO cells, a deep understanding of their cellular and molecular composition is crucial. Genome sequencing and proteomic analysis have provided valuable insights into the impact of the bioprocessing conditions, productivity, and product quality. In our investigation, we conducted a comparative analysis of proteomic profiles in high and low monoclonal antibody-producing cell lines and studied the impact of tunicamycin (TM)-induced endoplasmic reticulum (ER) stress. We examined the expression levels of different proteins including unfolded protein response (UPR) target genes by using label-free quantification techniques for protein abundance. Our results show the upregulation of proteins associated with protein folding mechanisms in low producer vs. high producer cell line suggesting a form of ER stress related to specific protein production. Further, Hspa9 and Dnaja3 are notable candidates activated by the mitochondria UPR and play important roles in protein folding processes in mitochondria. We identified significant upregulation of Nedd8 and Lgmn proteins in similar levels which may contribute to UPR stress. Interestingly, the downregulation of Hspa5/Bip and Pdia4 in response to tunicamycin treatment suggests a low-level UPR activation. KEY POINTS: • Proteome profiling of recombinant CHO cells under mild TM treatment. • Identified protein clusters are associated with the unfolded protein response (UPR). • The compared cell lines revealed noticeable disparities in protein expression levels.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Estrés del Retículo Endoplásmico , Proteómica , Tunicamicina , Respuesta de Proteína Desplegada , Células CHO , Tunicamicina/farmacología , Animales , Anticuerpos Monoclonales/biosíntesis , Proteómica/métodos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteoma , Cricetinae
18.
STAR Protoc ; 5(2): 103106, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38824641

RESUMEN

Microfluidic single-cell cultivation (MSCC) is a powerful tool for investigating the cellular behavior of various cell types at the single-cell level. Here, we present a protocol specifically developed for the reliable and reproducible MSCC of industrially relevant Chinese hamster ovary (CHO) suspension cell lines. We summarize critical experimental steps from the initial seed train up to the final MSCC experiment, with a special focus on pre-culture management and medium preparation, device inoculation, and the establishment of a constant medium perfusion.


Asunto(s)
Técnicas de Cultivo de Célula , Cricetulus , Análisis de la Célula Individual , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Análisis de la Célula Individual/métodos , Cricetinae , Microfluídica/métodos , Microfluídica/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación
19.
Water Res ; 259: 121866, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852393

RESUMEN

Although unregulated aliphatic disinfection byproducts (DBPs) had a much higher concentration and cytotoxicity than known aromatic DBPs, a recent study indicated that seven classes of regulated and unregulated priority DBPs (one and two-carbon-atom DBPs) just accounted for 16.2% of disinfected water cytotoxicity in the U.S., meaning some of the highly toxic aliphatic DBPs may be overlooked. Haloketones (HKs) are an essential class of priority DBPs with a 1-100 µg/L concentration in drinking water but lack cytotoxicity data. This study investigated the cytotoxicity of seven HKs using Chinese hamster ovary (CHO) cells. The order for cytotoxicity of HKs from most to least toxic was: 1,3-dichloroacetone (LC50: 1.0 ± 0.20 µM) ≈ 1,3-dibromoacetone (1.5 ± 0.19 µM) ≈ bromoacetone (1.9 ± 0.49 µM) > chloroacetone (4.3 ± 0.22 µM) > 1,1,3-trichloropropanone (6.6 ± 0.46 µM) > 1,1,1-trichloroacetone (222 ± 7.7 µM) > hexachloroacetone (3269 ± 344 µM). The cytotoxicity of HKs was higher than most regulated and priority aliphatic DBPs in mono-halogenated, di-halogenated, and tri-halogenated categories. A prediction model of HK cytotoxicity was developed based on the quantitative structure-activity relationship (QSAR), optimizing structures and computing descriptors with Gaussian 09 W. The average concentrations of HKs in representative drinking water samples from South Carolina (U.S.) and Suzhou (China) were 12.4 and 0.9 µg/L, respectively, accounting for 18.8% and 1.7% of their specific total DBPs measured (i.e. not TOX). For South Carolina drinking water, their contributions to total calculated additive cytotoxicity of aliphatic DBPs and overall drinking water cytotoxicity were 86.7% and 14.0%, respectively, demonstrating that HKs are an essential class of overlooked DBPs with a high contribution to drinking water cytotoxicity. Our study can help to explain the conflict that why regulated and priority DBPs (except HKs) just accounted for 16% of chlorinated drinking water cytotoxicity even enough they had much higher concentration and cytotoxicity than known aromatic DBPs.


Asunto(s)
Cricetulus , Agua Potable , Contaminantes Químicos del Agua , Animales , Células CHO , Contaminantes Químicos del Agua/toxicidad , Desinfección , Purificación del Agua , Cricetinae , Cetonas/toxicidad , Desinfectantes/toxicidad
20.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823534

RESUMEN

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Retardadores de Llama , Simulación del Acoplamiento Molecular , Animales , Humanos , Retardadores de Llama/toxicidad , Cricetinae , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Mutágenos/toxicidad , Compuestos Organofosforados/toxicidad , Cricetulus , Organofosfatos/toxicidad , Células Hep G2 , Pruebas de Micronúcleos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA