RESUMEN
Colorectal cancer (CRC) is a prevalent malignant tumor of the gastrointestinal system, with the third and second highest incidence and mortality rates globally in 2020, respectively. Immunotherapy has developed rapidly in recent years. Natural killer (NK) cells have received increasing attention in the field of tumor immunotherapy due to their recognition and killing tumor cells without the limitations of major histocompatibility complexes. However, constraints within the tumor microenvironment that impede the infiltration and proliferation of NK cells result in poor efficacy of NK cell therapy for solid tumors. Oncolytic viral therapy is an immunogenic treatment with the potential to enhance anti-tumour immune responses and promote immune cell infiltration. In this study, we synergistically combine NK cells with an oncolytic adenovirus carrying Decorin (rAd.DCN) for the treatment of colorectal cancer (CRC) in a xenograft mouse model. By using Flow cytometry, real-time quantitative PCR and Calcein-AM release assay, we found that rAd.DCN could effectively promote proliferation, activation and degranulation of NK cells, up-regulate expression and secretion of NK cell killing activity-related factors, and enhance their killing activity. The efficacy is better than that of the blank control oncolytic virus rAd.Null. Combined treatment significantly inhibited tumor growth, increased the number of NK cells in peripheral blood, promoted the killing function of NK cells, and increased the expression levels of perforin and IFN-γ. At the same time, more NK cells were recruited to infiltrate tumor tissue. Our study established the feasibility of combination NK cells and oncolytic adenovirus application, thus expanding the scope of potentially curative treatments for NK cells in CRC.
Asunto(s)
Adenoviridae , Neoplasias Colorrectales , Decorina , Células Asesinas Naturales , Viroterapia Oncolítica , Virus Oncolíticos , Células Asesinas Naturales/inmunología , Animales , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Decorina/genética , Decorina/metabolismo , Adenoviridae/genética , Humanos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Microambiente Tumoral/inmunología , Activación de Linfocitos , Proliferación Celular , FemeninoRESUMEN
Colorectal cancer (CRC) is the second common cause of cancer mortality worldwide, and it still lacks effective approaches for relapsed and metastatic CRC. Recently, oncolytic virus has been emerged as a promising immune therapeutic strategy. In this study, we develop a novel oncolytic adenovirus, rAd.mDCN.mCD40L, which drive oncolytic activity by telomerase reverse transcriptase promoter (TERTp). rAd.mDCN.mCD40L expressed both mouse genes of decorin (mDCN) and CD40 ligand (mCD40L), and produced effective cytotoxicity in both human and mouse CRC cells. Moreover, oncolytic adenovirus mediated mDCN over-expression inhibited Met expression in vitro. In CT26 subcutaneous tumor model, intratumorally delivery of oncolytic adenoviruses could inhibit tumor growth and liver metastasis, while mDCN and/or mCD40L armed oncolytic adenoviruses produced much more impressive responses. No obvious toxicity was detected in lung, liver and spleen. Moreover, mDCN and/or mCD40L armed oncolytic adenoviruses altered the immune state to activate anti-tumor responses, including increasing CD8+ T effector cells and CD4+ memory T cells, reducing MDSCs and Tregs in peripheral blood. Furthermore, mDCN and/or mCD40L armed oncolytic adenoviruses mediated mDCN and/or mCD40L expression in tumors, and up-regulated Th1 cytokines and reduced Th2 cytokines in tumors, which will be benefit for remodeling tumor microenvironment. Importantly, rAd.mDCN.mCD40L and rAd.mCD40L prevented tumor liver metastasis much more effectively than rAd.Null and rAd.mDCN. Therefore, rAd.mDCN.mCD40L and rAd.mCD40L are promising approaches for CRC therapy.
Asunto(s)
Adenoviridae , Ligando de CD40 , Neoplasias Colorrectales , Decorina , Neoplasias Hepáticas , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Decorina/genética , Decorina/metabolismo , Adenoviridae/genética , Humanos , Ratones , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ligando de CD40/genética , Ligando de CD40/metabolismo , Ligando de CD40/inmunología , Viroterapia Oncolítica/métodos , Línea Celular Tumoral , Virus Oncolíticos/genética , Ratones Endogámicos BALB C , Modelos Animales de EnfermedadRESUMEN
Desbuquois dysplasia type 1 (DBQD1) is a recessive chondrodysplasia caused by mutations in the CANT1 gene, encoding for the Golgi Calcium-Activated Nucleotidase 1 (CANT1). The enzyme hydrolyzes UDP, the by-product of glycosyltransferase reactions, but it might play other roles in different cell types. Using a Cant1 knock-out mouse, we demonstrated that CANT1 is crucial for glycosaminoglycan (GAG) synthesis; however, its impact on the biochemical properties of cartilage proteoglycans remains unknown. Thus, in this work, we characterized decorin and aggrecan from primary chondrocyte cultures and cartilage biopsies of mutant mice at post-natal day 4 by Western blots and further investigated their distribution in the cartilage extracellular matrix (ECM) by immunohistochemistry. We demonstrated that the GAG synthesis defect caused by CANT1 impairment led to the synthesis and secretion of proteoglycans with shorter GAG chains compared with wild-type animals. However, this alteration did not result in the synthesis and secretion of decorin and aggrecan in the unglycanated form. Interestingly, the defect was not cartilage-specific since also skin decorin showed a reduced hydrodynamic size. Finally, immunohistochemical studies in epiphyseal sections of mutant mice demonstrated that the proteoglycan structural defect moderately affected decorin distribution in the ECM.
Asunto(s)
Agrecanos , Decorina , Modelos Animales de Enfermedad , Animales , Decorina/metabolismo , Decorina/genética , Agrecanos/metabolismo , Agrecanos/genética , Ratones , Ratones Noqueados , Cartílago/metabolismo , Cartílago/patología , Condrocitos/metabolismo , Nucleotidasas/metabolismo , Nucleotidasas/genética , Proteoglicanos/metabolismo , Proteoglicanos/genética , Polidactilia/metabolismo , Polidactilia/genética , Polidactilia/patología , Glicosaminoglicanos/metabolismo , Enanismo/metabolismo , Enanismo/genética , Enanismo/patología , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Matriz Extracelular/metabolismo , Inestabilidad de la Articulación/metabolismo , Inestabilidad de la Articulación/patología , Inestabilidad de la Articulación/genética , Células Cultivadas , Osificación HeterotópicaRESUMEN
BACKGROUND: Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes. RESULTS: DCN was under-expressed in 22 cirrhotic and HCC liver tissues compared to that in 11 healthy tissues of liver transplantation donors. Conversely, miR-181a was over-expressed in HCC liver tissues compared to that in healthy liver tissues. In silico analysis predicted that DCN 3'UTR harbors two high-score oncomiR-181a binding regions. This was validated by pmiRGLO luciferase reporter assay. Ectopic miR-181a expression into HuH-7 cells repressed the transcript and protein levels of DCN as assessed fluorometrically and by western blotting. DCN siRNAs showed similar results to miR-181a, where they both enhanced the cellular viability, proliferation, and clonogenicity. They also increased Myc and E2F and decreased p53 and Rb signaling as assessed using reporter vectors harboring p53, Rb, Myc, and E2F response elements. Our findings demonstrated that miR-181a directly downregulated the expression of its direct downstream target DCN, which in turn affected downstream targets related to cellular proliferation and apoptosis. CONCLUSION: To our knowledge, this is the first study to unveil the direct targeting of DCN by oncomiR-181a. We also highlighted that miR-181a affects targets related to cellular proliferation in HCC which may be partly mediated through inhibition of DCN transcription. Thus, miR-181a could be a promising biomarker for the early detection and monitoring of liver cancer progression. This would pave the way for the future targeting of the oncomiR-181a as a therapeutic approach in liver cancer, where miR-181a-based therapy approach could be potentially combined with chemotherapy and immunotherapy for the management of liver cancer.
Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Decorina , Neoplasias Hepáticas , MicroARNs , Decorina/genética , Decorina/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Carcinogénesis/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Persona de Mediana Edad , Femenino , Regulación hacia AbajoRESUMEN
BACKGROUND AND AIMS: Myokines are the muscle-derived hormones orchestrating muscle and systemic health. Their role in the progression of alcohol-associated liver disease (ALD) remains elusive. METHODS: Three-hundred-one patients across the spectrum of ALD including fatty liver (FL, N = 13), compensated cirrhosis (CC, N = 17), non-acute decompensation (NAD, N = 95), acute decompensation (AD, N = 51) and acute-on-chronic liver failure (ACLF, N = 125) were recruited between 2021 and 2023. Plasma myostatin, decorin levels, nutritional status, handgrip strength (HGS), systemic inflammation, infection, ammonia, disease course and 30-day mortality were recorded. RESULTS: Patients aged 48 years (IQR: 38-52) and 97.7% of males were enrolled. Myostatin was elevated while decorin was reduced in cirrhosis compared to without cirrhosis, and further in DC compared to CC (p < 0.001). A step-wise increase in myostatin and reduction in decorin was observed transitioning from NAD to AD to ACLF (p < 0.001). Myostatin was further increased and decorin was reduced along with the grades and organ failures in AD and ACLF (p < 0.001, each). Baseline decorin (AUC: 0.797) and its combination with MELD (AUC: 0.814) predicted disease resolution in AD and ACLF. Although, both myostatin (aOR: 18.96) and decorin (aOR: 0.02) could predict mortality, decorin was independent (aOR: 0.04) and additive to MELD (AUC of MELD+logDecorin + logTLC + HE-grade:0.815); p < 0.05 each. Myostatin increased and decorin reduced with inflammation, hyperammonaemia, malnutrition and HGS in AD and ACLF (p < 0.05, each). CONCLUSION: Myokines are linked with malnutrition, fibrosis, systemic inflammation, organ failures, disease course and mortality in ALD. Decorin enhances the risk estimation of mortality of MELD in AD and ACLF. Therapeutic modulation of myokines is a potentially disease-modifying target in ALD.
Asunto(s)
Decorina , Progresión de la Enfermedad , Hepatopatías Alcohólicas , Miostatina , Humanos , Masculino , Persona de Mediana Edad , Femenino , Decorina/sangre , Decorina/metabolismo , Hepatopatías Alcohólicas/mortalidad , Hepatopatías Alcohólicas/complicaciones , Adulto , Miostatina/sangre , Miostatina/metabolismo , Fuerza de la Mano/fisiología , Biomarcadores/sangre , Cirrosis Hepática/mortalidad , Cirrosis Hepática/metabolismo , Cirrosis Hepática/complicaciones , Cirrosis Hepática/sangre , Estado Nutricional , MioquinasRESUMEN
Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.
Asunto(s)
Diferenciación Celular , Decorina , Factores de Crecimiento de Fibroblastos , Osteonectina , Animales , Bovinos , Osteonectina/metabolismo , Osteonectina/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Decorina/metabolismo , Células Cultivadas , Masculino , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Envejecimiento/metabolismo , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologíaRESUMEN
BACKGROUND: Pulmonary fibrosis is a pathological hallmark of lung injury. It is an aggressive disease that replaces normal lung parenchyma by fibrotic tissue. The transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGF-ß1-Smad3) signaling pathway plays a key role in regulating lung fibrosis. Decorin (DCN), a small leucine-rich proteoglycan, has a modulatory effect on the immune system by reversibly binding with TGF-ß and reducing its bioavailability. Mesenchymal stem cell (MSC) therapy is a new strategy that has an immune-modulatory capacity. OBJECTIVE: The aim of this study was to introduce a new therapeutic approach to harness remodeling in injured lung. MATERIAL AND METHODS: Bone marrow MSCs were isolated and transduced by decorin gene. Lung injury was induced by bleomycin and mice were treated with MSCs, MSCs-decorin, and decorin. Then, oxidative stress biomarkers, remodeling biomarkers, bronchoalveolar lavage cells, and histopathology study were conducted. RESULTS: Reduced catalase and superoxide dismutase increased due to treatments. Elevated malondialdehyde, hydroxyproline, TGF-ß levels, and polymorphonuclear cells count decreased in the treated groups. Additionally, the histopathology of lung tissues showed controlled inflammation and fibrosis. CONCLUSION: Transfected decorin gene to MSCs and used cell therapy could control remodeling and bleomycin-induced lung injury.
Asunto(s)
Bleomicina , Decorina , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Fibrosis Pulmonar , Decorina/genética , Decorina/metabolismo , Animales , Ratones , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/terapia , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/terapia , Lesión Pulmonar/inmunología , Lesión Pulmonar/genética , Transducción Genética , Estrés Oxidativo , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , HumanosRESUMEN
The management of hypertrophic scars (HSs), characterized by excessive collagen production, involves various nonsurgical and surgical interventions. However, the absence of a well-defined molecular mechanism governing hypertrophic scarring has led to less-than-ideal results in clinical antifibrotic treatments. Therefore, our study focused on the role of decorin (DCN) and its regulatory role in the TGF-ß/Smad signalling pathway in the development of HSs. In our research, we observed a decrease in DCN expression within hypertrophic scar tissue and its derived cells (HSFc) compared to that in normal tissue. Then, the inhibitory effect of DCN on collagen synthesis was confirmed in Fc and HSFc via the detection of fibrosis markers such as COL-1 and COL-3 after the overexpression and knockdown of DCN. Moreover, functional assessments revealed that DCN suppresses the proliferation, migration and invasion of HSFc. We discovered that DCN significantly inhibits the TGF-ß1/Smad3 pathway by suppressing TGF-ß1 expression, as well as the formation and phosphorylation of Smad3. This finding suggested that DCN regulates the synthesis of collagen-based extracellular matrix and fibrosis through the TGF-ß1/Smad3 pathway.
Asunto(s)
Cicatriz Hipertrófica , Decorina , Proteína smad3 , Factor de Crecimiento Transformador beta , Decorina/genética , Decorina/metabolismo , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Técnicas de Silenciamiento del Gen , Humanos , Proteína smad3/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Matriz Extracelular/metabolismo , Proliferación Celular , Movimiento CelularRESUMEN
Small leucine-rich proteoglycans, such as decorin and biglycan, play pivotal roles in collagen fibrillogenesis during development, healing, and aging in tendon. Previous work has shown that the absence of decorin and biglycan affects fibril shape and mechanical properties during tendon healing. However, the roles of decorin and biglycan in the healing process of aged tendons are unclear. Therefore the objective of this study was to evaluate the differential roles of decorin and biglycan during healing of patellar tendon injury in aged mice. Aged (300 days old) female Dcn+/+/Bgn+/+ control (WT, n = 52), Dcnflox/flox (I-Dcn-/-, n = 36), Bgnflox/flox (I-Bgn-/-, n = 36), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-, n = 36) mice with a tamoxifen-inducible Cre were utilized. Targeted gene expression, collagen fibril diameter distributions, mechanical properties, and histological assays were employed to assess the effects of knockdown of decorin and/or biglycan at the time of injury. Knockdown resulted in alterations in fibril diameter distribution and scar area, but surprisingly did not lead to many differences in mechanical properties. Biglycan played a larger role in early healing stages, while decorin is more significant in later stages, particularly in scar remodeling. This study highlights some of the differential roles of biglycan and decorin in the regulation of fibril structure and scar area, as well as influencing gene expression during healing in aged mice.
Asunto(s)
Envejecimiento , Biglicano , Decorina , Ligamento Rotuliano , Animales , Biglicano/metabolismo , Decorina/metabolismo , Ligamento Rotuliano/metabolismo , Femenino , Envejecimiento/fisiología , Cicatriz , Ratones , Cicatrización de Heridas , Traumatismos de los Tendones , Técnicas de Silenciamiento del Gen , Fenómenos BiomecánicosRESUMEN
Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.
Asunto(s)
Colágeno , Decorina , Contractura de Dupuytren , Proteoglicanos , Humanos , Contractura de Dupuytren/metabolismo , Contractura de Dupuytren/patología , Colágeno/metabolismo , Proteoglicanos/metabolismo , Decorina/metabolismo , Matriz Extracelular/metabolismo , Masculino , Progresión de la Enfermedad , Femenino , Dermatán Sulfato/metabolismo , Persona de Mediana Edad , Anciano , Versicanos/metabolismo , Versicanos/genética , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , PolisacáridosRESUMEN
Evidence for the tumour-supporting capacities of the tumour stroma has accumulated rapidly in colorectal cancer (CRC). Tumour stroma is composed of heterogeneous cells and components including cancer-associated fibroblasts (CAFs), small vessels, immune cells, and extracellular matrix proteins. The present study examined the characteristics of CAFs and collagen, major components of cancer stroma, by immunohistochemistry and Sirius red staining. The expression status of five independent CAF-related or stromal markers, decorin (DCN), fibroblast activation protein (FAP), podoplanin (PDPN), alpha-smooth muscle actin (ACTA2), and collagen, and their association with clinicopathological features and clinical outcomes were analysed. Patients with DCN-high tumours had a significantly worse 5-year survival rate (57.3% versus 79.0%; p = 0.044). Furthermore, hierarchical clustering analyses for these five markers identified three groups that showed specific characteristics: a solid group (cancer cell-rich, DCNLowPDPNLow); a PDPN-dominant group (DCNMidPDPNHigh); and a DCN-dominant group (DCNHighPDPNLow), with a significant association with patient survival (p = 0.0085). Cox proportional hazards model identified the PDPN-dominant group (hazard ratio = 0.50, 95% CI = 0.26-0.96, p = 0.037) as a potential favourable factor compared with the DCN-dominant group. Of note, DCN-dominant tumours showed the most advanced pT stage and contained the lowest number of CD8+ and FOXP3+ immune cells. This study has revealed that immunohistochemistry and special staining of five stromal factors with hierarchical clustering analyses could be used for the prognostication of patients with CRC. Cancer stroma-targeting therapies may be candidate treatments for patients with CRC.
Asunto(s)
Biomarcadores de Tumor , Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/metabolismo , Masculino , Femenino , Biomarcadores de Tumor/análisis , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Anciano , Persona de Mediana Edad , Análisis por Conglomerados , Inmunohistoquímica , Microambiente Tumoral , Pronóstico , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/metabolismo , Células del Estroma/patología , Células del Estroma/metabolismo , Decorina/análisis , Decorina/metabolismo , Adulto , Anciano de 80 o más Años , Estimación de Kaplan-MeierRESUMEN
Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor ß binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling. Percentage area and/or mean intensity of expression of LUM in the parenchyma, and COL1A1, FBLN2, LTBP4, DCN, and VCAN in the airway walls, was proportionally lower in COPD compared to controls. Lowered levels of most ECM proteins were associated with decreasing forced expiratory volume in 1 s (FEV1) measurements, indicating a relationship with disease severity. Furthermore, we identified six unique ECM signatures where LUM and COL6A1 in parenchyma and COL1A1, FBLN5, DCN, and VCAN in airway walls appear essential in reflecting the presence and severity of COPD. These signatures emphasize the need to examine groups of proteins to represent an overall difference in the ECM landscape in COPD that are more likely to be related to functional effects than individual proteins. Our study revealed differences in the lung ECM landscape between control and COPD and between SEO and moderate COPD signifying distinct pathological processes in the different subgroups.NEW & NOTEWORTHY Our study identified chronic obstructive pulmonary disease (COPD)-associated differences in the lung extracellular matrix (ECM) composition. We highlight the compartmental differences in the ECM landscape in different subtypes of COPD. The most prominent differences were observed for severe-early onset COPD. Moreover, we identified unique ECM signatures that describe airway walls and parenchyma providing insight into the intertwined nature and complexity of ECM changes in COPD that together drive ECM remodeling and may contribute to disease pathogenesis.
Asunto(s)
Decorina , Elastina , Proteínas de la Matriz Extracelular , Matriz Extracelular , Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Humanos , Masculino , Persona de Mediana Edad , Pulmón/metabolismo , Pulmón/patología , Femenino , Proteínas de la Matriz Extracelular/metabolismo , Elastina/metabolismo , Decorina/metabolismo , Anciano , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Versicanos/metabolismo , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Lumican/metabolismo , Colágeno Tipo I/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Índice de Severidad de la Enfermedad , Colágeno Tipo VI/metabolismoRESUMEN
Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.
Asunto(s)
Apoptosis , Biglicano , Decorina , Miocitos Cardíacos , Decorina/metabolismo , Biglicano/metabolismo , Apoptosis/efectos de la radiación , Apoptosis/efectos de los fármacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de la radiación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , HumanosRESUMEN
Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodeling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, whereas the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant decorin (DCN). Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs in patients with IPAH and PH-PF. We demonstrated that transforming growth factor-beta (TGF-ß) regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.NEW & NOTEWORTHY Idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries (PAs) displayed the greatest proteoglycan (PG) changes, with PH associated with pulmonary fibrosis (PH-PF) and PH associated with chronic obstructive pulmonary disease (PH-COPD) following. Agrin, an endothelial cell-specific PG, was solely upregulated in IPAH. Among all cells, neo-intima-forming smooth muscle cells (SMCs) displayed the most significant PG increase. Increased levels of circulating decorin, lumican, and versican, mainly derived from SMCs, and adventitial fibroblasts, may serve as systemic indicators of pulmonary remodeling, reflecting perivascular fibrosis and neointima formation.
Asunto(s)
Hipertensión Pulmonar , Miocitos del Músculo Liso , Proteoglicanos , Arteria Pulmonar , Humanos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Proteoglicanos/metabolismo , Masculino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Femenino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Remodelación Vascular , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Anciano , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Biglicano/metabolismo , Decorina/metabolismo , Adulto , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Lumican/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologíaRESUMEN
Understanding the molecular mechanism by which the periodontal ligament (PDL) is maintained uncalcified between two mineralized tissues (cementum and bone) may facilitate the functional repair and regeneration of the periodontium complex, disrupted in the context of periodontal diseases. However, research that explores the control of type I collagen (COL I) mineralization fails to clarify the detailed mechanism of regulating spatial collagen mineralization, especially in the periodontium complex. In the present study, decorin (DCN), which is characterized as abundant in the PDL region and rare in mineralized tissues, was hypothesized to be a key regulator in the spatial control of collagen mineralization. The circular dichroism results confirmed that DCN regulated the secondary structure of COL I, and the surface plasmon resonance results indicated that COL I possessed a higher affinity for DCN than for other mineralization promoters, such as DMP-1, OPN, BSP and DSPP. These features of DCN may contribute to blocking intrafibrillar mineralization in COL I fibrils during the polymer-induced liquid-precursor mineralization process when the fibrils are cross-linked with DCN. This effect was more remarkable when the fibrils were phosphorylated by sodium trimetaphosphate, as shown by the observation of a tube-like morphology via TEM and mineral sheath via SEM. This study enhances the understanding of the role of DCN in mineralization regulation among periodontal tissues. This provides insights for the development of biomaterials for the regeneration of interfaces between soft and hard tissues.
Asunto(s)
Decorina , Ligamento Periodontal , Animales , Ratones , Calcificación Fisiológica/fisiología , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Ligamento Periodontal/metabolismoRESUMEN
Decorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels. Interestingly, breast cancer cells and the recombinant IL-6 protein, both known to activate fibroblasts in vitro, downregulated DCN in BSFs. Moreover, specific DCN knockdown in breast fibroblasts modulated the expression/secretion of several CAF biomarkers and cancer-promoting proteins (α-SMA, FAP- α, SDF-1 and IL-6) and enhanced the invasion/proliferation abilities of these cells through activation of the STAT3/AUF1 signaling. Furthermore, DCN-deficient fibroblasts promoted the epithelial-to-mesenchymal transition and stemness processes in BC cells in a paracrine manner, which increased their resistance to cisplatin. These DCN-deficient fibroblasts also enhanced angiogenesis and orthotopic tumor growth in mice in a paracrine manner. On the other hand, ectopic expression of DCN in CAFs suppressed their active features and their paracrine pro-carcinogenic effects. Together, the present findings indicate that endogenous DCN suppresses the pro-carcinogenic and pro-metastatic effects of breast stromal fibroblasts.
Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Decorina , Regulación hacia Abajo , Interleucina-6 , Factor de Transcripción STAT3 , Transducción de Señal , Decorina/metabolismo , Decorina/genética , Humanos , Factor de Transcripción STAT3/metabolismo , Femenino , Interleucina-6/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Regulación hacia Abajo/genética , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Fibroblastos/metabolismo , Células del Estroma/metabolismo , Línea Celular Tumoral , Carcinogénesis/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Mama/patología , Mama/metabolismoRESUMEN
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Asunto(s)
Decorina , Linfangiogénesis , Decorina/metabolismo , Decorina/genética , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.
Asunto(s)
Diferenciación Celular , Movimiento Celular , Disferlina , Matriz Extracelular , Mioblastos , Sarcoglicanos , Animales , Mioblastos/metabolismo , Mioblastos/citología , Matriz Extracelular/metabolismo , Ratones , Sarcoglicanos/genética , Sarcoglicanos/metabolismo , Disferlina/genética , Disferlina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofina/genética , Distrofina/metabolismo , Anexina A2/genética , Anexina A2/metabolismo , Decorina/genética , Decorina/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismoRESUMEN
Multiple sclerosis (MS) is unsurpassed for its clinical and pathological hetherogeneity, but the biological determinants of this variability are unknown. HLA-DRB1*15, the main genetic risk factor for MS, influences the severity and distribution of MS pathology. This study set out to unravel the molecular determinants of the heterogeneity of MS pathology in relation to HLA-DRB1*15 status. Shotgun proteomics from a discovery cohort of MS spinal cord samples segregated by HLA-DRB*15 status revealed overexpression of the extracellular matrix (ECM) proteins, biglycan, decorin, and prolargin in HLA-DRB*15-positive cases, adding to established literature on a role of ECM proteins in MS pathology that has heretofore lacked systematic pathological validation. These findings informed a neuropathological characterisation of these proteins in a large autopsy cohort of 41 MS cases (18 HLA-DRB1*15-positive and 23 HLA-DRB1*15-negative), and seven non-neurological controls on motor cortical, cervical and lumbar spinal cord tissue. Biglycan and decorin demonstrate a striking perivascular expression pattern in controls that is reduced in MS (-36.5%, p = 0.036 and - 24.7%, p = 0.039; respectively) in lesional and non-lesional areas. A concomitant increase in diffuse parenchymal accumulation of biglycan and decorin is seen in MS (p = 0.015 and p = 0.001, respectively), particularly in HLA-DRB1*15-positive cases (p = 0.007 and p = 0.046, respectively). Prolargin shows a faint parenchymal pattern in controls that is markedly increased in MS cases where a perivascular deposition pattern is observed (motor cortex +97.5%, p = 0.001; cervical cord +49.1%, p = 0.016). Our findings point to ECM proteins and the vascular interface playing a central role in MS pathology within and outside the plaque area. As ECM proteins are known potent pro-inflammatory molecules, their parenchymal accumulation may contribute to disease severity. This study brings to light novel factors that may contribute to the heterogeneity of the topographical variation of MS pathology.
Asunto(s)
Biglicano , Decorina , Proteínas de la Matriz Extracelular , Esclerosis Múltiple , Médula Espinal , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Decorina/metabolismo , Decorina/genética , Médula Espinal/patología , Médula Espinal/metabolismo , Anciano , Biglicano/metabolismo , Biglicano/genética , Cadenas HLA-DRB1/genética , Estudios de Cohortes , ProteómicaRESUMEN
Cancer stem cells (CSCs) play pivotal roles in the growth, invasion, metastasis, chemo-resistance in malignant peripheral nerve sheath tumor (MPNST). The current characterization of CSCs in MPNST is not complete. Decorin is a critical regulator of microenvironment, but its expression and function in CSCs of MPNST has not been studied. In the current study, Decorin levels and its relationship with lung and liver metastasis were determined in clinical specimens. Decorin expression in CD133-positive or CD44-positive CSCs was analyzed by RT-qPCR on cytospun MPNST cells after flow cytometry-based cell sorting. Decorin-positive cells were separated from Decorin-negative cells in transfected MPNST cell lines using a designed plasmid expressing red fluorescent protein (RFP) under a Decorin promoter. Tumor sphere formation, tumor growth, cell invasion, cell migration, and the resistance to chemotherapy-induced apoptosis were determined on Decorin-positive versus Decorin-negative MPNST cells. In vivo tumor growth was analyzed in mice receiving subcutaneous transplantation of Decorin-positive versus Decorin-negative MPNSTs. We found that Decorin levels were significantly downregulated in MPNST specimens, compared to non-tumorous adjacent tissue. Significantly lower Decorin levels were detected in MPNSTs with lung or liver metastasis compared to those without. Poorer patient survival was detected in Decorin-low MPNST, compared to Decorin-high subjects. More Decorin-negative cells were detected in CD133-positive MPNST cells than CD133-negative MPNST cells, and in CD44-positive MPNST cells than in CD44-negative MPNST cells. Compared to Decorin-positive MPNST cells, Decorin-negative MPNST cells generated significantly more tumor spheres in culture, were more invasive and migratory, and were more resistant to chemotherapy-induced apoptosis, likely due to the inhibition of epidermal growth factor receptor signaling by Decorin. Decorin-negative MPNST cells grew significantly larger tumor in vivo. Thus, depletion of Decorin may occur in CSCs in MPNSTs, serving possibly as a new therapeutic target.