Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.892
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Methods Mol Biol ; 2854: 41-50, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192117

RESUMEN

The innate immune system relies on a variety of pathogen recognition receptors (PRRs) as the first line of defense against pathogenic invasions. Viruses have evolved multiple strategies to evade the host immune system through coevolution with hosts. The CRISPR-Cas system is an adaptive immune system in bacteria or archaea that defends against viral reinvasion by targeting nucleic acids for cleavage. Based on the characteristics of Cas proteins and their variants, the CRISPR-Cas system has been developed into a versatile gene-editing tool capable of gene knockout or knock-in operations to achieve genetic variations in organisms. It is now widely used in the study of viral immune evasion mechanisms. This chapter will introduce the use of the CRISPR-Cas9 system for editing herpes simplex virus 1 (HSV-1) genes to explore the mechanisms by which HSV-1 evades host innate immunity and the experimental procedures involved.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Herpesvirus Humano 1 , Evasión Inmune , Inmunidad Innata , Sistemas CRISPR-Cas/genética , Inmunidad Innata/genética , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/genética , Evasión Inmune/genética , Humanos , Edición Génica/métodos , Animales , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética , Herpes Simple/inmunología , Herpes Simple/virología , Herpes Simple/genética
2.
Methods Mol Biol ; 2854: 61-74, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192119

RESUMEN

With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inmunidad Innata , Ratones Noqueados , ARN Guía de Sistemas CRISPR-Cas , Animales , Inmunidad Innata/genética , Ratones , ARN Guía de Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Virosis/inmunología , Virosis/genética
3.
Methods Mol Biol ; 2850: 61-77, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363066

RESUMEN

Golden Gate cloning enables the modular assembly of DNA parts into desired synthetic genetic constructs. The "one-pot" nature of Golden Gate reactions makes them particularly amenable to high-throughput automation, facilitating the generation of thousands of constructs in a massively parallel manner. One potential bottleneck in this process is the design of these constructs. There are multiple parameters that must be considered during the design of an assembly process, and the final design should also be checked and verified before implementation. Doing this by hand for large numbers of constructs is neither practical nor feasible and increases the likelihood of introducing potentially costly errors. In this chapter we describe a design workflow that utilizes bespoke computational tools to automate the key phases of the construct design process and perform sequence editing in batches.


Asunto(s)
Clonación Molecular , ADN , Edición Génica , ADN/genética , ADN/química , Edición Génica/métodos , Clonación Molecular/métodos , Sistemas CRISPR-Cas , Programas Informáticos , Biología Sintética/métodos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
4.
Methods Mol Biol ; 2850: 265-295, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363077

RESUMEN

Oligo pools are array-synthesized, user-defined mixtures of single-stranded oligonucleotides that can be used as a source of synthetic DNA for library cloning. While currently offering the most affordable source of synthetic DNA, oligo pools also come with limitations such as a maximum synthesis length (approximately 350 bases), a higher error rate compared to alternative synthesis methods, and the presence of truncated molecules in the pool due to incomplete synthesis. Here, we provide users with a comprehensive protocol that details how oligo pools can be used in combination with Golden Gate cloning to create user-defined protein mutant libraries, as well as single-guide RNA libraries for CRISPR applications. Our methods are optimized to work within the Yeast Toolkit Golden Gate scheme, but are in principle compatible with any other Golden Gate-based modular cloning toolkit and extendable to other restriction enzyme-based cloning methods beyond Golden Gate. Our methods yield high-quality, affordable, in-house variant libraries.


Asunto(s)
Sistemas CRISPR-Cas , Clonación Molecular , Biblioteca de Genes , ARN Guía de Sistemas CRISPR-Cas , Clonación Molecular/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Oligonucleótidos/genética , Edición Génica/métodos , Proteínas/genética
5.
Methods Mol Biol ; 2850: 329-343, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363080

RESUMEN

Phage engineering is an emerging technology due to the promising potential application of phages in medical and biotechnological settings. Targeted phage mutagenesis tools are required to customize the phages for a specific application and generate, in addition to that, so-called designer phages. CRISPR-Cas technique is used in various organisms to perform targeted mutagenesis. Yet, its efficacy is notably limited for phage mutagenesis due to the highly abundant phage DNA modifications. Addressing this challenge, we have developed a novel approach that involves the temporal removal of phage DNA cytosine modifications, allowing for effective CRISPR-Cas targeting and subsequent introduction of mutations into the phage genome. The removal of cytosine modification relies on the catalytic activity of a eukaryotic ten-eleven translocation methylcytosine (TET) dioxygenase. TET enzymes iteratively de-modify methylated or hydroxymethylated cytosines on phage DNA. The temporal removal of cytosine modification ultimately enables efficient DNA cleavage by Cas enzymes and facilitates mutagenesis. To streamline the application of the coupled TET-CRISPR-Cas system, we use Golden Gate cloning for fast and efficient assembly of a vector that comprises a TET oxidase and a donor DNA required for scarless site-specific phage mutagenesis. Our approach significantly advances the engineering of modified phage genomes, enabling the efficient generation of customized phages for specific applications.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Mutagénesis , Bacteriófagos/genética , Citosina/metabolismo , Edición Génica/métodos , Vectores Genéticos/genética
6.
Methods Mol Biol ; 2850: 365-375, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363082

RESUMEN

Vibrio natriegens is a gram-negative bacterium, which has received increasing attention due to its very fast growth with a doubling time of under 10 min under optimal conditions. To enable a wide range of projects spanning from basic research to biotechnological applications, we developed NT-CRISPR as a new method for genome engineering. This book chapter provides a step-by-step protocol for the use of this previously published tool. NT-CRISPR combines natural transformation with counterselection through CRISPR-Cas9. Thereby, genomic regions can be deleted, foreign sequences can be integrated, and point mutations can be introduced. Furthermore, up to three simultaneous modifications are possible.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Bacteriano , Vibrio , Vibrio/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
7.
Sci Transl Med ; 16(769): eadj6779, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39413163

RESUMEN

X-linked chronic granulomatous disease (X-CGD) is an inborn error of immunity (IEI) resulting from genetic mutations in the cytochrome b-245 beta chain (CYBB) gene. The applicability of base editors (BEs) to correct mutations that cause X-CGD is constrained by the requirement of Cas enzymes to recognize specific protospacer adjacent motifs (PAMs). Our recently engineered PAMless Cas enzyme, SpRY, can overcome the PAM limitation. However, the efficiency, specificity, and applicability of SpRY-based BEs to correct mutations in human hematopoietic stem and progenitor cells (HSPCs) have not been thoroughly examined. Here, we demonstrated that the adenine BE ABE8e-SpRY can access a range of target sites in HSPCs to correct mutations causative of X-CGD. For the prototypical X-CGD mutation CYBB c.676C>T, ABE8e-SpRY achieved up to 70% correction, reaching efficiencies greater than three-and-one-half times higher than previous CRISPR nuclease and donor template approaches. We profiled potential off-target DNA edits, transcriptome-wide RNA edits, and chromosomal perturbations in base-edited HSPCs, which together revealed minimal off-target or bystander edits. Edited alleles persisted after transplantation of the base-edited HSPCs into immunodeficient mice. Together, these investigational new drug-enabling studies demonstrated efficient and precise correction of an X-CGD mutation with PAMless BEs, supporting a first-in-human clinical trial (NCT06325709) and providing a potential blueprint for treatment of other IEI mutations.


Asunto(s)
Edición Génica , Enfermedad Granulomatosa Crónica , Células Madre Hematopoyéticas , Mutación , Enfermedad Granulomatosa Crónica/terapia , Enfermedad Granulomatosa Crónica/genética , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Animales , Mutación/genética , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Ratones , Sistemas CRISPR-Cas/genética , Trasplante de Células Madre Hematopoyéticas
8.
Int J Mol Sci ; 25(19)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39409191

RESUMEN

The non-ideal accuracy and insufficient selectivity of CRISPR/Cas9 systems is a serious problem for their use as a genome editing tool. It is important to select the target sequence correctly so that the CRISPR/Cas9 system does not cut similar sequences. This requires an understanding of how and why mismatches in the target sequence can affect the efficiency of the Cas9/sgRNA complex. In this work, we studied the catalytic activity of the Cas9 enzyme to cleave DNA substrates containing nucleotide mismatch at different positions relative to the PAM in the "seed" sequence. We show that mismatches in the complementarity of the sgRNA/DNA duplex at different positions relative to the protospacer adjacent motif (PAM) sequence tend to decrease the cleavage efficiency and increase the half-maximal reaction time. However, for two mismatches at positions 11 and 20 relative to the PAM, an increase in cleavage efficiency was observed, both with and without an increase in half-reaction time. Thermodynamic parameters were obtained from molecular dynamics results, which showed that mismatches at positions 8, 11, and 20 relative to the PAM thermodynamically stabilize the formed complex, and a mismatch at position 2 of the PAM fragment exerts the greatest stabilization compared to the original DNA sequence. The weak correlation of the thermodynamic binding parameters of the components of the Cas9/sgRNA:dsDNA complex with the cleavage data of DNA substrates containing mismatches indicates that the efficiency of Cas9 operation is mainly affected by the conformational changes in Cas9 and the mutual arrangement of sgRNA and substrates.


Asunto(s)
Disparidad de Par Base , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , ADN , ARN Guía de Sistemas CRISPR-Cas , Termodinámica , ADN/metabolismo , ADN/química , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , División del ADN , Simulación de Dinámica Molecular , Edición Génica/métodos , Especificidad por Sustrato
9.
Sci Rep ; 14(1): 24298, 2024 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414860

RESUMEN

BIVV003 is a gene-edited autologous cell therapy in clinical development for the potential treatment of sickle cell disease (SCD). Hematopoietic stem cells (HSC) are genetically modified with mRNA encoding zinc finger nucleases (ZFN) that target and disrupt a specific regulatory GATAA motif in the BCL11A erythroid enhancer to reactivate fetal hemoglobin (HbF). We characterized ZFN-edited HSC from healthy donors and donors with SCD. Results of preclinical studies show that ZFN-mediated editing is highly efficient, with enriched biallelic editing and high frequency of on-target indels, producing HSC capable of long-term multilineage engraftment in vivo, and express HbF in erythroid progeny. Interim results from the Phase 1/2 PRECIZN-1 study demonstrated that BIVV003 was well-tolerated in seven participants with SCD, of whom five of the six with more than 3 months of follow-up displayed increased total hemoglobin and HbF, and no severe vaso-occlusive crises. Our data suggest BIVV003 represents a compelling and novel cell therapy for the potential treatment of SCD.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Edición Génica , Células Madre Hematopoyéticas , Nucleasas con Dedos de Zinc , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Humanos , Edición Génica/métodos , Células Madre Hematopoyéticas/metabolismo , Nucleasas con Dedos de Zinc/metabolismo , Nucleasas con Dedos de Zinc/genética , Femenino , Masculino , Adulto , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Proteínas Represoras
10.
J Am Heart Assoc ; 13(20): e034690, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39377211

RESUMEN

BACKGROUND: Long-QT syndrome is a primary cardiac ion channelopathy predisposing a patient to ventricular arrhythmia through delayed repolarization on the resting ECG. We aimed to establish a patient-specific, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes model of long-QT syndrome type 3 (LQT3) using clustered regularly interspaced palindromic repeats (CRISPR/Cas9), for disease modeling and drug challenge. METHODS AND RESULTS: HiPSCs were generated from a patient with LQT3 harboring an SCN5A pathogenic variant (c.1231G>A; p.Val411Met), and an unrelated healthy control. The same SCN5A pathogenic variant was engineered into the background healthy control hiPSCs via CRISPR/Cas9 gene editing to generate a second disease model of LQT3 for comparison with an isogenic control. All 3 hiPSC lines were differentiated into cardiomyocytes. Both the patient-derived LQT3 (SCN5A+/-) and genetically engineered LQT3 (SCN5A+/-) hiPSC-derived cardiomyocytes showed significantly prolonged cardiomyocyte repolarization compared with the healthy control. Mexiletine, a cardiac voltage-gated sodium channel (NaV1.5) blocker, shortened repolarization in both patient-derived LQT3 and genetically engineered LQT3 hiPSC-derived cardiomyocytes, but had no effect in the control. Notably, calcium channel blockers nifedipine and verapamil showed a dose-dependent shortening of repolarization, rescuing the phenotype. Additionally, therapeutic drugs known to prolong the corrected QT in humans (ondansetron, clarithromycin, and sotalol) demonstrated this effect in vitro, but the LQT3 clones were not more disproportionately affected compared with the control. CONCLUSIONS: We demonstrated that patient-derived and genetically engineered LQT3 hiPSC-derived cardiomyocytes faithfully recapitulate pathologic characteristics of LQT3. The clinical significance of such an in vitro model is in the exploration of novel therapeutic strategies, stratifying drug adverse reaction risk and potentially facilitating a more targeted, patient-specific approach in high-risk patients with LQT3.


Asunto(s)
Potenciales de Acción , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/tratamiento farmacológico , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Antiarrítmicos/farmacología , Mexiletine/farmacología , Fenotipo , Edición Génica/métodos , Sistemas CRISPR-Cas , Diferenciación Celular , Masculino , Bloqueadores de los Canales de Calcio/farmacología , Estudios de Casos y Controles , Trastorno del Sistema de Conducción Cardíaco
11.
Methods Enzymol ; 705: 25-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389665

RESUMEN

Recent advances in CRISPR-Cas genomic editors have shifted us ever closer to achieving the ultimate therapeutic goal of accomplishing any edit in any cell. However, delivery of this editing machinery to primary cells with high efficiency while avoiding cellular toxicity remains a formidable challenge. Peptide-Assisted Genome Editing (PAGE) provides a simple, modular, and rapid approach for the protein-based delivery of CRISPR-Cas proteins or ribonucleoprotein complexes into primary cells with high efficiency and minimal cytotoxicity. In this chapter, we detail an expression and purification protocol to obtain highly pure Cas9-T6N and opCas12a-T8N PAGE genomic editors. The robustness of this protocol allows for consistent preparations of the purified editors that can be reliably used for the editing of primary and immortalized cells.


Asunto(s)
Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Péptidos de Penetración Celular , Edición Génica , Edición Génica/métodos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/aislamiento & purificación , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/aislamiento & purificación , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/aislamiento & purificación
12.
Curr Protoc ; 4(10): e70034, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39404040

RESUMEN

Genetically modifying mice traditionally involved complex methods of designing and validating targeting constructs, embryonic stem cell electroporation and selection, blastocyst injection, and breeding chimeras for germline transmission. Such arduous steps were best carried out by specialized gene targeting cores in academia or through expensive commercial vendors. Further, the time from initiation to completion of a project often took at least 1 year and, in some cases, much longer (or never), with no guarantees of success. The RNA-programmable CRISPR system of gene editing has greatly streamlined the generation of gene modifications (e.g., small substitutions, insertions, and deletions) in the mouse with high rates of success. Several editing platforms exist for gene/genome targeting in mice and other animal models previously difficult or impossible to alter. Here, we provide a simplified method of generating genetically modified mice using the prime editing platform. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Design, cloning, and synthesis of engineered pegRNA (epegRNA) Basic Protocol 2: Microinjection of PE2 components into mouse zygote Basic Protocol 3: Genotyping founder mice and breeding for germline transmission.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Microinyecciones , Femenino , Masculino
13.
Sci Rep ; 14(1): 24076, 2024 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-39402380

RESUMEN

Conditional regulation is a highly beneficial system for studying the function of essential genes in Plasmodium falciparum and dimerizable Cre recombinase (DiCre) is a recently adapted conditional regulation system suitable for this purpose. In the DiCre system, two inactive fragments of Cre are reconstituted to form a functionally active enzyme in the presence of rapamycin. Different loci have been targeted to generate parasite lines that express the DiCre enzyme. Here, we have used marker-free CRISPR-Cas9 gene editing to integrate the DiCre cassette in a redundant cg6 locus. We have shown the utility of the newly generated ∆cg6DC4 parasites in mediating robust, rapid, and highly specific excision of exogenously encoded gfp sequence. The ∆cg6DC4 parasites are also capable of conditional excision of an endogenous parasite gene, PF3D7_1246000. Conditional deletion of PF3D7_1246000 did not cause any inhibition in the asexual proliferation of the parasites. Furthermore, the health and morphology of the mutant parasites were comparable to that of the control parasites in Giemsa smears. The availability of another stable DiCre parasite strain competent for conditional excision of target genes will expedite functional characterization and validation of novel drug and vaccine targets against malaria.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Integrasas , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Integrasas/genética , Integrasas/metabolismo , Edición Génica/métodos , Humanos , Genes Protozoarios , Malaria Falciparum/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
14.
PLoS One ; 19(10): e0306563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39365784

RESUMEN

Experts have called for public engagement with the governance of controversial scientific research and discoveries, including CRISPR, the technology that enables gene editing. Though engaging and informing citizens who are not interested in the issue is a challenge, recent studies suggest humor has potential to close interest and knowledge gaps. We tested this potential by exposing individuals (N = 303) to one of three videos (an edited clip from Last Week Tonight, an edited clip from 60 Minutes, or control) that contained broadly overlapping facts about gene editing in an online survey. Results show that while exposure to the Last Week Tonight clip did not increase attentiveness to the issue of human gene editing among individuals with lower levels of interest in science, exposure to the humorous clip caused a modest improvement in issue knowledge. Positive main effects on perceived knowledge were found for both treatments. More research is needed but findings suggest that the use of humor in science communication offers potential, though perhaps limited, for broadening public engagement with emerging areas of science.


Asunto(s)
Edición Génica , Humanos , Edición Génica/métodos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Adulto Joven , Encuestas y Cuestionarios , Ingenio y Humor como Asunto , Adolescente , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Conocimiento , Sistemas CRISPR-Cas
15.
Commun Biol ; 7(1): 1263, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367037

RESUMEN

Natural secondary metabolites are medically, agriculturally, and industrially beneficial to humans. For mass production, a heterologous production system is required, and various metabolic engineering trials have been reported in Escherichia coli and Saccharomyces cerevisiae to increase their production levels. Recently, filamentous fungi, especially Aspergillus oryzae, have been expected to be excellent hosts for the heterologous production of natural products; however, large-scale metabolic engineering has hardly been reported. Here, we elucidated candidate metabolic pathways to be modified for increased model terpene production by RNA-seq and metabolome analyses in A. oryzae and selected pathways such as ethanol fermentation, cytosolic acetyl-CoA production from citrate, and the mevalonate pathway. We performed metabolic modifications targeting these pathways using CRISPR/Cas9 genome editing and demonstrated their effectiveness in heterologous terpene production. Finally, a strain containing 13 metabolic modifications was generated, which showed enhanced heterologous production of pleuromutilin (8.5-fold), aphidicolin (65.6-fold), and ophiobolin C (28.5-fold) compared to the unmodified A. oryzae strain. Therefore, the strain generated by engineering multiple metabolic pathways can be employed as a versatile highly-producing host for a wide variety of terpenes.


Asunto(s)
Aspergillus oryzae , Productos Biológicos , Edición Génica , Ingeniería Metabólica , Redes y Vías Metabólicas , Ingeniería Metabólica/métodos , Edición Génica/métodos , Productos Biológicos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Redes y Vías Metabólicas/genética , Sistemas CRISPR-Cas , Terpenos/metabolismo
16.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 74-80, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380278

RESUMEN

This study explores a novel therapeutic approach for spinal bulbar muscular atrophy (SBMA), a neurodegenerative disorder caused by a mutation in the Androgen Receptor (AR) gene. The aim is to investigate the potential of CRISPR-Cas9 technology in targeting the mutant AR gene to inhibit its production. The objectives include assessing the accuracy and efficacy of CRISPR-Cas9 guided RNAs in silencing the mutant gene and evaluating the feasibility of this approach as a treatment for SBMA. Computational and in-silico approaches are used to evaluate the feasibility of using CRISPR-Cas9 technology for treating SBMA. Computational analysis is used to design CRISPR-Cas9 guided RNAs targeting the mutant AR gene, assessing their on-target and off-target scores, GC content, and structural accuracy. In-silico simulations predict the potential therapeutic outcomes of the CRISPR-Cas9 approach in an artificial environment. Three guided RNA (gRNA) sequences were designed using the CHOPCHOP tool, targeting specific regions of the AR gene with high efficiency and 100% match. These gRNAs demonstrated effective targeting with minimal off-target scores and optimal GC content. Additionally, lentiCRISPR v2 plasmids were designed for the delivery of CRISPR materials, enabling high-efficiency multiplex genome editing of the AR gene. Thermodynamic ensemble predictions indicated favorable secondary structure stability of the designed gRNAs, further supporting their suitability for gene editing. The evaluation of designed gRNAs confirmed their strong binding ability to the target sequences, validating their potential as effective tools for genome editing. The study highlights the potential of CRISPR-Cas9 technology for targeting the Androgen Receptor gene associated with spinal bulbar muscular atrophy (SBMA). The findings support the feasibility of this approach for gene editing and suggest further exploration in preclinical and clinical settings. Recommendations include continued research to optimize CRISPR-Cas9 delivery methods and enhance specificity for therapeutic applications in SBMA.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Receptores Androgénicos , Sistemas CRISPR-Cas/genética , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Receptores Androgénicos/genética , Silenciador del Gen , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/terapia , Simulación por Computador , Mutación/genética , Secuencia de Bases , Edición Génica/métodos
17.
Skelet Muscle ; 14(1): 21, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354597

RESUMEN

BACKGROUND: Gene editing therapies in development for correcting out-of-frame DMD mutations in Duchenne muscular dystrophy aim to replicate benign spontaneous deletions. Deletion of 45-55 DMD exons (del45-55) was described in asymptomatic subjects, but recently serious skeletal and cardiac complications have been reported. Uncovering why a single mutation like del45-55 is able to induce diverse phenotypes and grades of severity may impact the strategies of emerging therapies. Cellular models are essential for this purpose, but their availability is compromised by scarce muscle biopsies. METHODS: We introduced, as a proof-of-concept, using CRISPR-Cas9 edition, a del45-55 mimicking the intronic breakpoints harboured by a subset of patients of this form of dystrophinopathy (designing specific gRNAs), into a Duchenne patient's cell line. The edited cell line was characterized evaluating the dystrophin expression and the myogenic status. RESULTS: Dystrophin expression was restored, and the myogenic defects were ameliorated in the edited myoblasts harbouring a specific del45-55. Besides confirming the potential of CRISPR-Cas9 to create tailored mutations (despite the low cleavage efficiency of our gRNAs) as a useful approach to generate in vitro models, we also generated an immortalized myoblast line derived from a patient with a specific del45-55. CONCLUSIONS: Overall, we provide helpful resources to deepen into unknown factors responsible for DMD-pathophysiology.


Asunto(s)
Sistemas CRISPR-Cas , Distrofina , Exones , Edición Génica , Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Línea Celular , Eliminación de Secuencia , Mioblastos/metabolismo
19.
Nat Commun ; 15(1): 8570, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384784

RESUMEN

In Multiple Sclerosis (MS), inflammatory demyelinated lesions in the brain and spinal cord lead to neurodegeneration and progressive disability. Remyelination can restore fast saltatory conduction and neuroprotection but is inefficient in MS especially with increasing age, and is not yet treatable with therapies. Intrinsic and extrinsic inhibition of oligodendrocyte progenitor cell (OPC) function contributes to remyelination failure, and we hypothesised that the transplantation of 'improved' OPCs, genetically edited to overcome these obstacles, could improve remyelination. Here, we edit human(h) embryonic stem cell-derived OPCs to be unresponsive to a chemorepellent released from chronic MS lesions, and transplant them into rodent models of chronic lesions. Edited hOPCs display enhanced migration and remyelination compared to controls, regardless of the host age and length of time post-transplant. We show that genetic manipulation and transplantation of hOPCs overcomes the negative environment inhibiting remyelination, with translational implications for therapeutic strategies for people with progressive MS.


Asunto(s)
Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Remielinización/genética , Humanos , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/citología , Esclerosis Múltiple/terapia , Esclerosis Múltiple/genética , Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Ratas , Ratones , Edición Génica/métodos , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Femenino , Oligodendroglía/citología , Oligodendroglía/metabolismo , Masculino , Movimiento Celular/genética , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/genética , Diferenciación Celular
20.
Commun Biol ; 7(1): 1291, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384978

RESUMEN

CRISPR-based genome editing of pseudogene-associated disorders, such as p47phox-deficient chronic granulomatous disease (p47 CGD), is challenged by chromosomal rearrangements due to presence of multiple targets. We report that interactions between highly homologous sequences that are localized on the same chromosome contribute substantially to post-editing chromosomal rearrangements. We successfully employed editing approaches at the NCF1 gene and its pseudogenes, NCF1B and NCF1C, in a human cell line model of p47 CGD and in patient-derived human hematopoietic stem and progenitor cells. Upon genetic engineering, a droplet digital PCR-based method identified cells with altered copy numbers, spanning megabases from the edited loci. We attributed the high aberration frequency to the interaction between repetitive sequences and their predisposition to recombination events. Our findings emphasize the need for careful evaluation of the target-specific genomic context, such as the presence of homologous regions, whose instability can constitute a risk factor for chromosomal rearrangements upon genome editing.


Asunto(s)
Edición Génica , Recombinación Homóloga , NADPH Oxidasas , Humanos , Edición Génica/métodos , NADPH Oxidasas/genética , Enfermedad Granulomatosa Crónica/genética , Sistemas CRISPR-Cas , Aberraciones Cromosómicas , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA