Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Intervalo de año de publicación
1.
Open Vet J ; 14(7): 1668-1676, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39175975

RESUMEN

Background: Doxorubicin (DOX) is a chemotherapeutic drug applied clinically for the remedy of cancer, but its possibly life-threatening cardiotoxicity effects remain a concern. Aim: After that, this study evaluates the cardioprotective impacts of Lagenaria siceraria (LSS) oil on DOX induced cardiomyopathy in rats. Methods: Wistar male rats (n = 28, weighting 190-210 g) were arbitrarily allocated into four equal groups. Group 1 control group (CTR) received normal saline orally (1 ml/kg); group 2 (DOX) received DOX (10 mg/kg); group 3 (DOLS) received DOX + 3 g of Lagenaria siceraria seeds oil/kg; group 4 (LSSO) received LSSO (3 g/kg) daily for 18 days. The serum samples were collected to determine the creatine kinase-MB (CK-MB) isoenzyme, lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and Troponin I activity. At the same time, the catalase, malondialdehyde (MDA), and reduced glutathione (GSH) were assessed in heart tissues. Additionally, histopathological investigations for the heart tissue were performed. Results: Results revealed no significant change in CK-MB levels between the DOLS group compared to the CTR group (p > 0.05). DOX group confirmed a substantial increase in AST, LDH, and Troponin1 serum levels compared to DOLS and LLSO groups (p < 0.05). The study demonstrated the antioxidant activity of LSS oil against DOX-induced toxicity. The DOX group significantly reduced GSH and catalase levels, with an increase in MDA levels compared to DOLS and LLSO groups. Histopathological analysis showed protective properties of LSS oil against myocardial damage caused by DOX. Conclusion: This study highlights the favorable impacts of LSS oil in mitigating DOX-triggered cardiotoxicity in a rat model.


Asunto(s)
Cardiomiopatías , Doxorrubicina , Ratas Wistar , Animales , Doxorrubicina/efectos adversos , Masculino , Cardiomiopatías/inducido químicamente , Cardiomiopatías/veterinaria , Cardiomiopatías/prevención & control , Ratas , Cucurbitaceae/química , Antibióticos Antineoplásicos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Cardiotoxicidad/veterinaria , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Aceites de Plantas/uso terapéutico
2.
Crit Rev Biotechnol ; 44(6): 1080-1102, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103281

RESUMEN

The rapid increase in the worldwide prevalence of obesity and certain non-communicable diseases (NCDs), such as: cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes, has been mainly attributed to an excess of sugar consumption. Although the potential benefits of the synergetic use of sweeteners have been known for many years, recent development based on synthesis strategies to produce sucrose-like taste profiles is emerging where biocatalyst approaches may be preferred to produce and supply specific sweetener compounds. From a nutritional standpoint, high-intensity sweeteners have fewer calories than sugars while providing a major sweet potency, placing them in the spotlight as valuable alternatives to sugar. Due to the modern world awareness and incidence of metabolic diseases, both food research and growing markets have focused on two generally regarded as safe (GRAS) groups of compounds: the sweet diterpenoid glycosides present on the leaves of Stevia rebaudiana and, more recently, on the cucurbitane triterpene glycosides present on the fruits of Siraitia grosvenorii. In spite of their flavor advantages, biological benefits, including: antidiabetic, anticancer, and cardiovascular properties, have been elucidated. The present bibliographical review dips into the state-of-the-art of sweeteners and their role in human health as sugar replacements, as well as the biotransformation methods for steviol gylcosides and mogrosides apropos of enzymatic technology to update and locate the discoveries to date in the scientific literature to help boost the continuity of research efforts of the ongoing sweeteners.


Asunto(s)
Stevia , Edulcorantes , Humanos , Cucurbitaceae/metabolismo
3.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125797

RESUMEN

Nitrogen is the primary nutrient for plants. Low nitrogen generally affects plant growth and fruit quality. Melon, as an economic crop, is highly dependent on nitrogen. However, the response mechanism of its self-rooted and grafted seedlings to low-nitrogen stress has not been reported previously. Therefore, in this study, we analyzed the transcriptional differences between self-rooted and grafted seedlings under low-nitrogen stress using fluorescence characterization and RNA-Seq analysis. It was shown that low-nitrogen stress significantly inhibited the fluorescence characteristics of melon self-rooted seedlings. Analysis of differentially expressed genes showed that the synthesis of genes related to hormone signaling, such as auxin and brassinolide, was delayed under low-nitrogen stress. Oxidative stress response, involved in carbon and nitrogen metabolism, and secondary metabolite-related differentially expressed genes (DEGs) were significantly down-regulated. It can be seen that low-nitrogen stress causes changes in many hormonal signals in plants, and grafting can alleviate the damage caused by low-nitrogen stress on plants, ameliorate the adverse effects of nitrogen stress on plants, and help them better cope with environmental stresses.


Asunto(s)
Cucurbitaceae , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Estrés Fisiológico , Transcriptoma , Nitrógeno/metabolismo , Estrés Fisiológico/genética , Cucurbitaceae/genética , Cucurbitaceae/crecimiento & desarrollo , Cucurbitaceae/metabolismo , Perfilación de la Expresión Génica/métodos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125858

RESUMEN

The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.


Asunto(s)
Cucurbitaceae , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/crecimiento & desarrollo , Cucurbitaceae/metabolismo , Cucurbitaceae/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Estrés Fisiológico/genética , Especies Reactivas de Oxígeno/metabolismo , Frío
6.
J Agric Food Chem ; 72(32): 18214-18224, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101349

RESUMEN

Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.


Asunto(s)
Glicosiltransferasas , Edulcorantes , Glicosiltransferasas/genética , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Cucurbitaceae/química , Cucurbitaceae/enzimología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biocatálisis , Dominio Catalítico , Ingeniería de Proteínas , Especificidad por Sustrato , Cinética
7.
PLoS One ; 19(7): e0300516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008493

RESUMEN

To improve the accuracy of the Hami melon discrete element model, the parameters of the Hami melon seed discrete element model were calibrated by combining practical experiments and simulation tests. The basic physical parameters of Hami melon seeds were obtained through physical experiments, including triaxial size, 100-grain mass, moisture content, density, Poisson's ratio, Young's modulus, shear modulus, angle of repose, suspension speed and various contact parameters. Taking the repose angle of seed simulation as an index, the parameters of each simulation model were significantly screened by the Plackett-Burman test. The results showed that the recovery coefficient, static friction coefficient and rolling friction coefficient of Hami melon seeds had significant effects on repose angle. Based on the steepest climbing test and quadratic regression orthogonal rotation combination test, it was determined that the significant order of the influence of various contact parameters on the angle of repose was static friction coefficient, collision recovery coefficient, and rolling friction coefficient. The optimal parameter combination was obtained through the mathematical regression model between the angle of repose and various contact parameters, namely, the collision recovery coefficient of Hami melon seeds was 0.518, the static friction coefficient of Hami melon seeds was 0.585 and the rolling friction coefficient of Hami melon seeds was 0.337. Under this condition, three static seed-dropping experiments and dynamic rolling accumulation experiments were carried out. The average simulated angle of repose was 31.93°, and the relative error with the actual value was only 1.71%. The average simulated rolling accumulation angle was 51.98°, and the relative error with the actual value was only 1.92%.


Asunto(s)
Cucurbitaceae , Semillas , Cucurbitaceae/fisiología , Semillas/fisiología , Calibración , Simulación por Computador , Módulo de Elasticidad , Modelos Teóricos , Fricción
8.
Molecules ; 29(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39064864

RESUMEN

Residual melon by-products were explored for the first time as a bioresource of microcrystalline cellulose (MCC) obtention. Two alkaline extraction methods were employed, the traditional (4.5% NaOH, 2 h, 80 °C) and a thermo-alkaline in the autoclave (2% NaOH, 1 h, 100 °C), obtaining a yield of MCC ranging from 4.76 to 9.15% and 2.32 to 3.29%, respectively. The final MCCs were characterized for their chemical groups by Fourier-transform infrared spectroscopy (FTIR), crystallinity with X-ray diffraction, and morphology analyzed by scanning electron microscope (SEM). FTIR spectra showed that the traditional protocol allows for a more effective hemicellulose and lignin removal from the melon residues than the thermo-alkaline process. The degree of crystallinity of MCC ranged from 51.51 to 61.94% and 54.80 to 55.07% for the thermo-alkaline and traditional processes, respectively. The peaks detected in X-ray diffraction patterns indicated the presence of Type I cellulose. SEM analysis revealed microcrystals with rough surfaces and great porosity, which could remark their high-water absorption capacity and drug-carrier capacities. Thus, these findings could respond to the need to valorize industrial melon by-products as raw materials for MCC obtention with potential applications as biodegradable materials.


Asunto(s)
Celulosa , Cucurbitaceae , Difracción de Rayos X , Celulosa/química , Cucurbitaceae/química , Espectroscopía Infrarroja por Transformada de Fourier
9.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063071

RESUMEN

Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.


Asunto(s)
Cucurbitaceae , Melatonina , Nanopartículas , Poliaminas , Plantones , Selenio , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo , Selenio/farmacología , Melatonina/farmacología , Cucurbitaceae/crecimiento & desarrollo , Cucurbitaceae/efectos de los fármacos , Cucurbitaceae/metabolismo , Nanopartículas/química , Poliaminas/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3212-3219, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041082

RESUMEN

In this experiment, the micro-precipitation method was used to prepare self-assembled nanoparticles of Herpetospermum caudigerum Wall.(MP-SAN). The process was optimized using average particle size and polydispersity index(PDI)as evaluation indexes. The mean particle size, PDI,zeta potential, and microstructure of MP-SAN were characterized. The intestinal absorption mechanism of dehydrodiconiferyl alcohol(DA)and herpetrione(Her)in MP-SAN was investigated through single-pass intestinal perfusion in rats. The optimized process parameters for producing MP-SAN were a stirring speed of 800 r·min~(-1),stirring time of 5 min, and rotary evaporation temperature of 40℃. The resulting MP-SAN exhibited a spherical-like structure and uniform morphology, with a mean particle size of(267.63±13.27) nm, a PDI of 0.062 0±0.043 9,and a zeta potential of(-46.18±3.66) mV. The absorption rate constant(K_a)and apparent permeability coefficient(P_(app))of DA in the ileal segment were significantly higher than those in the jejunal segment(P<0.05). However, there was no significant difference in the absorption of Her between the ileal and jejunal segments. Intestinal absorption parameters of DA and Her tended to increase with increasing drug concentration. Specifically, the K_a and P_(app) of DA in MP-SAN in the high-concentration group were significantly higher than those in the low-concentration group(P<0.01). The addition of verapamil, a P-glycoprotein inhibitor, did not significantly affect the intestinal absorption of DA and Her. However, the absorption of both DA and Her in MP-SAN was significantly increased by the addition of indomethacin(P<0.05),suggesting that DA and Her may be substrates for multidrug resistance-associated protein 2.


Asunto(s)
Absorción Intestinal , Nanopartículas , Tamaño de la Partícula , Animales , Nanopartículas/química , Ratas , Masculino , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Cucurbitaceae/química
11.
J Agric Food Chem ; 72(32): 18078-18088, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078882

RESUMEN

Mogrosides, which have various pharmacological activities, are mainly extracted from Siraitia grosvenorii (Luo Han Guo) and are widely used as natural zero-calorie sweeteners. Unfortunately, the difficult cultivation and long maturation time of Luo Han Guo have contributed to a shortage of mogrosides. To overcome this obstacle, we developed a highly efficient biosynthetic method using engineered Escherichia coli to synthesize sweet mogrosides from bitter mogrosides. Three UDP-glycosyltransferase (UGT) genes with primary/branched glycosylation catalytic activity at the C3/C24 sites of mogrosides were screened and tested. Mutant M3, which could catalyze the glycosylation of nine types of mogrosides, was obtained through enhanced catalytic activity. This improvement in ß-(1,6)-glycosidic bond formation was achieved through single nucleotide polymorphisms and direct evolution, guided by 3D structural analysis. A new multienzyme system combining three UGTs and UDP-glucose (UDPG) regeneration was developed to avoid the use of expensive UDPG. Finally, the content of sweet mogrosides in the immature Luo Han Guo extract increased significantly from 57% to 95%. This study not only established a new multienzyme system for the highly efficient production of sweet mogrosides from immature Luo Han Guo but also provided a guideline for the high-value utilization of rich bitter mogrosides from agricultural waste and residues.


Asunto(s)
Cucurbitaceae , Escherichia coli , Glicosiltransferasas , Edulcorantes , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosilación , Edulcorantes/metabolismo , Edulcorantes/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Cucurbitaceae/metabolismo , Cucurbitaceae/genética , Ingeniería Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Triterpenos/metabolismo , Triterpenos/química
12.
Nat Commun ; 15(1): 6423, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080270

RESUMEN

Mogrosides constitute a series of natural sweeteners extracted from Siraitia grosvenorii fruits. These mogrosides are glucosylated to different degrees, with mogroside V (M5) and siamenoside I (SIA) being two mogrosides with high intensities of sweetness. SgUGT94-289-3 constitutes a uridine diphosphate (UDP)-dependent glycosyltransferase (UGT) responsible for the biosynthesis of M5 and SIA, by continuously catalyzing glucosylation on mogroside IIe (M2E) and on the subsequent intermediate mogroside products. However, the mechanism of its promiscuous substrate recognition and multiple catalytic modes remains unclear. Here, we report multiple complex structures and the enzymatic characterization of the glycosyltransferase SgUGT94-289-3. We show that SgUGT94-289-3 adopts a dual-pocket organization in its active site, which allows the two structurally distinct reactive ends of mogrosides to be presented from different pockets to the active site for glucosylation reaction, thus enabling both substrate promiscuity and catalytic regioselectivity. We further identified a structural motif that is essential to catalytic activity and regioselectivity, and generated SgUGT94-289-3 mutants with greatly improved M5/SIA production from M2E in an in vitro one-pot setup.


Asunto(s)
Dominio Catalítico , Glicosiltransferasas , Especificidad por Sustrato , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Cucurbitaceae/enzimología , Cucurbitaceae/metabolismo , Glicosilación , Triterpenos/metabolismo , Triterpenos/química , Catálisis , Edulcorantes/metabolismo , Edulcorantes/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química
13.
Sci Rep ; 14(1): 17395, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075084

RESUMEN

The constant changes experienced in agricultural activities due to climate change pose a great challenge to melon production. Hence, this research examined the determinants of melon farmers' adaptation strategies to cope with climate change hazards in southern-southern Nigeria. The research ultimately depended on primary data collected by using a set of questionnaires and interviews. The data were obtained from 260 samples retrieved from melon farmers by using multistage sampling techniques. The data were analyzed using the multivariate probit (MVP) model and partial eta squared test. The results of the MVP model showed that age (- 0.009), marital status (0.200), access to information on climate change (0.567) and crop insurance (0.214) were significant at the 0.01 level, while household size (- 0.030) was significant at the 0.05 level and determined the adoption of crop diversification. Educational level (0.012), extension contact (0.138) and access to credit (0.122) were significant at the 0.05 level, while access to information on climate change (0.415) was significant at the 0.01 level and determined the adoption of change in planting dates. Age (- 0.010) and access to information on climate change (0.381) were significant at the 0.01 level, while sex (- 0.139), marital status (0.158) and off-farm income (- 2.3E-7) were significant at the 0.05 level and determined the adoption of mixed farming. Farming experience (0.005) is significant at the 0.05 level, while access to information on climate change (0.529) and crop insurance (0.272) are significant at the 0.01 level and determine the adoption of drought-tolerant crop species. Access to information on climate change (0.536) is significant at the 0.01 level, indicating the adoption of improved crop species. Age (- 0.010), farm size (- 0.085) and crop insurance (0.206) were significant at the 0.05 level, while access to information on climate change (0.353) was significant at the 0.01 level and determined the adoption of off-farm job opportunities. The study recommends the availability and accessibility of credit, climate-smart agricultural practices, and the establishment of public‒private partnerships, among others.


Asunto(s)
Cambio Climático , Cucurbitaceae , Agricultores , Nigeria , Humanos , Cucurbitaceae/fisiología , Masculino , Encuestas y Cuestionarios , Femenino , Adulto , Persona de Mediana Edad , Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Adaptación Fisiológica
14.
Sci Rep ; 14(1): 15833, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982112

RESUMEN

Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.


Asunto(s)
Cucurbitaceae , Sequías , Enfermedades de las Plantas , Enfermedades de las Plantas/virología , Cucurbitaceae/virología , Cucumovirus/fisiología , Cucumovirus/patogenicidad , Hojas de la Planta/virología , Virus de Plantas/fisiología , Agua/metabolismo
15.
Fitoterapia ; 177: 106113, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971329

RESUMEN

Herpetospermum pedunculosum seeds also known as Herpetospermum caudigerum Wall. is the mature seed of the Herpetospermum pedunculosum(Ser.) C. B. Clarke,Cucurbitaceae. Modern pharmacological studies have shown that H. pedunculosum has hepatoprotective, anti-inflammatory, anti-gout and antibacterial pharmacological activities. The biologically active chemical components include lignin compounds such as Herpetin, Herpetetrone, Herpetoriol and so on. The natural product displays considerable skeletal diversity and structural complexity, offering significant opportunities for novel drug discovery. Based on the multi-omics research strategy and the 'gene-protein-metabolite' research framework, the biosynthetic pathway of terpenoids and lignans in H. pedunculosum has has been elucidated at multiple levels. These approaches provide comprehensive genetic information for cloning and identification of pertinent enzyme genes. Furthermore, the application of multi-omics integrative approaches provides a scientific means to elucidate entire secondary metabolic pathways. We investigated the biosynthetic pathways of lignin and terpene components in H. pedunculosum and conducted bioinformatics analysis of the crucial enzyme genes involved in the biosynthetic process using genomic and transcriptomic data. We identified candidate genes for six key enzymes in the biosynthetic pathway. This review reports on the current literature on pharmacological investigations of H. pedunculosum, proposing its potential as an antidiabetic agent. Moreover, we conclude, for the first time, the identification of key enzyme genes potentially involved in the biosynthesis of active compounds in H. pedunculosum. This review provides a scientific foundation for the discovery of novel therapeutic agents from natural sources.


Asunto(s)
Cucurbitaceae , Semillas , Terpenos , Semillas/química , Terpenos/farmacología , Cucurbitaceae/química , Lignina/química , Vías Biosintéticas , Lignanos/farmacología , Lignanos/biosíntesis , Lignanos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Genómica , Multiómica
16.
PeerJ ; 12: e17654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071129

RESUMEN

The objective of this study was to explore the fungistatic mechanism of fig leaf extract against Fusarium and to provide a theoretical basis for the development of new plant-derived fungicides. Methods: The fungistaticity of fig leaf extract were analyzed by the ring of inhibition method. Fusarium equiseti was selected as the target for analyzing its fungistatic mechanism in terms of mycelial morphology, ultrastructure, cell membrane permeability, membrane plasma peroxidation, reactive oxygen species (ROS) content and changes in the activity of protective enzymes. The effect of this extract was verified in melon, and its components were determined by metabolite analysis using ultraperformance liquid chromatography‒mass spectrometry (UPLC‒MS). Results: Fig leaf extract had an obvious inhibitory effect on Fusarium, and the difference was significant (P < 0.05) or highly significant (P < 0.01). Scanning and transmission electron microscopy revealed that F. equiseti hyphae exhibited obvious folding, twisting and puckering phenomena, resulting in an increase in the cytoplasmic leakage of spores, interstitial plasma, and the concentration of the nucleus, which seriously damaged the integrity of the fungal cell membrane. This phenomenon was confirmed by propidium iodide (PI) and fluorescein diacetate (FAD) staining, cell membrane permeability and malondialdehyde (MDA) content. Fig leaf extract also induced the mycelium to produce excessive H2O2,which led to lipid peroxidation of the cell membrane, promoted the accumulation of MDA, accelerated protein hydrolysis, induced an increase in antioxidant enzyme activity, and disrupted the balance of ROS metabolism; these findings showed that fungal growth was inhibited, which was verified in melons. A total of 1,540 secondary metabolites were detected by broad-targeted metabolomics, among which the fungistatic active substances flavonoids (15.45%), phenolic acids (15%), and alkaloids (10.71%) accounted for a high percentage and the highest relative content of these substances 1,3,7,8-tetrahydroxy-2- prenylxanthone, 8-hydroxyquinoline and Azelaic acid were analysed for their antimicrobial, anti-inflammatory, antioxidant, preventive effects against plant diseases and acquisition of resistance by plants. This confirms the reason for the fungicidal properties of fig leaf extracts. Conclusion: Fig leaf extract has the potential to be developed into a plant-derived fungicide as a new means of postharvest pathogen prevention and control in melon.


Asunto(s)
Cucurbitaceae , Ficus , Fusarium , Extractos Vegetales , Hojas de la Planta , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/química , Cucurbitaceae/química , Cucurbitaceae/microbiología , Ficus/química , Especies Reactivas de Oxígeno/metabolismo , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Permeabilidad de la Membrana Celular/efectos de los fármacos
17.
Physiol Plant ; 176(4): e14456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072778

RESUMEN

Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.


Asunto(s)
Arabidopsis , Botrytis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Botrytis/fisiología , Botrytis/patogenicidad , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/microbiología , Cucurbitaceae/genética , Filogenia , Plantas Modificadas Genéticamente
18.
Food Res Int ; 190: 114578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945600

RESUMEN

The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly ß-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.


Asunto(s)
Antioxidantes , Harina , Frutas , Valor Nutritivo , Antioxidantes/análisis , Frutas/química , Brasil , Harina/análisis , Ácidos Grasos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/análisis , Fibras de la Dieta/análisis , Cucurbitaceae/química , Fitoquímicos/análisis
19.
Food Chem ; 455: 139769, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843716

RESUMEN

Bitter orange (Citrus aurantium) is an important source of essential oils with high antimicrobial activities, however the composition and antifungal potential of the decoction peels is little explored. This study assessed the peel decoction's chemical profile at the secondary metabolism level and its antifungal activity against the melon phytopathogen Fusarium jinanense. The decoction's antifungal potential was investigated using a bioassay-guided fractionation approach based on Solid-Phase Extraction (SPE) and LC-HRMS/MS analysis. Coumarins and flavones were the most abundant classes of compounds in the high-value fractions responsible for up to 61% of the mycelial inhibition of F. jinanense. Overall, this study has presented for the first time the chemical composition, the antifungal potential of the decoction of C. aurantium peels and the compounds associated with these results. This strategy can guide the exploration of under-explored food sources and add value to compounds or fractions enriched with bioactive compounds.


Asunto(s)
Citrus , Fusarium , Enfermedades de las Plantas , Extractos Vegetales , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Citrus/química , Citrus/microbiología , Cucurbitaceae/química , Cucurbitaceae/microbiología , Antifúngicos/farmacología , Antifúngicos/química , Espectrometría de Masas en Tándem , Extracción en Fase Sólida , Pruebas de Sensibilidad Microbiana
20.
Sci Rep ; 14(1): 13094, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849533

RESUMEN

Many agricultural landscapes offer few resources for maintaining natural enemy populations and floral plantings have frequently been adopted to enhance biological pest control in crops. However, restored margins may harbour both pests and natural enemies. The aim was to compare the abundance of pests and natural enemies in three types of margins (unmanaged, sown herbaceous floral strips and shrubby hedgerows) as well as in adjacent melon fields. Besides, yield was compared among melon fields as way of testing the effect of the type of margin on biocontrol. The research was carried out during 2 years in twelve melon fields from four different locations in southern Spain. Arthropods were sampled periodically in margins and melon fields by visual inspections and Berlese extraction. Hedgerow and floral strips hosted higher numbers of both pests and predators than unmanaged margins. Besides, hedgerows had a similar or higher number of natural enemies than floral strips but lower number of pests. In just a few occasions, the type of margin had a significant effect on the abundance of pests and natural enemies in melon fields, but rarely there was consistency between the two growing seasons. No differences were found in yield. We hypothesised that the lack of association in the abundances of pests and natural enemies between margins and melon fields could be attributed to the overriding effects of the landscape and/or the internal population dynamics of arthropods in melon fields. Overall, shrubby hedgerows are more recommended than herbaceous floral strips.


Asunto(s)
Cucurbitaceae , Control Biológico de Vectores , Animales , Cucurbitaceae/parasitología , Control Biológico de Vectores/métodos , España , Conducta Predatoria/fisiología , Productos Agrícolas/parasitología , Artrópodos/fisiología , Agricultura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA